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ABSTRACT

Functional interplay between transporters and drug-metabolizing
enzymes is currently one of the hottest topics in the field of drug
metabolism and pharmacokinetics. Uptake transporter-enzyme
interplay is important to determine intrinsic hepatic clearance
based on the extended clearance concept. Enzyme and efflux
transporter interplay, which includes both sinusoidal (basolateral)
and canalicular efflux transporters, determines the fate of metab-
olites formed in the liver. As sandwich-cultured hepatocytes
(SCHs) maintain metabolic activities and form a canalicular
network, the whole interplay between uptake and efflux trans-
porters and drug-metabolizing enzymes can be investigated

simultaneously. In this article, we review the utility and applicabil-
ity of SCHs for mechanistic understanding of hepatic disposition of
both parent drugs and metabolites. In addition, the utility of SCHs
for mimicking species–specific disposition of parent drugs and
metabolites in vivo is described. We also review application of
SCHs for clinically relevant prediction of drug-drug interactions
caused by drugs and metabolites. The usefulness of mathematical
modeling of hepatic disposition of parent drugs and metabolites in
SCHs is described to allow a quantitative understanding of an
event in vitro and to develop a more advanced model to predict
in vivo disposition.

Introduction

In drug development, pharmacokinetics play a central role in
understanding the relationship of exposure with efficacy and safety.
Researchwork in drugmetabolism and pharmacokinetics has focused on
optimization of absorption, distribution, metabolism, and excretion
properties to give an adequate pharmacokinetics profile of a new
chemical entity (NCE). These efforts have significantly reduced the
failure rate of projects in clinical development due to pharmacokinetics

issues from approximately 40% in the 1990s to ,10% in the 2000s
(Kennedy, 1997; Frank and Hargreaves, 2003). Accumulated informa-
tion on drug-metabolizing enzymes and transporters has contributed
significantly to advances in drug metabolism and pharmacokinetics
research.We have now entered a new era, with the goal of understanding
transporter-mediated disposition (Hillgren et al., 2013), determining
intrinsic clearance of metabolically stable NCEs (Di and Obach, 2015),
and evaluating systemic exposure of metabolites (Yu et al., 2010).
The liver is one of the key organs for these activities because it is a

major clearance organ of NCEs via metabolism and biliary excretion. In
addition to these two processes, uptake and efflux on the sinusoidal
(basolateral) membrane of the liver are involved in hepatic intrinsic
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glucuronide; MPA, mycophenolic acid; MPAG, mycophenolic acid phenyl-glucuronide; MRP, multidrug resistance-associated protein; NCE, new
chemical entity; NTCP, sodium taurocholate cotransporting polypeptide; OATP, organic anion-transporting polypeptide; P450, cytochrome P450;
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(2-hydroxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide (bosentan); Ro 48-5033, 4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-
hydroxy-ethoxy)-5(2-methoxy-phenoxy)-[2,2#1; ]bipyrimidinyl-4-yl]-benzenesulfonamide, ; SCH, sandwich-cultured hepatocyte; SN-38, 7-ethyl-
10-hydroxycamptothecin; tauro-nor-THCA-24-DBD, N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3a,7a,12a-trihydroxy-
27-nor-5b-cholestan-26-oyl)-2ʹ-aminoethanesulfonate; TCA, taurocholate; UGT, UDP-glucuronosyltransferase.
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clearance (CLint,H) based on the extended clearance concept (Varma and
El-Kattan, 2016), which is calculated by eq. 1.

CLint;H ¼ �
PSint;active þ PSint;passive

�

�
�
CLint;met þ CLint;bile

�
�
PSint;passive þ PSint;efflux þ CLint;met þ CLint;bile

� ð1Þ

PSint,active, PSint,passive, and PSint,efflux are intrinsic clearances via uptake
transport, passive diffusion, and basolateral efflux transport, respec-
tively. CLint,met and CLint,bile represent intrinsic metabolic and biliary
excretion clearances. When CLint,met + CLint,bile is larger than PSint,passive
and PSint,efflux, CLint,H becomes close to PSint,active and PSint,passive and is
mainly determined by active uptake transporter-mediated intrinsic
clearance. In contrast, under a condition where PSint,passive + PSint,efflux
is considerable to CLint,met + CLint,bile, CLint,H is governed by all the
individual processes (Varma and El-Kattan, 2016).
Accordingly, characterization of the four processes is important to

understand functional interplay between transporters and drug-
metabolizing enzymes. For instance, metabolism in the liver is a major
clearance route of atorvastatin, repaglinide, and saquinavir. However,
these drugs are not only substrates of cytochrome P450 (P450), but also
substrates of organic anion-transporting polypeptides (OATPs). In the
case of such dual substrates, uptake transporter-enzyme interplay has to
be considered to determine CLint,H, and identification of the rate-
determining process is important for prediction of drug disposition
in vivo (Parker and Houston, 2008; Watanabe et al., 2010; Varma et al.,
2013; Varma and El-Kattan, 2016) (Fig. 1).
The extended clearance concept is basic and applies to all NCEs,

meaning that the equation is applicable to metabolites as well as parent
drugs. The U.S. Food and Drug Administration’s guidance for safety

testing of drug metabolites, called the MIST guidance and ICH-M3(R2),
first issued in 2008 and 2009, respectively (CDER and CBER, 2010;
CDER, 2016), have had a significant impact on drug discovery and
development in pharmaceutical companies because further evaluation of
circulating metabolites is required in both nonclinical species and humans.
Unlike the parent drug, ametabolite is generally formed intracellularly in the
liver. Therefore, there has to be greater emphasis on enzyme–efflux
transporter interplay in the liver to understand hepatic disposition
and systemic exposure of metabolites mechanistically (Fig. 1).
Several in vitro test systems have been established to determine

enzyme- and transporter-mediated intrinsic clearance. For instance,
microsomes are commonly used for determining intrinsic metabolic
clearance of NCEs by P450 enzymes andUDP-glucuronosyltransferases
(UGTs) (Obach, 1999; Naritomi et al., 2001; Kilford et al., 2009; Gill
et al., 2012). Cell lines or Xenopus oocytes overexpressing drug-
associated transporters are useful for investigation of the involvement
and kinetics of transporters (Tamai et al., 2001; Nozawa et al., 2005;
Nakakariya et al., 2008; Tzvetkov et al., 2013). Among established
in vitro systems, isolated and/or cultured hepatocytes have been widely
recognized as a holistic and reliable model to investigate both enzyme-
and transporter-mediated intrinsic clearances and their interplay (Soars
et al., 2007; Chiba et al., 2009; Di et al., 2012), although large
interindividual variability of enzyme and transporter activities is
observed among donors. Several forms of hepatocytes are used to
investigate enzyme- and transporter-mediated hepatic disposition, in-
cluding suspended and plated hepatocytes, cocultures, and three-
dimensional models (Tetsuka et al., 2017), but sandwich-cultured
hepatocytes (SCHs) are the focus of this article because of their unique
feature of allowing evaluation of thewhole interplay between uptake and
efflux transporters and drug-metabolizing enzymes.

Fig. 1. Transporter-enzyme interplay in the liver.
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Characteristics of SCHs

The sandwich culture system has been developed and established over
two decades (Dunn et al., 1989; LeCluyse et al., 1994, 1999; Tuschl
et al., 2009; Sharma et al., 2010). As the name suggests, SCHs are
hepatocytes cultivated between extracellular matrices (ECMs). Com-
mercial ECMs, Matrigel and Geltrex, are generally used to overlay
hepatocytes attached to collagen I-coated plates. Compared with a
conventional culture model (monolayer-plated hepatocytes), the sand-
wich culture system allows hepatocytes to maintain their polarity,
morphology, and liver-specific activities, such as albumin secretion
(Dunn et al., 1989; LeCluyse et al., 1994; Blaheta et al., 1998; Tuschl
et al., 2009). There is debate about changes of metabolic enzyme
activities in SCHs during culture, with some studies showing similar
metabolic activities in suspended hepatocytes and SCHs (Lau et al.,
2002; Treijtel et al., 2005), whereas others show lower activities in SCHs
(Kern et al., 1997; Slaus et al., 2001; Kienhuis et al., 2007; Matsunaga
et al., 2013). The transition of metabolic enzyme activities during culture
depends on the conditions of the hepatocytes (fresh or cryopreserved)
and ECM and differs among isoenzymes and species.
One of the greatest advantages of SCHs is the ability to form bile

canaliculi with the entire array of transport proteins involved in biliary
excretion, and the bile canalicular networks can be disrupted by
calcium/magnesium depletion in buffer (B-CLEAR Technology; Qual-
yst Transporter Solutions, Durham, NC) (Brouwer et al., 2013). This
unique feature has allowed investigation of biliary excretion by
canalicular transporters, including P-glycoprotein (P-gp), multidrug
resistance-associated protein 2 (MRP2), breast cancer resistance protein
(BCRP), and bile salt export pump (BSEP), in SCHs by modulation of
the calcium/magnesium level in buffer.
The major parameters obtained from SCHs are the biliary excretion

index (BEI) and CLint,bile, which are calculated by eqs. 2 and 3,
respectively.

BEI  ð%Þ ¼ Accumulationcellþbile 2Accumulationcell
Accumulationcellþbile

� 100 ð2Þ

CLint;bile ¼ Accumulationcellþbile 2Accumulationcell
Intracellular AUC

ð3Þ

BEI is a qualitative index of biliary excretion and is not correlated with
in vivo extent of biliary excretion (% of dose) (Fukuda et al., 2008;
Tetsuka et al., 2014a). A large interindividual variability is observed in
intracellular/bile canalicular accumulations; however, BEI is relatively
comparable among individual donors, especially in compounds showing
high BEI (Fukuda et al., 2008; Matsunaga et al., 2014). In addition, the
experiments using the same donor suggest a good reproducibility of
accumulations and BEIs (Matsunaga et al., 2015, 2016).
CLint,bile in SCHs represents the biliary excretion clearance from

hepatocytes to bile canaliculi and is correlated with the in vivo liver
exposure-based CLint,bile (Nakakariya et al., 2012). Apparent CLint,bile
(CLint,bile,app) calculated from the extracellular concentration in buffer
can also be used for prediction of the in vivo plasma exposure-based
CLint,bile with correction for protein binding, pairs of transporters
involved in uptake and biliary excretion, and a large scaling factor (up
to 300-fold) to bridge the in vitro to in vivo gap (Fukuda et al., 2008;
Nakakariya et al., 2012; Zou et al., 2013).
Zou et al. (2013) suggest several reasons why a larger scaling factor is

required for compounds with low CLint,bile,app. For instance, a measure-
ment error for compounds with low biliary excretion and/or high protein
binding leads to poor prediction. In addition, to achieve good response
on measurement for compounds with low uptake to hepatocytes, those
are often incubated at high concentration in protein-free buffer. The high
concentration in the buffer may partially saturate uptake and/or efflux

transporters in SCHs, leading to underestimation. They also suggest that
addition of serum protein or plasma/serum itself to the buffer can reduce
the prediction error because serum protein serves just as a drug
solubilizer and does not remarkably change hepatic uptake of lipophilic
compounds with high protein binding.
In addition to excretion across the canalicular membranes, SCHs

allow investigation of basolateral uptake and efflux transport processes.
The major drug-associated uptake transporters in human liver are
OATPs, sodium taurocholate cotransporting polypeptide (NTCP), and
organic cation transporter 1 (OCT1) (Fig. 2), and all of these transporters
function in human SCHs. The activities of uptake transporters in SCHs
depend on the culture condition and species, and are usually similar to or
less than those in other forms of hepatocytes (Hoffmaster et al., 2005; Bi
et al., 2006;DeBruyn et al., 2011; Jacobsen et al., 2011; Kotani et al., 2011;
Tchaparian et al., 2011). Comparisons of uptake transporter activities
between SCHs and hepatocytes in suspension are summarized in Table 1.
A recent meta-analysis showed that the levels of OATP1B1 and

OATP1B3 do not differ significantly between human liver tissue and
human SCHs, but that there is a difference for OATP2B1 (Badée et al.,
2015). In contrast, protein levels of major rat Oatps, Oatp1a1, Oatp1a4,
and Oatp1b2, are significantly lower in SCHs than those in liver tissues
(Ishida et al., 2018). MRP3 and MRP4 expressed on the basolateral
membrane of hepatocytes are involved in the efflux of numerous
endogenous and exogenous compounds.
A vesicle-based system is suitable to investigate involvement and

interaction of efflux transporters; however, it is still unclear if vesicle-
based data can be used to predict sinusoidal efflux and biliary excretion
clearance, and the magnitude of the interaction (Brouwer et al., 2013). In
contrast, SCHs retain both basolateral and canalicular efflux transporter
networks, and the functional involvement of MRP3 and/or MRP4 has
been reported in efflux of rosuvastatin, enalaprilat, and mycophenolic
acid phenyl-glucuronide (MPAG) in SCHs (Pfeifer et al., 2013a;
Ferslew et al., 2014; Matsunaga et al., 2015). Enalaprilat and MPAG
are formed in the liver and undergo translocation into the systemic
circulation. These findings highlight that comprehensive analyses of
efflux processes is essential to predict drug disposition in vivo,
especially for metabolites because intracellular formation of a metabolite
is the first step, followed by excretion into the bloodstream and/or bile
(enzyme–efflux transporter interplay).
In addition, a metabolite is usually more hydrophilic and less

membrane permeable than a parent compound (Pang et al., 1984; de
Lannoy and Pang, 1987) and involvement of non-P450 enzymes,
especially UGTs, has increased because of the effort to escape P450-
mediated metabolism and improve metabolic stability during drug
discovery and development (Argikar et al., 2016). Therefore, efflux
transporters may have a major role in transport of a metabolite from the
liver to the blood and/or bile. Therefore, SCHs are a suitable model to
investigate the hepatic disposition of both a parent drug (mainly uptake
transporter-enzyme interplay) and an intracellularly formed metabolite
(mainly enzyme–efflux transporter interplay). On the other hand, in TR2

rats, genetically Mrp2-deficient rats, glucuronidation activities are
higher than those in wild-type Wistar rats (Westley et al., 2008; Yang
and Brouwer. 2014), suggesting UGT activities in TR2 rat SCHs are
higher than those in wild-type Wistar rat SCHs. Accordingly, it should
be noted that functional change of canalicular transporters may lead to
functional change of drug-metabolizing enzymes.

Prediction of Species Differences in Hepatic Disposition of
Metabolites

Differences in biliary excretion of drugs have been reported across
species (Grime and Paine. 2013). Molecular weight is one of determinant

682 Matsunaga et al.

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


of substrates for canalicular efflux transporters BCRP and MRP2, with
different molecular weight thresholds in rats and humans (Kato et al.,
2008; Choi et al., 2009; Yang et al., 2009). For anionic compounds, a
molecular weight higher than 400 and 475 g/mol is assumed the cutoff
value in rats and humans, respectively, whereas no threshold molecular
weight is identified for cationic and neutral compounds either in rats or
humans.
In addition, recent quantitative structure–activity relationship analy-

ses have shown some features of canalicular transporters for substrate
recognition. For instance, P-gp substrates are bulky, highly branched,
and good electron acceptors. BCRP substrates contain a large, positively
charged surface and have aromatic rings. MRP2 substrates are flexible in
addition to having a large polar and hydrophilic surface area. P-gp and
BCRP are more associated with explicit aromaticity-related features,
whereas MRP2 is predominately associated with hydrophilicity-related
properties (Aniceto et al., 2016).
Because a metabolite, especially a conjugatedmetabolite, has a higher

molecular mass and hydrophilicity than the parent drug, themetabolite is
more likely to be a substrate of a canalicular efflux transporter, as shown
in Table 2. Some reports have indicated that basolateral and canalicular
efflux in SCHs are correlated with in vivo excretion of metabolites into
urine or bile. For instance, paroxetine is mainly metabolized in the liver
and excreted in the form of metabolites. M1-glucuronide, a major
metabolite of paroxetine, is mainly excreted into bile after oral
administration in rats. In humans, in contrast, M1-sulfate and M1-

glucuronide are major metabolites and are mainly excreted in urine
(Haddock et al., 1989; Kaye et al., 1989). In rat SCHs, M1-glucuronide
was found to be the main metabolite, with minimal levels of other
metabolites, including M1-sulfate. In contrast, similar levels of M1-
glucuronide andM1-sulfate were observed in human SCHs. The BEIs of
intracellularly formed M1-glucuronide were ;50.9% in rats and
;15.6% in humans, respectively (Matsunaga et al., 2013), which is
consistent with the main elimination routes of M1-glucuronide in rats
and humans.
Similar data have been reported for mycophenolic acid (MPA), which

is mainly metabolized to MPAG in the liver (Shipkova et al., 2001). In
rats, MPAG is excreted in bile and urine, whereas MPAG is mainly
excreted in urine in humans (Bullingham et al., 1998; Gao et al., 2011).
The contributions of canalicular efflux of intracellularly formed MPAG
to net (basolateral and canalicular) efflux were estimated to be 37% in rat
SCHs and 20% in human SCHs, suggesting species differences in the
direction of basolateral and canalicular efflux of MPAG (Tetsuka et al.,
2014b).
These independent reports using SCH systems suggest that species

differences in urinary and fecal/biliary excretion of M1-glucuronide and
MPAG depend on biliary excretion availability because these metabo-
lites are substrates ofMRP2/Mrp2. For troglitazone, in contrast, there are
no significant species differences in the metabolism of the parent drug
and the urinary/biliary excretion balance of the main metabolite
(troglitazone sulfate) between rat and human SCHs, and these is also

Fig. 2. Major drug-associated transporters in human liver. OATPs
(OATP1B1, OATP1B3, and OATP2B1), NTCP, organic cation
transporter 1 (OCT1), and organic anion transporter OAT2 are
major uptake transporters in human liver. MRP3, MRP4, and
heteromer organic solute transporters OST-a/b are expressed on the
same basolateral membrane and are involved in efflux from
hepatocytes to the bloodstream. BCRP, BSEP, P-gp, and MRP2 are
major canalicular efflux transporters involved in biliary excretion
(Hillgren et al., 2013).

TABLE 1

Activities of uptake transporters in SCHs and hepatocytes in suspension

Substrate
Accumulation (pmol/min/mg protein or 106 cells) or Uptake Clearance (ml/min/mg protein)

References
SCHs Suspended Hepatocytes

CCK-8 (human) 1.06 ml/min/mg protein 2.44 ml/min/mg protein Kotani et al. (2011)
Digoxin (human) 3.8 6 1.7 pmol/min per 106 cells 5.2 6 2.6 pmol/min per 106 cells De Bruyn et al. (2011)
Estrone-3-sulfate (human) 30.3 6 13.0 pmol/min per 106 cells 99.1 6 67 pmol/min per 106 cells De Bruyn et al. (2011)
1-Methyl-4-phenylpyridinium (MPP+) (rat) ;17 pmol/min/mg protein 91 pmol/min/mg protein Jacobsen et al. (2011)
Pravastatin (human) 2.95 ml/min/mg protein 2.17 ml/min/mg protein Kotani et al. (2011)
Rosuvastatin (human) 9.48 ml/min/mg protein 9.50 ml/min/mg protein Kotani et al. (2011)
TCA (human) 20.0 6 7.9 pmol/min per 106 cells 27.5 6 15 pmol/min per 106 cells De Bruyn et al. (2011)
TCA (rat) 40.8 6 5.7 pmol/min/mg protein at 10 mM 52.8 6 10.2 pmol/min/mg protein at 1 mM Kemp et al. (2005)
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in good agreement with the in vivo disposition of troglitazone sulfate in
both species (Lee et al., 2010). These findings show that SCHs can
reproduce the in vivo hepatic disposition of a parent drug and metabolite
and predict species differences.
OATP1B1 and OATP1B3 are involved in bilirubin and its glucuro-

nide uptake to the liver. In addition, UGT1A1 catalyzes bilirubin
conjugation to monoglucuronide (BMG) and diglucuronide (BDG), and
subsequent biliary excretion is mediated by MRP2. Drug-induced
hyperbilirubinemia is thought to be caused by inhibition of either
UGT1A1 or these transporters (Chang et al., 2013; Keppler. 2014). The
sum of BEIs of the formed bilirubin glucuronides (BMG and BDG) was
80.6% in rat SCHs and 62.5% in human SCHs, suggesting that bilirubin
glucuronides are preferably excreted into the canalicular networks in
both rats and humans. In rat SCHs, formations of BMG and BDG were
comparable, whereas the excreted amount of BDG into bile canaliculi
was higher than that of BMG in rat SCHs (Lengyel et al., 2005). The
kinetic parameters of rat Mrp2 were 0.86 0.2 mmol/l of Km and 2136
52 ml/min per milligram protein of CLint for BMG and 0.56 0.1mmol/l
of Km and 520 6 24 ml/min per milligram protein of CLint for BDG,
respectively (Kamisako et al., 1999), suggesting that BDG is a better-
transported substrate of rat Mrp2, which is consistent with in vivo
observations. In addition, the BDG/BMG ratio in the medium (0.55) and
bile canaliculi (1.48) in rat SCHs was comparable to those in serum (0.6)
and bile (1.5) of rats (Mesa et al., 1997; Lengyel et al., 2005). These
findings suggest that SCHs enable evaluation of basolateral and
canalicular membrane transport of bilirubin glucuronides.
The BDG/BMG ratio in bile and serum changes in different types of

hyperbilirubinemia. For instance, in Gilbert and Crigler-Najjar syn-
dromes, which are caused by genetic polymorphisms of UGT1A1 and
exhibit decreased or deficient glucuronidation activities, there is a shift
toward BMG, consistent with a decrease of the BDG/BMG ratio in bile
and serum in Gunn rats, an animal model of Crigler-Najjar syndrome
(Van Steenbergen and Fevery, 1990; Clarke et al., 1997). In contrast,

bile duct-ligated and Mrp2-deficient rats, a model of Dubin-Johnson
syndrome, have an increased BDG/BMG ratio in bile and serum,
corresponding to clinical findings in patients with extrahepatic chole-
stasis (Jansen et al., 1985; Sieg et al., 1986; Mesa et al., 1997). These
results show that the mechanism of drug-induced hyperbilirubinemia
could be explored by measuring the BDG/BMG ratio in SCHs. To
establish the usefulness of the BMG/BDG ratio change in SCHs for
investigating drug-induced hyperbilirubinemia, further studies are
essential using a number of drugs that cause hyperbilirubinemia.

Probe Selection to Evaluate Drug-Drug Interactions via
Canalicular Efflux Transporters

SCHs can form a bile canalicular network, and this allows in-
vestigation of intact cell-based interactions with canalicular transporters.
Among the canalicular transporters expressed in hepatocytes, BCRP,
BSEP, P-gp, and MRP2 are important efflux transporters that are
involved in drug-drug interactions (DDIs). MRP2 substrates are mostly
conjugated metabolites, including MPAG and BMG/BDG, and MRP2
inhibition indirectly leads to a DDI via the decrease of enterohepatic
circulation of metabolites such as MPAG or results in conjugated
hyperbilirubinemia. In addition, inhibition of BSEP is considered to
cause liver injury (Hillgren et al., 2013).
Several fluorescent or radiolabeled probes have been used to

determine the interaction with canalicular efflux transporters in SCHs,
but these probes are often substrates of both basolateral uptake and
canalicular efflux transporters. For instance, estrone 3-sulfate, taurocho-
late (TCA), rhodamine 123, and estradiol 17b-D-glucuronide (E17G) are
generally used as model substrates for BCRP, BSEP, P-gp, and MRP2,
respectively; however, they are also substrates of OATPs and/or NTCP
(Annaert and Brouwer, 2005; McRae et al., 2006; Fukuda et al., 2008;
Brouwer et al., 2013; Pedersen et al., 2013). In addition, some probes,
such as E17G and TCA, are substrates of basolateral efflux transporter

TABLE 2

Hepatic transporters involved in parent drug and metabolite pairs

Drugs and Metabolites Basolateral Uptake Transporters Basolateral Efflux Transporters Canalicular Efflux Transporters References

Bilirubin OATP1B1, OATP1B3 NA NA Lengyel et al. (2005);
van de Steeg et al. (2012;,
Chang et al. (2013)

Bilirubin mono/diglucuronide OATP1B1 Mrp1, MRP3 BCRP, MRP2/Mrp2

Diclofenac Not substrate of either OATP1B1,
OATP1B3, or OATP2B1

Not substrate of MRP3 Not substrate of either
BCRP or MRP2

Zhang et al. (2016)

Diclofenac acyl glucuronide OATP1B1, OATP2B1 MRP3 BCRP, MRP2
Enalapril OATP1B1, OATP1B3 Not substrate of either

MRP3 or MRP4
MRP2/Mrp2 Liu et al. (2006);

Ferslew et al. (2014)
Enalaprilat NA MRP4 MRP2/Mrp2
Ezetimibe Not substrate of either OATP1B1,

OATP1B3 or OATP2B1
NA Not substrate of MRP2 Oswald et al. (2008);

Fahrmayr et al. (2012)
Ezetimibe glucuronide OATP1B1, OATP2B1 NA MRP2
Irinotecan Not substrate of OATP1B1 NA P-gp, MRP2 Nozawa et al. (2005);

Di Martino et al. (2011)SN-38 OATP1B1 NA BCRP, P-gp, MRP2
SN-38 glucuronide Not substrate of OATP1B1 NA MRP2
Morphine OCT1 Not substrate of MRP3 P-gp Tzvetkov et al. (2013);

Venkatasubramanian
et al. (2014)

Morphine 6-glucuronide NA MRP3 P-gp, MRP2

Paroxetine NA NA NA Matsunaga et al. (2013)
M1-glucuronide NA NA MRP2/Mrp2
M1-sulfate NA NA Not substrate of either

MRP2/Mrp2, BCRP/Bcrp,
or BSEP/Bsep

Mycophenolate mofetil NA NA NA Picard et al. (2010);
Matsunaga et al. (2014);
Tetsuka et al. (2014b)

Mycophenolic acid (MPA) Not substrate of OATPs NA NA
MPA phenyl-glucuronide (MPAG) OATP1B1, OATP1B3 MRP3, MRP4 MRP2/Mrp2
Troglitazone NA NA NA Enokizono et al. (2007);

Lee et al. (2010)Troglitazone sulfate OATP1B1 Mrp3, Mrp4 BCRP, MRP2

NA, not applicable; SN-38, 7-ethyl-10-hydroxycamptothecin.
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MRP3 and/or MRP4 (Hirohashi et al., 1999; Hirohashi et al., 2000;
Akita et al., 2002; Rius et al., 2006).
BEI is frequently used as a marker for inhibition of canalicular transport

in SCHs and is determined from intracellular and bile canaliculi-excreted
accumulations of substrate, based on eq. 2. Because intracellular substrate
accumulation is affected by basolateral uptake and efflux as well as by
metabolism, the assessment of canalicular transporter-mediated interactions
based on BEI is complicated. Caution should be taken as to whether the
perpetrator exhibits inhibitory potential for multiple transporters and/or
drug metabolizing enzymes in hepatocytes.
The fluorescent probe 5(6)-carboxy-2ʹ,7ʹ-dichlorofluorescein (CDF)

is a substrate of MRP2 and is used as a marker of MRP2 function;
however, CDF is also a substrate of basolateral uptake and efflux
transporters OATPs and MRP3 (Zamek-Gliszczynski et al., 2003; Ellis
et al., 2014). In contrast, 5(6)-carboxy-2ʹ,7ʹ-dichlorofluorescein diac-
etate (CDFDA) is a nonfluorescent ester form of CDF with uptake into
hepatocytes that is not saturable, temperature dependent, or impaired by
transporter inhibitors (Zamek-Gliszczynski et al., 2003), suggesting that
CDFDA crosses the membrane mainly by passive diffusion. Once
CDFDA is in the cells, it is rapidly hydrolyzed by intracellular esterases
to the fluorescent probe CDF, which is subsequently actively transported
into bile canaliculi by MRP2 in SCHs.
This enzyme–efflux transporter interplay of CDFDA/CDF has been

applied in the SCH system as a quantitative time-lapse imaging (QTLI)
method to investigate MRP2-mediated interaction by time-dependent
detection of fluorescent dye in bile canaliculi of SCHs, regardless of
whether the perpetrator has an inhibitory potential for basolateral uptake
transporters (Nakanishi et al., 2011, 2012).
Most of the MRP2 substrates are not parent drugs but conjugated

metabolites, and the inhibition causes the decrease of the enterohepatic
circulation, leading to an indirect DDI. MRP2 inhibition also results in
conjugated hyperbilirubinemia. Therefore, investigation of MRP2 in-
hibition is considered clinically relevant. In addition, as well as other
transporters such as OATPs (Noé et al., 2007; Tamai and Nakanishi,
2013; Hoshino et al., 2016), MRP2 is considered to have multiple
binding sites (Gilibili et al., 2017). A typical MRP2 substrate E17G
follows the sigmoidal kinetics in MRP2-mediated uptake to membrane
vesicles with high and low affinities, whereas the uptake of CDF and an
endogenous substrate coproporphyrin-I (CP-I) exhibits the simple
Michaelis-Menten kinetics, suggesting CDF and CP-I are the more
preferred substrates for investigation of MRP2 inhibition. Although
CP-I is endogenous and may be used as a biomarker of MRP2 function
in vivo, it is also a substrate of OATPs (Shen et al., 2016). Accordingly,
QTLI using CDFDA allows direct measurement of fluorescent dye

accumulation in bile canaliculi over time without calcium/magnesium
depletion, giving a time- and cost-effective in vitro system for screening
for MRP2 inhibition at an early stage of drug development.
QTLI also enables prediction of apparent inhibition of MRP2 by

metabolites formed in the hepatocytes, even when the metabolites are
not identified. A similar QTLI method has been used to investigate
BSEP function using a fluorescent bile acid (BA) derivativeN-(24-[7-(4-
N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3a,7a,12a-
trihydroxy-27-nor-5b-cholestan-26-oyl)-2ʹ-aminoethanesulfonate
(tauro-nor-THCA-24-DBD). However, the uptake of tauro-nor-THCA-
24-DBD is mediated by NTCP and OATPs and affected by their
inhibitors (De Bruyn et al., 2014). Rhodamine 123 is a fluorescent
substrate used for assessment of P-gp function that can be applied for
QTLI analysis; however, it is also an Oatp substrate in rats (Annaert and
Brouwer. 2005). In many cases, interactions with basolateral uptake
transporters must be taken into account in hepatobiliary transport in
SCHs because the probe is often a substrate of both basolateral uptake
and canalicular efflux transporters. Therefore, enzyme–efflux trans-
porter interplay in SCHs may allow separation of involvement of
basolateral uptake transporters from hepatobiliary transport using more
selective probes such as CDFDA/CDF.

More Clinically Relevant Prediction of DDIs by Enzyme–
Transporter Interplay

Enzyme–efflux transporter interplay in SCHs is sometimes useful for
prediction of more clinically relevant DDIs. Candesartan cilexetil (CCX)
is rapidly hydrolyzed to the active form candesartan (CAN) by esterases
in the liver. CCX is a more potent inhibitor of human BSEP than CAN in
vesicular transport assays using membrane vesicles prepared from BSEP-
expressing cells (IC50 values of CCX and CAN for human BSEP are 6.2
and 70.5 mM, respectively), whereas exposing CCX to human SCHs did
not affect the hepatobiliary transport of TCA (66.5% in control versus
62.7% in CCX as BEI) (Fukuda et al., 2014). Diisopropyl fluorophosphate,
an irreversible cholinesterase inhibitor, significantly inhibited the metab-
olism of CCX to CAN in human SCHs and resulted in a significant
decrease of BEI for TCA due to an increase of intracellular CCX
concentration and subsequent inhibition of human BSEP activity
(Fukuda et al., 2014). These findings are consistent with the low risk of
CCX for liver dysfunction or jaundice in clinical use (Fig. 3A).
Another example is a situation in which the metabolite causes a DDI,

rather than the parent. Estradiol (E2) itself is not a substrate ofMRP2, but
its metabolite E17G is a substrate. E2 does not affect rat Mrp2-mediated
uptake of CDF up to 300 mM in vesicular transport experiments,

Fig. 3. SCHs allows clinically and in vivo
relevant prediction of DDIs caused by both
parent drug and metabolite hepatic exposure.
(A) Candesartan cilexetil (CCX) is a potent
human BSEP inhibitor, but it is rapidly
hydrolyzed in hepatocytes to candesartan
(CAN), which is a weak inhibitor of BSEP,
consistent with the low risks of cholestatic
jaundice in clinical use of CCX (Fukuda et al.,
2014). (B) Estradiol (E2) has no potency for rat
Mrp2, but its metabolite, estradiol 17b-D-
glucuronide (E17G), is a potent Mrp2 in-
hibitor, leading to acute cholestasis in rats
(Meyers et al., 1980, 1981; Nakanishi et al.,
2012).
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whereas E17G showed preloading time- and concentration-dependent
inhibition of Mrp2 function in rat SCHs using QTLI with CDFDA/CDF
(Nakanishi et al., 2012). Because the preloading time- and concentration-
dependent formation of E17Gwas observed after adding E2 to rat SCHs,
and E17G directly inhibited CDF uptake in Mrp2-expressing vesicles
in a concentration-dependent manner (Nakanishi et al., 2012), the effect
of E2 on Mrp2 function in rat SCHs is apparently indirect, via formation
of E17G (Fig. 3B). This corresponds to in vivo acute cholestasis in rats
after administration of E2 (Meyers et al., 1980, 1981). Therefore, SCHs
can provide clinically and in vivo relevant DDI predictions based on
hepatic exposures of both a parent drug and intracellularly formed
metabolites.

Utility of Mechanistic Modeling of Hepatic Disposition of Parent
Drugs and Metabolites

The utility of modeling and simulation in drug development has been
widely recognized and illustrated (Huang et al., 2013; Milligan et al.,
2013). Some multicompartment models are useful for understanding the
dynamic disposition of the parent drug and metabolites mechanistically
in hepatocytes. Cryopreserved hepatocytes are more convenient and
flexible to study drug transport compared with freshly isolated hepato-
cytes. There is debate about changes of uptake transporter activities in
hepatocytes during cryopreservation, with similar or fewer uptake
activities in suspended hepatocytes after thawing (Houle et al., 2003;
Badolo et al., 2011; Brouwer et al., 2013; Lundquist et al., 2014). In
addition, There is some debate on efflux transporter function in
suspended or monolayer hepatocytes, but in general these transporters
are assumed to be internalized after isolation or short-term culturing and
their activities can be negligible, especially in short-term incubation
(Hewitt et al., 2007; Jørgensen et al., 2007; Bow et al., 2008).
In contrast, SCHs are expected to retain an entire array of transporter

and drug metabolizing-enzyme activities in the liver, and all four
processes of hepatic disposition can be simultaneously determined in
SCHs. Accordingly, modeling SCH-based data enables simultaneous
estimation of in vitro transporter- and enzyme-mediated parameters, in
addition to passive diffusion and intracellular binding.
Three compartments (buffer, cell, and bile canaliculi) are generally

used for mathematical modeling in SCHs, shown in Supplemental
Figure 1. Rich input data obtained by monitoring parent drug and
metabolites over time are necessary to estimate the parameters precisely.
A flux from bile canaliculi to buffer is technically present in SCHs, and

this has to be taken into account in the model (Matsunaga et al., 2014).
For estimating basolateral efflux, at least two methods (one- or two-step)
have been proposed (Turncliff et al., 2006; Lee et al., 2010; Pfeifer
et al., 2013a; Matsunaga et al., 2014, 2016; Guo et al., 2016).
Establishing an in vitro mechanistic model leads to further analyses,
such as sensitivity analysis, DDI prediction, and identification of a
novel metabolic pathway (Lee et al., 2010; Matsunaga et al., 2014,
2015, 2016; Guo et al., 2016). In vitro parameter estimates from
SCH-based data can also be extrapolated to the whole liver level and
subsequently incorporated into physiologically based pharmacoki-
netics models (Yan et al., 2011; Yan et al., 2012; Pfeifer et al.,
2013b). Mathematical models of pairs of parent drug and metabolite
in SCHs are summarized in Table 3.

TABLE 3

Established mathematical models of parent and metabolites obtained from SCH-based data

Drugs and Metabolites Remarks References

Terfenadine ;15% as BEI, kefflux . . kbile in rat SCHs Turncliff et al. (2006)
Fexofenadine ;15% as BEI, kefflux . kbile in rat SCHs
Troglitazone Minimum biliary excretion in rat SCHs Lee et al. (2010)
Troglitazone glucuronide ;50% as BEI, kefflux . kbile in rat SCHs
Troglitazone sulfate ;20% as BEI, kefflux , kbile in rat SCHs
Pafuramidine Rapidly metabolized in rat and human SCHs Yan et al. (2011, 2012)
Furamidine (active form of pafuramidine) kefflux . . kbile in rat and human SCHs
CPD-0868 Rapidly metabolized in rat SCHs Yan et al. (2011)
CPD-0801 (active form of CPD-0868) kefflux . . kbile in rat SCHs
Mycophenolic acid (MPA) Rapidly metabolized in human SCHs Matsunaga et al. (2014)
MPA phenyl-glucuronide (MPAG) ;40% as BEI, kefflux . kbile in human SCHs
Bosentan Minimum biliary excretion in human SCHs Matsunaga et al. (2016)
Ro 48-5033 kefflux = kbile in human SCHs
Ro 47-8634 kefflux = kbile in human SCHs
Ro 64-1056 kefflux = kbile in human SCHs

BEI, biliary excretion index; CPD-0801, 2,5-bis (5-amidino)-2-pyridyl furan; CPD-0868, 2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan; kbile, biliary excretion
rate from cells to bile canaliculi; kefflux, efflux rate from cells to buffer; OCT1, organic cation transporter 1.

Fig. 4. Hepatic disposition of MPA and MPAG and DDI with CsA. MPA is
predominantly metabolized to MPAG in human liver. The formed MPAG is
transported to the bloodstream by basolateral efflux transporters MRP3 and MRP4
and to the bile by the canalicular efflux transporter MRP2 (Matsunaga et al., 2014).
Concomitant drug CsA inhibits OATP-mediated uptake and MRP2-mediated
canalicular efflux of MPAG at clinically relevant concentrations, and subsequent
systemic exposure of MPAG is increased (Naito et al., 2009; Yau et al., 2009).
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Modeling of Hepatic Disposition of MPA and MPAG and
Interactions with Cyclosporine A in Human SCHs

MPA is widely used as an immunosuppressive agent, especially after
renal transplantation, and is predominantly metabolized to MPAG
(Shipkova et al., 2001). MPAG is considered to undergo biliary
excretion and to contribute to the continuous systemic exposure of
MPA via the enterohepatic circulation. However, the systemic exposure
of MPAG is much greater than that of MPA and the administered MPA
is eventually excreted in urine at ;90% of the dose as MPAG
(Bullingham et al., 1998). In human SCHs, MPA was primarily
converted to MPAG, and the formed MPAG was a preferred substrate
of MRP2 with ;50% BEI. In contrast, mechanistic modeling of MPA
and MPAG disposition in human SCHs revealed that the basolateral
efflux rate of formed MPAG was 2.4 times faster than the canalicular
efflux rate, corresponding to the in vivo observation that MPAG is
excreted into bile but the systemic exposure is high. MPAG is a substrate
of basolateral efflux transporters MRP3 and MRP4, and the sensitivity
analysis of the model suggested a significant impact of functional
change of basolateral efflux activities onMPAG disposition (Matsunaga
et al., 2014).

MPA is usually used in combination with a calcineurin inhibitor, such
as cyclosporin A (CsA) or tacrolimus, in immunosuppressive therapy
(Staatz and Tett. 2007). CsA is a well-known inhibitor of several drug
metabolizing-enzymes and transporters in clinical use (Zhang et al.,
2008; Liu et al., 2011). Indeed, concurrent administration of CsA causes
decreased exposure ofMPA in patients by inhibition ofMRP2-mediated
biliary excretion and subsequent reduction of enterohepatic circulation
of MPAG (Smak Gregoor et al., 1999; Hesselink et al., 2005; Tetsuka
et al., 2014b). In human SCHs, CsA decreased the BEI of MPAG and
increased intracellular MPAG accumulation in a concentration-
dependent manner, whereas CsA did not affect MPA disposition or
formation of MPAG (Matsunaga et al., 2015).
The established in vitro hepatic disposition model of MPA and

MPAG in human SCHs was applied to investigate the effects of CsA on
MPAG disposition, and revealed that CsA had different inhibitory
potencies for basolateral and canalicular efflux transporter-mediated
MPAG disposition of ;50% and ;80%, respectively, as maximum
inhibition. In addition, model-based analysis suggested that at clinically
relevant concentrations of CsA, the extracellular medium concentration
of MPAG was increased by inhibition of OATP-mediated uptake and

Fig. 5. Hepatic disposition of bosentan and its metabolites in human liver. Bosentan is metabolized by CYP2C9 and CYP3A to Ro 48-5033 and Ro 47-8634. Ro 47-8634 is
further metabolized to Ro 64-1056 and M4, a novel metabolite found by a modeling approach (Matsunaga et al., 2016). Ro 64-1056 exhibits concentration-dependent
cytotoxicity in human hepatocytes, and the metabolic pathway from Ro 47-8634 to M4 is considered to be an alternative route that avoids Ro 64-1056–induced
hepatotoxicity.
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MRP2-mediated biliary excretion of MPAG (Matsunaga et al., 2015)
(Fig. 4). This result is consistent with clinical observations (Naito et al.,
2009; Yau et al., 2009). Thus, the MPA and MPAG pair is a good
example with which to understand the utility of mathematical modeling
of SCH-based data.

Identification of Novel Metabolic Pathways and Improved
Understanding of Hepatotoxicity

A quantitative mechanistic analysis can provide previously unknown
information. Bosentan, an oral nonselective endothelin receptor antag-
onist, is metabolized in human liver to Ro 48-5033 (hydroxylated form
[4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5(2-methoxy-
phenoxy)-[2,2#1;]bipyrimidinyl-4-yl]-benzenesulfonamide]) or Ro
47-8634 (O-demethylated form [4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-
(2-hydroxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-
sulfonamide]) and is subsequently metabolized to Ro 64-1056
(combination of hydroxylation and O-demethylation [4-(1-hydroxy-2-
methylpropan-2-yl)-N-[5-(2-hydroxyphenoxy)-2-pyrimidin-2-yl-6-
(1,1,2,2-tetradeuterio-2-hydroxyethoxy)pyrimidin-4-yl]benzenesulfonamide])
(Matsunaga et al., 2016).
Bosentan is a hepatotoxic drug, but its mechanism is not fully

understood. In human SCHs, the total recovered amounts of bosentan
and its three metabolites after incubation was 88.3%–111.9% of the dose
added, but a mathematical model of knownmetabolic pathways failed to
predict the disposition of the drug and metabolites in human SCHs. An
unknown metabolite peak was found in bioanalyses of SCH samples,
which was determined to be a hydroxylated form of Ro 47-8634 and
named M4 (Matsunaga et al., 2016). A modified model including the
new M4 pathway successfully predicted the disposition of bosentan and
its metabolites in human SCHs. The pathway from Ro 47-8634 to M4 is
an alternative route avoiding Ro 64-1056–induced hepatotoxicity
because Ro 64-1056 decreased cell viability in a concentration-
dependent manner and the cytotoxicity was ameliorated by inhibition
of metabolism of Ro 47-8634 to Ro 64-1056 (Fig. 5).
Drug-induced liver injury is triggered by various mechanisms,

including reactive metabolite formation and mitochondrial dysfunction,
and BSEP inhibition is a risk factor for hepatotoxicity due to cholestasis.
As SCHs can form a canalicular network, SCH-based models have been
proposed to examine drug-induced cholestasis in combinationwith a BA
mixture (Ogimura et al., 2011; Chatterjee et al., 2014a; Oorts et al.,
2016). In some cases, metabolites show similar or more potent inhibition
of BSEP function, e.g., Ro 47-8634 (bosentan) and DM-4103 (tolvap-
tan) (Fattinger et al., 2001; Slizgi et al., 2016); therefore, in vitro
modeling of the parent drug and metabolite in SCHs is informative for
understanding the mechanism of the cholestatic effect by metabolic
activation.
It is also of note that BA composition differs between rats and humans

and each BA exhibits different properties of hydrophobicity, toxicity,
and interplay with multiple transporters and enzymes (Alvaro et al.,
1986; Tagliacozzi et al., 2003; Chatterjee et al., 2014b; Rodrigues
et al., 2014). In addition, unconjugated BA is conjugated with glycine
or taurine in SCHs during incubation (Marion et al., 2011), and bile
acid CoA:amino acid N-acyltransferase catalyzes this reaction. As
some genetic polymorphisms altering catalytic properties are found in
coding regions of the enzyme (Tougou et al., 2007), a functional
change of this enzyme may also influence BA-related hepatotoxicity.
Accordingly, in addition to the analysis of disposition of a perpetrating
drug and its metabolite, mathematical modeling of BA composition in
SCHs should be useful to understand BA-triggered hepatotoxicity
mechanistically.

Conclusion

To date, transporters and drug-metabolizing enzymes have been
identified and characterized extensively. The next stage in this area is to
predict functional interplay between transporters and drug-metabolizing
enzymes to determine the CLint,H of NCEs based on the extended
clearance concept (Varma and El-Kattan, 2016). In addition, basolateral
and canalicular efflux transporters determine the fate of metabolites
formed in the liver, and enzyme–efflux transporter interplay has also
been considered for metabolites.
As SCHs maintain metabolic activities and can form a canalicular

network, they can be used to investigate the interplay between
uptake/efflux transporters and drug-metabolizing enzymes. Indeed,
SCHs allow mimicry of species-specific disposition of a parent drug
and metabolites in vivo. SCHs are also useful for clinically relevant
prediction of DDIs caused by a parent drug and/or metabolite. In
addition, mathematical modeling of hepatic disposition of drugs and
metabolites in SCHs provides considerable information for mechanistic
and quantitative understanding of the event and incorporation into
physiologically based pharmacokinetics model simulations.
Tissue engineering is a growing research field, and a number of

technologies and newly advanced culture systems, such as cocultures
with fibroblasts, have been provided to better reflect in vivo situations
(Tetsuka et al., 2017). For instance, HepatoPac, one of the most famous
coculture models, has demonstrated longer-term stable expression of
drug-metabolizing enzymes as well as basolateral uptake and canalicular
efflux transporters (Ramsden et al., 2014; Li et al., 2017). This and other
newly developed culture systems may overcome the disadvantage of
SCHs; however, a great advantage still exists with SCHs as they have a
longer research history for bile canaliculi formation and excretion.
Further work will be expected to expand the utility and applicability of
hepatocyte-based data including SCHs and other advanced models.
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