Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation

Dan-Dan Tian, Joshua J. Kellogg, Neşe Okut, Nicholas H. Oberlies, Nadja B. Cech, Danny D. Shen, Jeannine S. McCune, and Mary F. Paine

Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)

Received November 16, 2017; accepted February 14, 2018

ABSTRACT

Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20–180 μg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis.

Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (−)-epicatechin gallate and (−)-epigallocatechin gallate showed concentration-dependent inhibition, with IC₅₀ values (105 and 59 μM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ~1.0 and 2.0 μM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.

Introduction

Infusions made from leaves of the plant Camellia sinensis (L.) Kuntze (Theaceae), otherwise known as green tea, are some of the most commonly consumed beverages worldwide. Green tea represents approximately 35% of total tea production (http://www.fao.org/3/a-i4480e.pdf). Green tea supplements also have increased in popularity, ranking fourth in sales of herbal/botanical products in the United States in 2016 (Smith et al., 2017). Green tea products are promoted extensively for cardioprotection, chemoprevention, and weight loss (Moore et al., 2009; Deka and Vita, 2011; Yang and Wang, 2011). These properties have been attributed to polyphenols known as catechins (Fig. 1), which represent major constituents of the tea beverage and are well-studied phytochemicals (Balentine et al., 1997; Schönthal, 2011; Yang and Pan, 2012). The increasing popularity of green tea products, particularly in the United States (Smith et al., 2017), increases the likelihood of co-consumption with conventional medications, which can lead to alterations in drug disposition, potentially compromising drug safety and efficacy (Brantley et al., 2014).

Clinical pharmacokinetic green tea-drug interaction studies involving various green tea products as precipitants have focused primarily on the cytochrome P450s and transport proteins as targets (Donovan et al., 2004; Chow et al., 2006; Misaka et al., 2014). Results from these studies indicated minimal to no effects on the pharmacokinetics of probe substrates for CYP1A2 (caffeine), CYP2C9 (lansoprazole), CYP2D6 (dextromethorphan), and CYP3A4 (alprazolam and buspirone) when coadministered with green tea as capsules, extracts, or beverages. In contrast, a canned green tea beverage significantly decreased the area under the concentration-time curve (AUC) of the beta blocker nadolol

ABBREVIATIONS: AUC, area under the concentration-time curve; EC, (−)-epicatechin; ECG, (−)-epicatechin gallate; EGC, (−)-epigallocatechin gallate; HIM, human intestinal microsome; MS, mass spectrometry; 4-MU, 4-methylumbelliferone; PLS, partial least squares; UGT, UDP-glucuronosyltransferase.
Bioassay-guided fractionation is an iterative approach that uses bioassay isolation of putatively active constituents. Bioassay-guided fractionation information to inform multiple stages of chromatographic separation and needed to identify candidate precipitants of interactions with drugs. Mixtures of diverse phytoconstituents. Comprehensive, robust methods are needed to identify intestinal UGT inhibitors using raloxifene as a clinical intestinal UGT inhibitor. The objectives of the current work were to identify candidate intestinal UGT inhibitors in green tea that could precipitate a clinical pharmacokinetic green tea-drug interaction. The aims were to 1) identify potential intestinal UGT inhibitors using a biochemometrics approach and prioritize for further evaluation, 2) determine the inhibition kinetics of prioritized constituents using raloxifene as a clinical intestinal UGT substrate, and 3) evaluate the potential for a green tea-raloxifene interaction in vivo. Systematic approach could be applied to other natural products with the potential to precipitate pharmacokinetic interactions with conventional drugs.

Materials and Methods

Materials and Chemicals. Human intestinal microsomes (HIMs) (pooled from 10 donors, mixed gender, lot no. 1410074) were purchased from XenoTech, LLC (Lexena, KS). EGCG and L-ascorbic acid were purchased from Cayman Chemical Company (Ann Arbor, MI). Raloxifene was purchased from BIO-TANG Inc. (Lexington, MA). (+)-Catechin, (−)-epicatechin gallate (ECG), (−)-epicatechin (EC), ethyl gallate, raloxifene-4′-glucuronide, and of raloxifene-6-glucuronide were purchased from Toronto Research Chemicals Inc. (Toronto, Ontario, Canada). Alamethicin, bovine serum albumin, caffeine, (−)-epigallocatechin (EGC), magnesium chloride, 4-methylumbelliferyl (4-MU), nicardipine, saccharolactone, naringin, and UDP-glucuronic acid were purchased from Sigma-Aldrich (St. Louis, MO). Silybin B was purified from silymarin (Euromed S.A., Barcelona, Spain) as previously described (Graf et al., 2007). Methanol (liquid chromatography MS grade), formic acid, Tris base, and Tris-HCl were purchased from Fisher Scientific (Waltham, MA).

Biochemometrics of Green Tea to Identify Intestinal UGT Inhibitors. Four representative, bagged green teas, coded T02, T07, T13, and T21 (described in detail in Kellogg et al., 2017), were selected for testing as intestinal UGT inhibitors (Fig. 2). Standard reference material of green tea leaves (no. 3254) was obtained from the National Institute of Standards and Technology (coded T26).
Extracts of these five tea were prepared as previously described (Kellogg et al., 2017). Briefly, methanol (20 ml) was added to scintillation vials containing 200 mg of dried leaves. After shaking overnight at room temperature, the contents were filtered and dried under nitrogen. The extracts were submitted to first-stage fractionation using normal-phase flash chromatography with a CombiFlash RF system with a 4-g silica gel column (Teledyne-Isco, Lincoln, NE). The solvent fractionation using normal-phase flash chromatography with a CombiFlash RF system with a 4-g silica gel column (Teledyne-Isco, Lincoln, NE). The solvent consisted of hexane:chloroform:methanol with the following gradient (flow rate, 18 ml/min): 0–9.5 minutes, 100:0 to 100:0; 9.5–18 minutes, 100:0; 18–32.4 minutes, 100:0 to 0:80:20; 32.4–37.6 minutes, 0:80:20; 37.6–42.8 minutes, 0:80:20 to 0:50:50; 42.8–48.0 minutes, 0:50:50; 48.0–53.2 minutes, 0:50:50 to 0:100; and 53.2–58.4 minutes, 0:100. Fractions were collected every 30 seconds for 60 minutes and pooled based on UV chromatograms (λ, 280 nm), yielding five pooled fractions (A–E); these pools were dried under nitrogen. Fractions of a hot water extract of T26 were prepared similarly. All extracts and fractions were stored dry at 4°C to prevent degradation of catechins and other constituents, an approach used routinely to maintain stability of natural product constituents; commercially available standards of the major constituents in green tea (catechins) were stable under these same storage conditions. The five fractions and original extract from each tea were tested as inhibitors of intestinal 4-MU glucuronidation (vide infra).

Untargeted metabolomic data for extracts and fractions of the green teas were acquired as previously described (Kellogg et al., 2017) using a Q Exactive Plus quadrupole-orbitrap mass spectrometer (Thermo Scientific, Bellefonte, PA) with an electrospray ionization source (operated in a switching positive/negative mode) coupled to an Acquity UPLC System (Waters, Milford, MA). Briefly, each extract and fraction was resuspended in methanol (1 mg/ml), and a 3-μl aliquot was injected onto an Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 30 mm). The following binary gradient (0.3 ml/min) consisting of water (A) and acetonitrile (B), both of which contained 0.1% formic acid, was applied: 0–1.0 minutes, 5% B; 1.0–12.0 minutes, 5%–100% B; 12.0–14.0 minutes, 100% B; 14.0–16.0 minutes, 100%–5% B; and 16.0–17.0 minutes, 5% B. A mixture containing catechins (EC, ECG, EGC, and EGCG) and caffeine was injected every five runs as an internal quality control measure.

The metabolomics data sets for each extract and fraction were analyzed, aligned, and filtered using MZmine 2.25 software (Pluskal et al., 2010) with parameter settings as previously described (Kellogg et al., 2017). The spectral data matrix (consisting of m/z, retention time, and peak area) was imported to Excel (Microsoft, Redmond, WA) and merged with the bioactivity data (at the 60 μg extract/ml concentration) to form a final biochemometric analytical matrix. Data sets for each extract/fraction consisted of triplicate bioassay measurements and triplicate high-resolution MS analyses. Biochemometric analysis was conducted using Sirius (version 10.0; Pattern Recognition Systems AS, Bergen, Norway) (Kvalheim et al., 2011; Kellogg et al., 2016) after a fourth root transformation of the spectral variables to reduce heteroscedasticity. An unsupervised statistical analysis was achieved using principal component analysis. An internally cross-validated four-component partial least-squares (PLS) model was constructed using 100 iterations at a significance level of 0.05. Selectivity ratios from the final PLS model were calculated using algorithms internal to Sirius.

Based on the biochemometric analysis, fraction C from a representative tea (T21) was advanced to second-stage purification (Fig. 2) using a reverse-phase preparative high-performance LC with a Gemini NX C18 column (5 μm, 250 × 21.2 mm; Phenomenex, Torrance, CA). Using a linear gradient from 60:40 water: acetonitrile (each containing 0.1% formic acid) to 100% acetonitrile, fractions were collected every 0.5 minutes for 15 minutes and were pooled based on UV chromatograms, yielding eight subfractions (C1–C8). These subfractions were tested as intestinal UGT inhibitors and analyzed via biochemometrics to identify UGT inhibitory constituents.

Fig. 2. Workflow for biochemometrics-guided fractionation of green teas to identify candidate intestinal UGT inhibitors.
after 4 minutes by adding ice-cold methanol (200 μl) containing naringin (1 μM) as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced to a 6500 QTRAP mass spectrometer (AB Sciex, Framingham, MA) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard. After centrifugation, the supernatant (3 ml) was injected into a Shimadzu LC-30AD UPLC (Shimadzu Corporation, Tokyo, Japan) interfaced as the internal standard.
enterocytes (248 ml/min) (Davies and Morris, 1993). The f_{ug} values of EGCG and ECG were set to 1 assuming no significant binding in the intestinal lumen, and f_{mic} for both catechins were predicted by Simcyp to be 0.99 in HIMs at 0.05 mg/ml. Method 2 used average simulated maximum enterocyte concentration for ECG and EGCG in duodenum, jejunum, and ileum using Simcyp. EGCG and ECG can be metabolized via glucuronidation, sulfation, and methylation, but kinetic parameters are lacking. Therefore, oral clearances from the literature were used, along with physiochemical properties, to simulate enterocyte concentrations of EGCG and ECG (Table 1). Because of the lack of experimental data and the inability to predict unbound fractions in enterocytes, the f_{ug} values of EGCG and ECG in method 2 were assumed to be the same as f_{mic}.

Results

Biochemometrics Analysis of the First-Stage Fractionation Identified the Fraction in a Representative Green Tea Containing the Most Intestinal UGT Inhibitors. All green tea extracts and corresponding fractions (A–E) demonstrated concentration-dependent inhibition of intestinal UGT activity, as measured by 4-MU glucuronidation (Fig. 3). The effects of extracts and fractions prepared from teas T02, T07, T13, and T21 were qualitatively similar to those prepared from the National Institute of Standards and Technology reference material (T26). As might be expected, catechin concentrations in the hot water extract tended to be lower than those in the methanol extract, but in aggregate varied <20%. The PLS score plot of the metabolomic profiles from the five methanolic extracts and corresponding fractions showed three distinct clusters (Fig. 4A): extract, C, and D; A and B; and E. Based on commercial availability, sales, and consumer reports indicating frequent use, T21 (Kellogg et al., 2017) was selected for further investigation to identify candidate intestinal UGT inhibitors in green tea. Principal component analysis and a stacked plot of liquid chromatography MS base peak chromatograms corresponding to T21 fractions A–E showed that the majority of constituents were detected in fractions C–E (Fig. 4B); fraction C contained the primary green tea catechins (Fig. 1) and other constituents that contributed to inhibition of intestinal 4-MU glucuronidation (Fig. 3). Because the first-stage fractionation was not sufficient to separate individual constituents from the extract, thereby precluding correlations between structure and bioactivity, fraction C was advanced to second-stage fractionation. The resulting subfractions (C1–C8) were tested as inhibitors of intestinal UGT activity.
Intestinal UGT Inhibitors in Green Tea

EGC and EGCG Are Potent Intestinal UGT Inhibitors in Green Tea. The effects of (+)-catechin, EC, EGC, ECG, and EGCG at 100 μM on 4-MU glucuronidation in HIMs were compared. Only ECG and EGCG showed marked effects, inhibiting by 55% and 40% relative to vehicle control (Supplemental Fig. 1). Both ECG and EGCG showed concentration-dependent inhibition, with IC50 values of 105 and 59 μM, respectively (Fig. 6). The Ki values for ECG and EGCG were next determined using the clinically used intestinal UGT substrate raloxifene. The competitive inhibition model best described the data for both catechins, with Ki values of approximately 1 and 2 μM, respectively (Fig. 7; Supplemental Fig. 2).

A Mechanistic Static Model Predicts an Intestinal UGT-Mediated Green Tea/Raloxifene Interaction In Vivo. The concentrations of (+)-catechin, EC, EGC, ECG, and EGCG measured in 240 ml of T21 tea were 7.8 ± 1.1, 95.8 ± 3.8, 285 ± 19.1, 66.4 ± 5.0, and 240 ± 20.3 μM, respectively. Corresponding doses were 0.9 ± 0.1, 10.5 ± 0.4, 31.3 ± 2.1, 7.3 ± 0.5, and 26.4 ± 2.2 mg, respectively. The Fv values of ECG and EGCG were predicted by Simcyp to be 0.66 and 0.65, respectively. Using method 1, intestinal lumen concentrations of ECG and EGCG were predicted to be 4.4 and 15.2 μM, respectively. Using Ki values of 1 and 2 μM for ECG and EGCG, respectively, the AUC/AUC ratios were 4.4 and 6.1, respectively. Using method 2, the average maximum enterocyte concentrations of ECG and EGCG were estimated to be 0.18 and 0.54 μM, respectively, producing AUC/AUC ratios of 1.2 and 1.3, respectively.

Discussion

Green tea is one of the most commonly consumed botanical natural products worldwide (Smith et al., 2017). These high usage patterns raise concern for co-consumption with conventional medications, prompting development of a systematic approach to evaluate potential green tea-drug interactions. Compared with the cytochrome P450s and transporters, the UGTs are understudied targets for natural product-drug interactions. Like many botanical natural products, green tea contains a multitude of polyphenolic constituents that undergo extensive glucuronidation (Lu et al., 2003a; Feng, 2006). By definition, these polyphenols can act as competitive inhibitors of these enzyme(s).

Biochemometrics Analysis of Second-Stage Fractionation Identified Five Catechins as Candidate Intestinal UGT Inhibitors. Fraction C and subfractions C1–C8 from the T21 extract generally showed concentration-dependent inhibition of 4-MU glucuronidation (Fig. 5A). An internal cross-validated PLS model was constructed from the metabolomic profiles for fraction C and subfractions C1–C6. The analysis yielded a four-component PLS model, accounting for 73.6% and 98.8% of the independent (spectral) and dependent (bioactivity) block variation, respectively. Taking the ratio between explained and residual variance of the spectral variables yielded a selectivity ratio for each marker ion (Fig. 5B). These ratios represented a quantitative measure of the contribution of each marker ion to intestinal UGT inhibitory activity. The selectivity ratio analysis highlighted six marker ions (1–6) that correlated most strongly with intestinal UGT inhibition. All marker ions eluted with the same retention time (3.93 minutes), and all were forms of the same molecule, ECG (Table 2), detected as different clusters or isotypes by the mass spectrometer. These results suggested that ECG may be the green tea constituent primarily responsible for intestinal UGT inhibitory activity. This observation was supported further by the existence of ECG in subfractions C5–C8 (Fig. 5C), which showed stronger inhibition than fraction C (Fig. 5A). Other catechins also were present in these fractions, including (+)-catechin, EC, EGC, and EGCG. Therefore, these five catechins were selected for further evaluation.
five pooled fractions produced during the first stage of separation of a single green tea extract prepared from the reference material (T26). As such, a subfractionation procedure was necessary to adequately distribute multiple potentially active constituents among fractions (Fig. 2). This second stage of separation produced eight subfractions from the representative tea (T21), in which a total of 145 ions were detected from negative ionization mode mass spectrometric data. Many of these ions corresponded to the masses predicted for known green tea catechins. Data from the second stage biochemometric analyses demonstrated that among the 145 detected ions, those representing various forms of ECG (Table 2) were most strongly associated with UGT inhibitory activity (Fig. 5B). Thus, biochromometrics enabled identification of a bioactive catechin from among the more than 3000 ions detected.

Of the five catechins present in the T21 subfractions (Fig. 5C), only ECG and EGCG showed marked inhibition toward 4-MU glucuronidation. The IC$_{50}$ values were near or below the respective concentrations measured in a cup (240 ml) of hot tea prepared from T21 (105 and 60 μM vs. 66 and 240 μM), warranting further mechanistic studies. Microplate-based fluorescence assays enable rapid measurement of enzyme activities in vitro, hence are more efficient and cost-saving compared with liquid chromatography MS/MS-based assays (Cheng and Prusoff, 1973), these K_i values were less than one-tenth the corresponding values using 4-MU. Assuming ECG and EGCG also inhibit 4-MU glucuronidation in a competitive manner (i.e., $IC_{50} \sim 2K_i$) (Cheng and Prusoff, 1973), these K_i values were less than one-tenth the corresponding values using 4-MU. 4-MU is glucuronidated by multiple UGTs, including several from both the UGT1A and UGT2B families (Uchaipichat et al., 2004), whereas raloxifene is glucuronidated by UG1A1, -1A8, and -1A10, the latter two of which are expressed in the intestine but not the liver (Wu et al., 2011). Taken together, the higher inhibitory potency of ECG and EGCG toward raloxifene glucuronidation in HIMs may be due to inhibition of specific intestinal UGTs, such as UGT1A8 and UGT1A10.

The application of a mechanistic static model to predict the magnitude of a drug-drug interaction in vivo (AUC/AUC) relies on a robust estimate of the inhibitor concentration (Obach et al., 2006). Regarding intestinal enzyme–mediated interactions, the most appropriate inhibitor concentration would be that available to intestinal enzymes. Accordingly, two methods were used to estimate intestinal inhibitor concentrations. Method 1, which does not consider metabolism of the inhibitor, often overpredicts the interaction potential (Gufford et al., 2015a,b). Method 2, which considers metabolism of the inhibitor and simulates inhibitor concentrations within enterocytes, may provide a more reasonable prediction. These simulated concentrations were then applied to a mechanistic static model, which was subsequently used as a decision tool about whether to develop a dynamic model that describes the whole system. Application of method 1 to the AUC/AUC ratio calculation led to a 4.4- to 6.1-fold increase, whereas method 2 led to a 1.2- to 1.3-fold increase, in raloxifene plasma AUC. Discrepancies in dosing and nomenclature, these results support further evaluation of green tea as an inhibitor of intestinal UGT in vivo via dynamic modeling approaches and clinical testing (Gufford et al., 2015b).

There are limitations to the current work. First, only fraction C from T21 was advanced to second-stage fractionation. Other fractions also demonstrated UGT inhibitory activity (Fig. 3), and follow-up studies (similar to those presented in the current work) would be needed to identify potential inhibitors in those fractions. Thus, although the current work suggests catechins are contributors to the in vitro UGT inhibitory activity of green tea extracts, other are yet unidentified inhibitors are present in the complex extract. Second, although ECG and EGCG were identified and characterized as potent intestinal UGT inhibitors, they may not represent the overall effect of green tea fraction C. Testing of the three other identified catechins [(+)-catechin, EC, and EGC] showed weak inhibition (20%–50%) of raloxifene glucuronidation at 100 μM (Supplemental Fig. 3), because these catechins are typically abundant in

![Fig. 6](attachment:fig6.png)

Table 2. Identities of the various forms of ECG (Fig. 5B).

<table>
<thead>
<tr>
<th>Number</th>
<th>Ion (m/z)</th>
<th>Molecular Formula</th>
<th>Δ (ppm)</th>
<th>Tentative Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>443.0869 [M-H]$^-$</td>
<td>C${22}$H${17}$O$_{10}$</td>
<td>+ 0.9</td>
<td>13C isotope peak of ECG</td>
</tr>
<tr>
<td>2</td>
<td>504.0890 [M+ACN+Na-2H]$^-$</td>
<td>C${22}$H${17}$O$_{10}$Na</td>
<td>+ 2.7</td>
<td>Acetonitrile-sodium adduct of ECG</td>
</tr>
<tr>
<td>3</td>
<td>477.0597 [M+Cl]$^-$</td>
<td>C${22}$H${17}$O$_{10}$Cl</td>
<td>+ 0.8</td>
<td>Chloride adduct of ECG</td>
</tr>
<tr>
<td>4</td>
<td>441.0832 [M-H]$^-$</td>
<td>C${22}$H${17}$O$_{10}$</td>
<td>+ 1.1</td>
<td>Deprotated molecular ion of ECG</td>
</tr>
<tr>
<td>5</td>
<td>442.0864 [M-H]$^-$</td>
<td>C${22}$H${17}$O$_{10}$</td>
<td>+ 1.8</td>
<td>13C isotope peak ECG</td>
</tr>
<tr>
<td>6</td>
<td>487.0886 [M+FA-H]$^-$</td>
<td>C${22}$H${17}$O$_{12}$</td>
<td>+ 1.0</td>
<td>Formic acid adduct of ECG</td>
</tr>
</tbody>
</table>

ACN, acetonitrile; FA, formic acid.

Symbols and error bars denote mean and S.D., respectively, of triplicate incubations. Curves denote nonlinear least-squares regression of the data.
green tea, they may contribute to the overall effect of the tea. In addition, physical interactions (e.g., complexation) and/or biochemical interactions (e.g., additivity, synergy, and antagonism) between the catechins or other constituents could contribute to the overall effect of the tea, studies of which were beyond the scope of this study. Third, use of a fluorescent microplate assay with the pan UGT substrate 4-MU, although cost effective, may have missed weak inhibitors. However, the goal of this work was to identify strong (rather than all possible) intestinal UGT inhibitors, with the long-range goal of identifying clinically relevant green tea-drug interactions. This high-throughput assay also could be applied to UGTs expressed in the liver and kidney, as well as to other natural products.

In summary, identification of bioactive constituents, including inhibitors of drug metabolizing enzymes, in complex botanical products requires a comprehensive, multi-disciplinary approach. The biochemometrics approach described in the current work was highly effective in identifying candidate intestinal UGT inhibitors in a selected green tea fraction and prioritizing these inhibitors for further evaluation. Application of the most potent inhibitors to a mechanistic static model suggested that green tea could precipitate a clinical interaction with raloxifene and potentially other clinically used intestinal UGT inhibitors, with the long-range goal of identifying clinically relevant green tea-drug interactions. This high-throughput assay also could be applied to UGTs expressed in the liver and kidney, as well as to other natural products.

In summary, the current work was to identify strong (rather than all possible) intestinal UGT inhibitors, with the long-range goal of identifying clinically relevant green tea-drug interactions. This high-throughput assay also could be applied to UGTs expressed in the liver and kidney, as well as to other natural products. Biochemometrics approach described in the current work was highly effective in identifying candidate intestinal UGT inhibitors in a selected green tea fraction and prioritizing these inhibitors for further evaluation. Application of the most potent inhibitors to a mechanistic static model suggested that green tea could precipitate a clinical interaction with raloxifene and potentially other clinically used intestinal UGT substrates (e.g., ezetimibe and mycophenolic acid). This identification and prioritization process could be applied to other green tea fractions to identify additional intestinal UGT inhibitors, as well as inhibitors of other interaction targets, including additional drug metabolizing enzymes and transporters. As regulatory guidance for drug-drug interactions continues to evolve, the pharmaceutical industry may in the near future need to adopt such an approach to determine the drug interaction liability of a given natural product toward a new molecular entity. Application of this biochemometrics approach to other natural products will refine the procedures and contribute to decision trees (European Medicines Agency, 2012; Food and Drug Administration Center for Drug Evaluation and Research, 2017).

Acknowledgments

Mass spectrometry data were collected at the Triad Mass Spectrometry Facility at the University of North Carolina at Greensboro. M.F.P. dedicates this article to Dr. David P. Paine.

References

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K I) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108.

Fig. 7. Kinetics of inhibition of raloxifene-4′-glucuronide (R4G; left) or raloxifene-6-glucuronide (R6G; right) formation by ECG (upper) and EGCG (lower). Symbols denote individual data points of duplicate incubations. Velocity vs. substrate concentration data were described best by the simple competitive inhibition model. Curves denote nonlinear least-squares regression of the data.

Tian et al. 560

Dr. Mary F. Paine, Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, PBS 341, P.O. Box 1495, Spokane, WA 99210-1495. E-mail: mary.paine@wsu.edu

Address correspondence to: