Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry

Pan-Fen Wang, Alicia Neiner, and Evan D. Kharasch

Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)

Received January 11, 2019; accepted July 10, 2019

ABSTRACT

Efavirenz (more specifically the S-enantiomer) is a cornerstone antiretroviral therapy for treatment of HIV infection. The major primary metabolite is S-8-hydroxyefavirenz, which does not have antiretroviral activity but is neurotoxic. Cytochrome P450 2B6 (CYP2B6) is the major enzyme catalyzing S-8-hydroxyefavirenz formation. CYP2B6 genetics and drug interactions are major determinants of clinical efavirenz disposition and dose adjustment. In addition, as a prototypic CYP2B6 substrate, S-efavirenz and analogs can inform on the structure, activity, catalytic mechanisms, and stereoselectivity of CYP2B6. Metabolism of R-efavirenz by CYP2B6 remains unexplored. This investigation assessed S-efavirenz metabolism by clinically relevant CYP2B6 genetic variants. This investigation also evaluated R-efavirenz hydroxylation by wild-type CYP2B6.1 and CYP2B6 variants. S-Efavirenz 8-hydroxylation by wild-type CYP2B6.1 and variants exhibited positive cooperativity and apparent cooperative substrate inhibition. On the basis of Cmax values, relative activities for S-efavirenz 8-hydroxylation were in the order CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 > CYP2B6.26, CYP2B6.16 and CYP2B6.18 showed minimal activity. Rates of R-efavirenz metabolism were approximately 1/10 those of S-efavirenz for wild-type CYP2B6.1 and variants. On the basis of Cmax values, there was 14-fold enantioselectivity (S > R) for wild-type CYP2B6.1, and 5- to 22-fold differences for other CYP2B6 variants. These results show that both CYP2B6 516G>T (CYP2B6*6 and CYP2B6*9) and 983T>C (CYP2B6*16 and CYP2B6*18) polymorphisms cause canonical diminishment or loss-of-function variants for S-efavirenz 8-hydroxylation, provide a mechanistic basis for known clinical pharmacogenetic differences in efavirenz disposition, and may predict additional clinically important variant alleles. Efavirenz is the most stereoselective CYP2B6 drug substrate yet identified and may be a useful probe for the CYP2B6 active site and catalytic mechanisms.

SIGNIFICANCE STATEMENT

Clinical disposition of the antiretroviral S-efavirenz is affected by CYP2B6 polymorphisms. Expressed CYP2B6 with 516G>T (CYP2B6*6 and CYP2B6*9), and 983T>C (CYP2B6*16 and CYP2B6*18) polymorphisms had a diminishment or loss of function for efavirenz 8-hydroxylation. This provides a mechanistic basis for efavirenz clinical pharmacogenetics and may predict additional clinically important variant alleles. Efavirenz metabolism showed both cooperativity and cooperative substrate inhibition. With greater than 10-fold enantioselectivity (S vs. R) metabolism, efavirenz is the most stereoselective CYP2B6 drug substrate yet identified. These findings may provide mechanistic insights.

This work was supported by the National Institutes of Health [Grant R01-DAA14211] and by the Washington University in St. Louis Department of Anesthesiology Russell B. and Mary D. Shelden fund. No author has any competing or conflict of interest.

https://doi.org/10.1124/dmd.119.086348.

ABBREVIATIONS: HEK, human embryonic kidney; HIV, human immunodeficiency virus; HPLC, high-performance liquid chromatography; MS, mass spectrometry; POR, NADPH cytochrome P450 oxidoreductase; P450, cytochrome P450.

Introduction

Efavirenz [(S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one] is a non-nucleoside reverse transcriptase inhibitor used as first-line therapy for human immunodeficiency virus (HIV) infection (Rakhmanina and van den Anker, 2010). One essential step in HIV replication is viral single-strand RNA conversion into double-strand DNA, catalyzed by viral reverse transcriptase, followed by viral DNA integration into the host genome. HIV reverse transcriptase has a catalytic p66 (66-kDa) subunit and a smaller p51 (55-kDa) subunit that functions mainly for structural support. The p66 subunit is further divided into N-terminal polymerase domain, which catalyzes complementary DNA polymerization from template RNA, and C-terminal RNase H domain, which digests viral RNA and removes RNA primers during DNA synthesis. Efavirenz binds to a hydrophobic pocket in the p66 polymerase domain about 10 Å from the active site and inhibits activity via an allosteric mechanism (Schauer et al., 2014). Shortly after synthesis of (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one, it was identified that reverse transcriptase inhibition was highly stereospecific, as the R-enantiomer (R)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one, (henceforth referred to as R-efavirenz) was inactive (Young et al., 1995), and all further drug development proceeded with the single S-enantiomer (henceforth referred to as S-efavirenz).

S-Efavirenz is extensively metabolized by cytochrome P450 enzymes (Scheme 1). The major primary metabolite is S-8-hydroxyefavirenz, both in vitro and in vivo, and a minor primary metabolite is S-7-hydroxyefavirenz (Ward et al., 2003; Dessa et al., 2007). Secondary metabolites include 8,14-dihydroxyefavirenz and 7,8-dihydroxyefavirenz.

1195
et al., 2015; Robarge et al., 2016). The less common or together with 785A CYP2B6*9 CYP2B6*18 considered essentially Africa-specific (Zhou et al., 2017). CYP2B6 is pharmacologically and clinically relevant, and several CYP2B6 polymorphisms are more common in at least one racial/ethnic population (Zhou et al., 2017). These metabolites are devoid of significant pharmacologic activity toward HIV-1 (Avery et al., 2013). Nevertheless, they are not inert, as S-8-hydroxyefavirenz has been associated with clinical neurotoxicity (Decloedt et al., 2015) and was at least an order of magnitude more neurotoxic than S-efavirenz or S-7-hydroxyefavirenz in vitro (Tovar-y-Romo et al., 2012). Cytochrome P450 2B6 (CYP2B6) is the major enzyme catalyzing S-8-hydroxyefavirenz and thence 8,14-dihydroxyefavirenz formation, whereas CYP2A6 is responsible for 7-hydroxylation (Ward et al., 2003; Damle et al., 2008). CYP2B6 is a major determinant of clinical efavirenz metabolism and elimination; drug interactions resulting from CYP2B6 inhibition increase efavirenz exposure (Damle et al., 2008; Desta et al., 2016); and diminished CYP2B6 activity unmasks the influence of CYP2A6 on efavirenz exposure (di Iulio et al., 2009).

The CYP2B6 gene is highly polymorphic (Zanger and Klein, 2013), with at least 38 allelic variants described (https://www.pharmvar.org/gene/CYP2B6), of which 25 are considered important and eight are common in at least one racial/ethnic population (Zhou et al., 2017). CYP2B6 metabolizes a broad range of substrates, constituting nearly 8% of marketed drugs (Nolan et al., 2006), although the relative contribution of CYP2B6 to total hepatic P450 content is small. In addition to efavirenz, clinically important CYP2B6 substrates include methadone, bupropion, ketamine, cyclophosphamide, and artemisinin.

The pharmacogenetics of efavirenz disposition has been comprehensively reviewed (Colić et al., 2015; Sinxadi et al., 2015; Russo et al., 2016). The CYP2B6 516G>T polymorphism, alone constituting CYP2B6*9* or together with 785A>G constituting CYP2B6*6, is a canonical loss-of-function variant that was the first and most studied and is consistently associated with increased efavirenz exposure and reduced clearance and metabolism (Haas et al., 2004; Tsuschya et al., 2004; Rotger et al., 2005). Efavirenz clearance is approximately 25% and 50% lower in 516GT and 516TT carriers, respectively (Colić et al., 2015; Robarge et al., 2016). The less common CYP2B6 983T>C polymorphism, alone constituting CYP2B6*18 or together with 785A>G constituting CYP2B6*16, is also associated with increased efavirenz exposure (Wyen et al., 2008; Dhorj et al., 2015; Röhrich et al., 2016). The 516G>T, 785A>G, and 983T>C polymorphisms are more common in African than Caucasian populations, and the lattermost is considered essentially Africa-specific (Colić et al., 2015; Russo et al., 2016). In Africans or African-Americans, CYP2B6*6*/6 and CYP2B6*6*/18 genotypes had the highest single-dose (Haas et al., 2009) or steady-state efavirenz concentrations (3- to 4-fold higher than CYP2B6*1/*1) (Maimbo et al., 2012). CYP2B6*6, *9, *16, and *18 constitute a poor-metabolizer phenotype (Colić et al., 2015; Russo et al., 2016). Efavirenz adverse effects in general and adverse neurologic and neuropsychiatric effects in particular (e.g., neurocognitive impairment, depression, suicidality) have been associated with higher plasma efavirenz exposure, slow efavirenz metabolizer phenotype, or 516G>T and/or 983T>C polymorphisms (Haas et al., 2004; Rotger et al., 2005; Apostolova et al., 2015; Vo and Varghese Gupta, 2016; Gallen et al., 2017; Mollan et al., 2017; Chang et al., 2018). In contrast, 785A>G alone (CYP2B6*4) codes for a protein with increased efavirenz hydroxylation in vitro (Bumpus et al., 2006), but the clinical significance is ambiguous (Russo et al., 2016). CYP2B6 genetically guided efavirenz dosing has been evaluated and recommended (Gatalan et al., 2007; Mukonzo et al., 2014; Vo and Varghese Gupta, 2016). Other CYP2B6 variant activity and clinical implications for efavirenz disposition are less well characterized. Furthermore, and surprisingly, excepting CYP2B6*4 and CYP2B6*6 (Bumpus et al., 2006; Ajiyoshi et al., 2011; Zhang et al., 2011; Xu et al., 2012; Radloff et al., 2013), comparatively less is known about S-efavirenz metabolism by CYP2B6 variants in vitro than in vivo. Therefore, the first purpose of this investigation was to assess S-efavirenz metabolism by clinically relevant CYP2B6 variants, coexpressed with P450 oxidoreductase and cytochrome b5 in a fully catalytically competent system.

CYP2B6 is pharmacologically and clinically relevant, and several CYP2B6 substrates are chiral, with varying degrees of enantioselective metabolism, and enantioselectivity may vary among different CYP2B6 variants (Wang et al., 2018). As a prototypic CYP2B6 substrate, S-efavirenz and analogs have been used to inform on the structure, activity, and catalytic mechanism of wild-type CYP2B6 (Bumpus and Hollenberg, 2008; Cox and Bumpus, 2014; Cox and Bumpus, 2016; Shah et al., 2018) and variants such as CYP2B6.4 (Bumpus et al., 2005). These compounds, together with molecular modeling, have provided insights into the active site configuration of CYP2B6. In this regard, the metabolism of R-efavirenz by CYP2B6, and by CYP2B6 variants, remains unexplored. Therefore, the second purpose of this investigation was to evaluate the metabolism of R-efavirenz by wild-type CYP2B6.1.
and CYP2B6 variants, potentially to inform on CYP2B6 active-site character or activity.

Materials and Methods

Materials. S-Efavirenz was purchased from TCI America (Portland, OR). R-Efavirenz was purchased from Carbosynth US (San Diego, CA). The standards of rac-7-hydroxyefavirenz-d4, rac-8-hydroxyefavirenz, rac-7-hydroxyefavirenz, and rac-8,14-dihydroxyefavirenz were purchased from Toronto Research Chemicals (TRC, Toronto, ON, Canada). Spodoptera frugiperda (SPD) cells and SF-900 III SFM culture media were purchased from ThermoFisher (Waltham, MA). Trichoplusia ni cells and ESF AF culture media were from Expression Systems (Davis, CA). β-NADP, glucose-6-phosphate, and glucose-6-phosphate dehydrogenase were purchased from Sigma Aldrich (St. Louis, MO).

Generation of Baculovirus Constructs. The production of recombinant proteins of CYP2B6 variants (Table 1), wild-type P450 reductase (POR), and cytochrome b5 were carried out as described previously (Wang et al., 2018). Briefly, the human genes of CYP2B6, POR, and b5 were amplified from the Human Liver Quick-Clone cDNA library (Clontech, Mountain View, CA) and inserted individually into the transfer vector pVL1393 using the In-Fusion HD Cloning system (Clontech). The plasmid carrying the gene of wild-type CYP2B6 was used as the template, and the polymorphic variants of CYP2B6 were generated by site-directed mutagenesis using Quik-Change II XL Site-Directed Cloning system (Clontech). The plasmid carrying the gene of wild-type CYP2B6 was used as the template, and the polymorphic variants of CYP2B6 were generated by site-directed mutagenesis using Quik-Change II XL Site-Directed Cloning system (Clontech). The plasmid carrying the gene of wild-type CYP2B6 was used as the template, and the polymorphic variants of CYP2B6 were generated by site-directed mutagenesis using Quik-Change II XL Site-Directed Cloning system (Clontech). The plasmid carrying the gene of wild-type CYP2B6 was used as the template, and the polymorphic variants of CYP2B6 were generated by site-directed mutagenesis using Quik-Change II XL Site-Directed Cloning system (Clontech).

Expression of Recombinant Proteins in Insect Cells. Protein expression was performed as described previously (Wang et al., 2018). All CYP2B6 variants were coexpressed with redox partners P450 reductase (POR) and cytochrome b5 in insect cells by triple infection. Briefly, Trichoplusia ni cells in suspension culture in early log phase growth were infected with the recombinant baculoviruses carrying the genes of CYP2B6, POR, and b5 with the multiplicities of infection at ratio of 4:2:1 (CYP2B6/POR/b5), in the presence of heme precursors 100 μM 8-aminolevulinic acid and 100 μM ferric citrate. After 48–72 hours growth post-infection, cells were harvested by centrifugation for 15 minutes at 3000g, and washed twice with phosphate-buffered saline followed by centrifugation in each wash step. The cell pellets were resuspended in 100 mM glucose-6-phosphate dehydrogenase (80°C). The reaction was allowed to proceed for 20 minutes at 37°C, then terminated by withdrawing 100 μl of reaction mixture and mixing with 200 μl of ice-cold acetonitrile containing 32 ng/ml internal standard rac-7-hydroxyefavirenz-d4 in glass tubes (16 × 125 mm). The metabolite products were extracted using a liquid/liquid extraction method as described previously (Avery et al., 2013) with modifications. Three hundred microliters of 50 mM ammonium formate was added to the quenched reaction mixture, followed by extraction with 1.0 ml of hexane/ethyl acetate (1:1). All samples were vortex-mixed for 30 seconds and centrifuged at 2500 rpm for 5 minutes. Six hundred, twenty-five microliters of organic layer was transferred to another clean glass tube (13 × 100 mm) and evaporated under nitrogen to dryness at 30°C using Turbo Vap LV Evaporator (Zymark, Hopkinton, MA). For high-performance liquid chromatography/mass spectrometry (HPLC/MS) analysis, the residues of the samples were reconstituted in 200 μl of 0.05% formic acid in 50% acetonitrile.

Analysis of Efavirenz Metabolites by HPLC/Tandem Mass Spectrometry. Calibration samples were prepared using standards of rac-8-hydroxyefavirenz, rac-7-hydroxyefavirenz, and rac-8,14-dihydroxyefavirenz, with all three analytes at identical concentrations of 0, 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, and 500 ng/ml in 100 mM potassium phosphate buffer (pH 7.4) containing 33% methanol. Calibrators were processed identically to incubation samples.

<table>
<thead>
<tr>
<th>CYP2B6 Allele</th>
<th>Variant</th>
<th>cDNA Sequence Mutation</th>
<th>Protein Sequence Mutation*</th>
<th>Allele Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6*1</td>
<td>rs2279343</td>
<td>G</td>
<td>Wild-type</td>
<td>2.4 Ca</td>
</tr>
<tr>
<td>CYP2B6*4</td>
<td>rs3211371</td>
<td>G</td>
<td>Wild-type</td>
<td>12 Ca</td>
</tr>
<tr>
<td>CYP2B6*5</td>
<td>rs3745274</td>
<td>G</td>
<td>Wild-type</td>
<td>33 Af, 28 Ca</td>
</tr>
<tr>
<td>CYP2B6*6</td>
<td>rs2279343</td>
<td>G</td>
<td>Wild-type</td>
<td>3 Ca</td>
</tr>
<tr>
<td>CYP2B6*7</td>
<td>rs3745274, rs2279343, rs3211371</td>
<td>G</td>
<td>Wild-type</td>
<td>4 Af</td>
</tr>
<tr>
<td>CYP2B6*9</td>
<td>rs3745274</td>
<td>G</td>
<td>Wild-type</td>
<td>6.9 Af</td>
</tr>
<tr>
<td>CYP2B6*16</td>
<td>rs2279343, rs28399499</td>
<td>G</td>
<td>Wild-type</td>
<td>6.3 Af</td>
</tr>
<tr>
<td>CYP2B6*17</td>
<td>rs3397333, rs33980385, rs33926104</td>
<td>G</td>
<td>Wild-type</td>
<td>9.4 Af</td>
</tr>
<tr>
<td>CYP2B6*18</td>
<td>rs2839949</td>
<td>G</td>
<td>Wild-type</td>
<td>1.6 Af</td>
</tr>
<tr>
<td>CYP2B6*19</td>
<td>rs34826503</td>
<td>G</td>
<td>Wild-type</td>
<td>1.3 As</td>
</tr>
<tr>
<td>CYP2B6*26</td>
<td>rs2836711, rs2279343, rs3745274</td>
<td>G</td>
<td>Wild-type</td>
<td>1.3 As</td>
</tr>
</tbody>
</table>

*All CYP2B6 variants result in missense mutations.
4°C. The mobile phase A was 0.1% formic acid in Milli-Q water and mobile phase B was 0.1% formic acid in acetonitrile. Chromatographic separation was achieved using an isocratic condition of 50% mobile phase A and 50% mobile phase B and a flow rate of 0.15 mL/min. The injection volume was 5 μL and total run time is 12 minutes. Under these conditions, the approximate retention time was 6.5 minutes for 8-hydroxyefavirenz, 5.7 minutes for 7-hydroxyefavirenz, 5.6 minutes for 7-hydroxyefavirenz-d4, and 3.1 minutes for 7,8-dihydroxyefavirenz and 8,14-dihydroxyefavirenz. The mass spectrometer was operated with a turbo spray ion source in the negative mode with multiple reaction monitoring (MRM). Analytes were detected with the following MRM transitions: m/z 329.9 > 257.8 for 8-hydroxyefavirenz and 7-hydroxyefavirenz, m/z 346.0 > 274.0 for 7,8-dihydroxyefavirenz, and m/z 345.9 > 262.1 for 8,14-dihydroxyefavirenz.

Data Analysis. Formation of 8-hydroxyefavirenz by enzyme variants at fixed concentrations was analyzed by analysis of variance with post-hoc Dunnett’s test (SigmaPlot 12.5; Systat). Results are the mean ± S.D.

8-Hydroxyefavirenz formation versus substrate concentration data were analyzed by nonlinear regression analysis. Results are the parameter estimate ± S.E. of the estimate. Metabolism of both efavirenz enantiomers at low concentrations (up to 40–45 μM) exhibited homotropic positive cooperativity. At higher concentrations of S-efavirenz there was evidence of substrate inhibition. Two approaches were used, depending on the substrate concentrations modeled.

Metabolism over the substrate concentration range 0.25–40 μM S-efavirenz and 0.11–45 μM R-efavirenz was analyzed using an allosteric model of the Hill equation (eq. 1), where [S] is the substrate efavirenz concentration, n is the Hill coefficient, and S0 represents the substrate concentration at which the reaction reached half-maximal velocity.

$$v = \frac{V_{\text{max}}[S]^n}{S_0 + [S]^n}$$

(1)

R-efavirenz 8-hydroxylation by CYP2B6.19 showed weak substrate cooperativity. Therefore data were also analyzed using the Michaelis-Menten equation. R-efavirenz 8-hydroxylation by CYP2B6.19 also had high Km and S0 values relative to the substrate range. Thus it was also analyzed by linear regression. Specifically, when substrate concentrations are far below Km, the observed rate versus [S] approaches a linear function and the Michaelis-Menten equation can be simplified to

$$v = \frac{V_{\text{max}}}{K_m + [S]}$$

(2)

Analysis using models i–iv did not produce acceptable fits or did not converge at all. Model v gave some acceptable fits and parameters but some required constraint on Km < Kx, and the model produced some unrealistic n and very high
TABLE 2

<table>
<thead>
<tr>
<th>S-Efavirenz</th>
<th>8-Hydroxyefavirenz</th>
<th>8,14-diOH-efavirenz</th>
<th>8-OH-efavirenz</th>
<th>8,14-diOH-efavirenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>µM</td>
<td>pmol/min per picomoles</td>
<td>pmol/min per picomoles</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0.25</td>
<td>0</td>
<td>0.014 ± 0.010</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>0.001 ± 0.001</td>
<td>0.055 ± 0.046</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>1.25</td>
<td>0.055 ± 0.009</td>
<td>0.209 ± 0.033</td>
<td>21</td>
<td>79</td>
</tr>
<tr>
<td>2.5</td>
<td>0.352 ± 0.048</td>
<td>0.460 ± 0.182</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>5.0</td>
<td>1.46 ± 0.29</td>
<td>0.405 ± 0.078</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>2.43 ± 0.10</td>
<td>0.505 ± 0.114</td>
<td>83</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>4.03 ± 0.28</td>
<td>0.201 ± 0.095</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>

8-Hydroxyefavirenz was the predominant metabolite of wild-type CYP2B6-catalyzed S-efavirenz metabolism, as expected (Fig. 1A). Very low amounts of 8,14-dihydroxyefavirenz were formed. Neither S-7-hydroxyefavirenz nor 7,8-dihydroxyefavirenz were detected. Two aspects of S-efavirenz 8-hydroxylation by CYP2B6.1 are notable. First, S-efavirenz hydroxylation was maximal at substrate concentrations of 20–40 µM, and higher substrate concentrations resulted in substantially less 8-hydroxyefavirenz formation (Fig. 1B). The diminished formation at high substrate concentrations was not the result of facile secondary metabolism of 8-hydroxyefavirenz to 8,14-dihydroxyefavirenz. Indeed, rates of secondary 14-hydroxylation of 8-hydroxyefavirenz were generally low compared with primary metabolism (Fig. 1; Table 2). However at low S-efavirenz concentrations (0.25–1.25 µM), 8,14-dihydroxyefavirenz formation was predominant, representing 70%–100% of total substrate metabolism. In contrast, at 20 µM S-efavirenz, 8-hydroxyefavirenz was 95% of product formation and only 5% was converted to 8,14-dihydroxyefavirenz. Thus at low S-efavirenz concentrations, secondary metabolism of 8-hydroxyefavirenz to 8,14-dihydroxyefavirenz was facile but was inhibited at higher substrate concentrations. These observations are consistent with substrate inhibition of both primary and secondary CYP2B6.1-catalyzed hydroxylation. The second notable aspect of S-efavirenz hydroxylation was the atypical kinetics. Metabolism by CYP2B6.1 at low substrate concentrations deviated from standard Michaelis-Menten hyperbolic kinetics and instead showed a sigmoidal pattern suggesting cooperativity consistent with multiple substrate binding sites (Fig. 1A). The Eadie-Hofstee plot showed curve curvature indicative of such cooperativity (Fig. 1A, inset). At high substrate concentrations there was substrate inhibition (Fig. 1B). The Eadie-Hofstee plot showed a circular pattern, consistent with both cooperativity and substrate inhibition.

S-Efavirenz 8-hydroxylation at therapeutic (5–10 µM steady-state) substrate concentrations catalyzed by coexpressed CYP2B6 (wild-type and variants), wild-type POR, and cytochrome b5 is shown in Fig. 2. CYP2B6.6, CYP2B6.7, CYP2B6.9, CYP2B6.19, and CYP2B6.26 had diminished activity compared with CYP2B6.1, and CYP2B6.16 and CYP2B6.18 were essentially catalytically inactive. In contrast, CYP2B6.4 had higher activity than CYP2B6.1. Results at lower substrate concentrations showed comparatively little difference between variants, which may reflect differences in substrate cooperativity. At clinically relevant concentrations, hydroxylation rates were of the order CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26 ≈ CYP2B6.16 and CYP2B6.18. For all CYP2B6 variants, 8,14-dihydroxyefavirenz formation was less than by CYP2B6.1 (not shown).

Concentration dependence of S-8-hydroxyefavirenz formation is shown in Fig. 3 for CYP2B6 variants, and kinetic parameters are provided in Table 3, for 0.25–40 µM S-efavirenz. Most variants had

Kₘ and Vₘₐₓ values. Model vi achieved the best fits to the S-efavirenz metabolism data, on the basis of F values and parameter estimates and error variances, and was the final model selected.

Because the in vitro intrinsic clearance parameter Vₘₐₓ/Kₘ is suitable only for reactions following Michaelis-Menten kinetics, data were further analyzed using Clₘₐₓ, the maximal clearance (eq. 3) (Houston and Kenworthy, 2000):
a sigmoidal curve indicating cooperativity, and data were analyzed by fitting the Hill equation. This was most apparent for CYP2B6.4 and CYP2B7.17, similar to wild-type CYP2B6.1. Hill coefficients \((n)\), representing intensity of the cooperativity, varied from 1.4 to 2.5. Conversely, CYP2B6.9 data were hyperbolic, and regression analysis generated similar results from fitting either Hill or Michaelis-Menten equations, and \(n\) was close to 1, suggesting the absence of cooperative substrate binding. Differences in activity between CYP2B6 variants were the result of differences in \(V_{\text{max}}\), which varied approximately 3-fold, and \(S_{50}\) which varied approximately 2-fold. On the basis of the \(Cl_{\text{max}}\) values, relative activities for \(S\)-efavirenz 8-hydroxylation were in the order CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.16 and CYP2B6.18.

Concentration dependence of \(S\)-8-hydroxyefavirenz formation is shown in Fig. 4 for CYP2B6 variants, and kinetic parameters are provided in Table 4 for 0–100 \(\mu\)M \(S\)-efavirenz. In addition to cooperativity, substrate inhibition is apparent, and data were analyzed by fitting a modified Hill equation with cooperative substrate binding, substrate inhibition, and cooperative binding of three inhibitor molecules. For CYP2B6.7 and CYP2B6.9 minimal substrate binding cooperativity was suggested by \(n\) values of 1.0 and 0.9, and thus \(Cl_{\text{max}} = Cl_{\text{int}}\). Both \(V_{\text{max}}\) and \(K\) varied approximately 2-fold. \(K\) values were 3- to 7-fold greater than \(K\). CYP2B6.19 showed minimal substrate inhibition, and the model incorporating substrate inhibition did not fit the data well. On the basis of the \(Cl_{\text{max}}\) values using the model for both cooperativity and substrate inhibition, the relative activities for \(S\)-efavirenz 8-hydroxylation were CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26. This was similar to that using only limited substrate concentrations and cooperativity without inhibition.

Evaluation of \(R\)-efavirenz metabolism by wild-type CYP2B6.1 showed that 8-hydroxyefavirenz was the only metabolite observed, and 7-hydroxyefavirenz, 8,14-dihydroxyefavirenz, and 7,8-dihydroxyefavirenz were not detected. Immediately apparent is that rates of \(R\)-efavirenz 8-hydroxylation were an order of magnitude less than those of \(S\)-efavirenz (Figs. 2 and 5). Metabolism of \(R\)-efavirenz by CYP2B6.1 showed a sigmoidal pattern suggesting cooperativity.

Metabolism of \(R\)-efavirenz by the various CYP2B6 variants was evaluated. Secondary metabolism to 8,14-dihydroxyefavirenz was not observed for any 2B6 variant. \(R\)-Efavirenz 8-hydroxylation at 2–9 \(\mu\)M substrate concentrations catalyzed by coexpressed CYP2B6 (wild-type and variants), wild-type POR, and cytochrome \(b_5\) are shown in Fig. 2. Rates of \(R\)-efavirenz metabolism were approximately 1/10 those of \(S\)-efavirenz. Compared with CYP2B6.1, CYP2B6.7, and CYP2B6.9 had diminished activity, and CYP2B6.16 and CYP2B6.18 were essentially inactive, and CYP2B6.4, CYP2B6.5, and CYP2B7.17 had higher activity.

Concentration dependence of \(R\)-8-hydroxyefavirenz formation is shown in Fig. 3 for CYP2B6 variants, and kinetic parameters are provided in Table 3. The Hill equation was used to model the data. CYP2B6.4 had the highest \(Cl_{\text{max}}\) \(R\)-efavirenz 8-hydroxylation, similar to \(S\)-efavirenz. CYP2B6.4 was the only variant showing substrate inhibition. CYP2B6.4 data were analyzed using both the Hill equation and the LiCata model over the broader concentration range. Both analyses afforded similar \(V_{\text{max}}\), \(K\), and Clint (\(V_{\text{max}}/K\)) values. Differences in activity between \(R\)-efavirenz metabolism were approximately 1/10 those of \(S\)-efavirenz (Figs. 2 and 5). Metabolism of \(R\)-efavirenz by CYP2B6.1 showed a sigmoidal pattern suggesting cooperativity.

Metabolism of \(R\)-efavirenz by the various CYP2B6 variants was evaluated. Secondary metabolism to 8,14-dihydroxyefavirenz was not observed for any 2B6 variant. \(R\)-Efavirenz 8-hydroxylation at 2–9 \(\mu\)M substrate concentrations catalyzed by coexpressed CYP2B6 (wild-type and variants), wild-type POR, and cytochrome \(b_5\) are shown in Fig. 2. Rates of \(R\)-efavirenz metabolism were approximately 1/10 those of \(S\)-efavirenz. Compared with CYP2B6.1, CYP2B6.7, and CYP2B6.9 had diminished activity, and CYP2B6.16 and CYP2B6.18 were essentially inactive, and CYP2B6.4, CYP2B6.5, and CYP2B7.17 had higher activity.

Concentration dependence of \(R\)-8-hydroxyefavirenz formation is shown in Fig. 3 for CYP2B6 variants, and kinetic parameters are provided in Table 3. The Hill equation was used to model the data. CYP2B6.4 had the highest \(Cl_{\text{max}}\) \(R\)-efavirenz 8-hydroxylation, similar to \(S\)-efavirenz. CYP2B6.4 was the only variant showing substrate inhibition. CYP2B6.4 data were analyzed using both the Hill equation and the LiCata model over the broader concentration range. Both analyses afforded similar \(V_{\text{max}}\), \(K\), and Clint (\(V_{\text{max}}/K\)) values. Differences in activity between \(R\)-efavirenz metabolism were approximately 1/10 those of \(S\)-efavirenz (Figs. 2 and 5). Metabolism of \(R\)-efavirenz by CYP2B6.1 showed a sigmoidal pattern suggesting cooperativity.
CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.9 > CYP2B6.16 and CYP2B6.18. Parameter estimates and reaction order should be interpreted cautiously, however, because of the low rates of metabolism.

Efavirenz 8-hydroxylation was stereoselective (S > R), and stereoselectivity was similar across all CYP2B6 variants. On the basis of Cl\text{max} values, there was 14-fold enantioselectivity (Cl\text{max}_{S-\text{efavirenz}}/Cl\text{max}_{R-\text{efavirenz}} = 14) for wild-type CYP2B6.1 and S- to 25-fold differences for other CYP2B6 variants (Table 3).

Discussion

CYP2B6-catalyzed 8-hydroxylation accounts for approximately 90% of S-efavirenz oxidative metabolic clearance (Ward et al., 2003). This investigation provides novel insight into the roles of CYP2B6 genetic polymorphisms in the metabolism of S-efavirenz, additional CYP2B6 variants probably of clinical significance, mechanisms of CYP2B6-catalyzed efavirenz metabolism, and expression system influences on CYP2B6 variants’ catalytic activity. In addition, results demonstrate the remarkable stereoselectivity of efavirenz metabolism by CYP2B6, and an unusual combination of cooperative metabolism and substrate inhibition, which may provide additional insights about this important P450 isoform.

The first major observation was that S-efavirenz 8-hydroxylation by CYP2B6 exhibited positive homotropic cooperativity, and that cooperativity was generally preserved across CYP2B6 variants. Cooperativity, rather than Michaelis-Menten kinetics, was evidenced by nonlinear Eadie-Hofstee plots. Cooperativity (n) was greatest at higher rates of S-efavirenz metabolism (CYPs 2B6.1 and 2B6.4) but occurred with all genetic variants. Previous studies reported that S-efavirenz 8-hydroxylation by human liver microsomes was cooperative (Ward et al., 2003) or followed single-site hyperbolic Michaelis-Menten kinetics (Ogburn et al., 2010) and was hyperbolic with baculovirus-expressed (Ward et al., 2003; Ogburn et al., 2010; Xu et al., 2012) and *Escherichia coli*-expressed wild-type CYP2B6 (Bumpus et al., 2006; Zhang et al., 2011). It is well known that some P450s exhibit allosteric regulation and cooperative behaviors (Denisov et al., 2009). For example, CYP3A4 has a large and flexible substrate binding pocket that allows simultaneous binding of multiple ligands, leading to cooperativity, but ligand binding to nearby allosteric sites could also be involved. CYP2B6 has a smaller substrate binding pocket that is only about 50% of the CYP3A4 active site volume (Gay et al., 2010). Nonetheless, CYP2B6 is still spacious relative to small molecules (Ekins et al., 1999; Lewis et al., 1999; Ekins et al., 2008; Wang et al., 2018) and can accommodate ligands of various geometries by movement of residues in the active site (Shah et al., 2018). Cooperativity among CYP2B6 substrates is relatively uncommon, having been described for CYP2B6.1 and 7-hydroxy-4-trifluoromethylcoumarin (n = 1.4) (Ekins et al., 1997), testosterone (n = 1.3) (Ekins et al., 1998), methadone (Totah et al., 2007), and S-efavirenz (n = 1.5) (Ward et al., 2003) but not several other substrates (Ekins et al., 1998; Liu et al., 2016), and also for CYP2B6.4 and 7-ethoxycoumarin (n = 1.7) (Ariyoshi et al., 2001). Interestingly, heteroactivation by efavirenz was recently reported, with enhanced midazolam hydroxylation by CYP3A4 via interaction at an allosteric site (Ichikawa et al., 2018).

In addition to positive cooperativity, S-efavirenz 8-hydroxylation showed apparent substrate inhibition. S-8-Hydroxyefavirenz formation by CYP2B6.1 was highest at 40 μM S-efavirenz and declined at higher concentrations. At 100 μM S-efavirenz, 8-hydroxyefavirenz formation was reduced to 4% of V\text{max} for CYP2B6.1 and also for CYP2B6.4. Substrate inhibition was influenced by CYP2B6 polymorphism. Less inhibition was observed with CYP2B6.6. Efavirenz is a known mechanism-based CYP2B6 inhibitor (as is S-8-hydroxyefavirenz) (Bumpus et al., 2006). Substrate inhibition was observed previously with expressed CYP2B6.1 and efavirenz (Ward et al., 2003) and efavirenz analogs (Cox and Bumpus, 2016), but not always reported (Bumpus et al., 2006; Zhang et al., 2011; Xu et al., 2012), and not observed with human liver microsomes (Ward et al., 2003; Ogburn et al., 2010). It is interesting that CYP2B6.1 and CYP2B6.4 had the greatest intrinsic clearances, cooperativity (n > 2), and substrate inhibition. Further investigation is necessary to better understand the interactions of CYP2B6 with efavirenz, substrate binding cooperativity, and the influence on metabolism.

S-Efavirenz 8-hydroxylation data were best fit to a model with positive homotropic cooperativity of both metabolism and inhibitory substrate binding, and a second Hill coefficient of 3 for inhibitory substrate binding. Although homotropic cooperativity, multiple substrate binding to the active site, and substrate inhibition have often been
reported with P450s (Denisov et al., 2009), multiple inhibitor binding (Bapiro et al., 2018) and concomitant catalytic and inhibitory cooperativity are relatively uncommon (Müller et al., 2015). Comprehensive modeling of both catalytic and inhibitory cooperativity resulted in many parameters relative to the number of experimental observations, with a concern for an over-parameterized model. Thus we included both this analysis and the analysis of the noninhibited data using the Hill equation alone over the uninhibited substrate concentrations. Both models afforded similar conclusions with respect to the relative activities of the CYP2B6 variants.

The second major observation was that CYP2B6 genetic variants had altered activity toward S-efavirenz. At the recommended adult efavirenz dose of 600 mg, therapeutic plasma concentrations are 1–4 μg/ml (3–13 μM) (Bednasz et al., 2017). At 10 μM S-efavirenz, relative activities were CYP2B6.4 > CYP2B6.1 > CYP2B6.5, CYP2B6.17 > CYP2B6.6, CYP2B6.7, CYP2B6.9, CYP2B6.19, and CYP2B6.26; CYP2B6.16 and CYP2B6.18 were relatively inactive. Rank order was different at lower substrate concentrations, owing in part to differing cooperativity for the variants. Cl_{max} values were CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.16 and CYP2B6.18. Kinetic parameters for S-efavirenz 8-hydroxylation by CYP2B6 variants, mainly CYP2B6.1, CYP2B6.4, CYP2B6.6, and CYP2B6.9, have been reported (Table 5) (Bumpus et al., 2006; Ariyoshi et al., 2011; Zhang et al., 2011; Xu et al., 2012; Radloff et al., 2013; Watanabe et al., 2018). CYP2B6.4 (785G>T, K262R) activity was greater than wild-type when expressed in T. ni (144%, this investigation), Sf9 cells (142%) (Ariyoshi et al., 2011), and E. coli (170%) (Bumpus et al., 2006), or similar to wild-type in E. coli (96%) (Zhang et al., 2011). Greater CYP2B6.4 activity toward S-efavirenz in vitro is thus a relatively consistent observation.

More generally, CYP2B6 variant catalytic activity is variant-, substrate-, and expression system-dependent. With other substrates, CYP2B6.4 was more active than CYP2B6.1 toward methadone (Gadel et al., 2013, 2015) and artmether (Honda et al., 2011) but less active toward cyclophosphamide (Ariyoshi et al., 2011), ifosfamide (Calinski et al., 2015), bupropion (Zhang et al., 2011), and ketamine (Wang et al., 2018). CYP2B6.6 (516G>T, 785A>G, Q172H/K262R) had lesser activity toward S-efavirenz (53% of wild-type), consistent with most (20%–50%) (Ariyoshi et al., 2011; Zhang et al., 2011; Xu et al., 2012) but not all (Radloff et al., 2013; Watanabe et al., 2018) reports. CYP2B6.6 was also less active than CYP2B6.1 toward methadone (Gadel et al., 2013, 2015), ketamine (Wang et al., 2018), and bupropion (Zhang et al., 2011) but more active toward artmether and cyclophosphamide (Ariyoshi et al., 2011, 2015) and ifosfamide (Calinski et al., 2015). CYP2B6.9 (516G>T, Q172H) had even lower activity toward S-efavirenz (38% of wild-type) than CYP2B6.6 in the current investigation. Likewise, CYP2B6.9 also had lower 8-hydroxylation activity (33%) in one investigation (Zhang et al., 2011) but not another (Watanabe et al., 2018), and lower activity than wild-type in metabolizing methadone (Gadel et al., 2013, 2015), bupropion (Zhang et al., 2011), and ketamine (Wang et al., 2018) but greater with ifosfamide (Calinski et al., 2015). Thus, the CYP2B6 516G>T polymorphism (coding for both CYP2B6*6
and CYP2B6*9) is a canonical loss-of-function polymorphism for efavirenz.

Some structure-activity information is available on the CYP2B6 variants. CYP2B6.6 and CYP2B6.9 have the common Q172H mutation. Several in vitro studies have evaluated these variants, yet it is not clear how Q172H remotely (Q172 is about 15 Å away from the heme) affects the reaction in the active site. Moreover, effects of Q172H are moderated by K262R, and effects can be substrate-dependent (Ariyoshi et al., 2011). CYP2B6.16 and 2B6.18 share the I328T mutation in the J-helix, causing structural changes in the C and I helices that disrupt heme binding, alter ligand recognition, and reduce the ligand-binding pocket volume from 78 (CYP2B6.1) to 14 Å³ (CYP2B6.18) (Kobayashi et al., 2014; Wang et al., 2018).

While this report was in preparation, another investigation of efavirenz metabolism by CYP2B6 variants was published (Watanabe et al., 2018). Variants were expressed in human embryonic kidney (HEK)293 cells, without coexpression of P450 oxidoreductase or cytochrome b₅₆. As described previously (Wang et al., 2018), expression systems can influence P450 activity. Mammalian systems (e.g., monkey kidney COS, HEK cells) allow easy P450 expression and use native reductase and b₅₆, but P450 expression levels and protein integrity can vary widely. Some HEK results (Watanabe et al., 2018) differed substantially from previous reports (Table 5). Comparing kinetic parameters for efavirenz 8-hydroxylation using HEK versus our insect cell-expressed CYP2B6 shows that Vₘₐₓ with insect cell expression was higher than with HEK expression, for example, 12-fold for CYP2B6.1 (4.2 vs. 0.35 pmol/min per picomoles). Such activity differences may influence reported Cₘₐₓ values for the variants.

There is potential clinical significance to the genetic variability in S-efavirenz metabolism in vitro. CYP2B6*6 (516G>T, 785A>G), CYP2B6*9 (516G>T), CYP2B6*16 (785A>G, 983T>C), and CYP2B6*18 (983T>C) constitute a poor efavirenz metabolizer clinical phenotype, associated with reduced clearance and increased plasma concentrations (Colić et al., 2015; Russo et al., 2016; Robarge et al., 2016), and with common general and neuropsychiatric side effects (Haas et al., 2004; Rotger et al., 2005; Apostolova et al., 2015; Vo and Varghese Gupta, 2016), and with common general and neuropsychiatric side effects (Haas et al., 2004; Rotger et al., 2005; Apostolova et al., 2015; Vo and Varghese Gupta, 2016).

Other CYP2B6 variants we tested with these two polymorphisms (CYP2B6.13, CYP2B6.20, CYP2B6.29, CYP2B6.34, CYP2B6.36, CYP2B6.37, CYP2B6.38) would be predicted to also have diminished activity. With the consistent association between CYP2B6*13, CYP2B6*14, CYP2B6*16, CYP2B6*18 and certain other alleles would also be expected to be phenotypic poor metabolizers. This has been reported for CYP2B6*13, CYP2B6*14, CYP2B6*16, CYP2B6*18 (Colić et al., 2015). Although the clinical significance of 785A>G alone (CYP2B6*4) for efavirenz disposition is ambiguous, (Russo et al., 2016) the above in vitro-in vivo correlations, together with increased efavirenz hydroxylation in vitro by CYP2B6.4, would predict lower plasma efavirenz exposures and suggest further clinical investigation. These findings further strengthen the rationale for patient genotyping (specifically for CYP2B6 516G>T, 785A>G, and 983T>C polymorphisms) and for CYP2B6 genetically-guided efavirenz dosing (Mukonzo et al., 2014; Vo and Varghese Gupta, 2016).

The third major result was the surprising observation that efavirenz 8-hydroxylation was highly stereoselective. In this novel evaluation of R-efavirenz, metabolism at specific concentration and Cₘₐₓ was generally at least 10-fold greater for S- versus R-efavirenz, for wild-type CYP2B6.1 and the active CYP2B6 variants. Differences in

<table>
<thead>
<tr>
<th>CYP2B6</th>
<th>Vₘₐₓ (pmol/min/pmol)</th>
<th>K (μM)</th>
<th>n</th>
<th>Cₘₐₓ (μM)</th>
<th>K (μM)</th>
<th>Vₘₐₓ pmoles/min per picomole</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6.1</td>
<td>7.4 ± 2.4</td>
<td>17 ± 8</td>
<td>1.4 ± 0.3</td>
<td>0.25</td>
<td>47 ± 10</td>
<td>0.0001 ± 0.42</td>
</tr>
<tr>
<td>CYP2B6.4</td>
<td>6.2 ± 1.0</td>
<td>9 ± 2</td>
<td>1.7 ± 0.3</td>
<td>0.35</td>
<td>53 ± 8</td>
<td>0.0002 ± 0.44</td>
</tr>
<tr>
<td>CYP2B6.5</td>
<td>4.1 ± 0.4</td>
<td>11 ± 2</td>
<td>1.2 ± 0.1</td>
<td>0.25</td>
<td>75 ± 10</td>
<td>5.8e-5 ± 0.42</td>
</tr>
<tr>
<td>CYP2B6.6</td>
<td>3.6 ± 0.2</td>
<td>13 ± 1</td>
<td>1.7 ± 0.1</td>
<td>0.14</td>
<td>84 ± 16</td>
<td>1.46 ± 0.43</td>
</tr>
<tr>
<td>CYP2B6.7</td>
<td>2.7 ± 0.16</td>
<td>16 ± 12</td>
<td>1.0 ± 0.2</td>
<td>0.17</td>
<td>46 ± 11</td>
<td>4.5e-5 ± 0.14</td>
</tr>
<tr>
<td>CYP2B6.9</td>
<td>2.8 ± 0.7</td>
<td>21 ± 10</td>
<td>0.9 ± 0.1</td>
<td>0.13</td>
<td>57 ± 9</td>
<td>4.4e-5 ± 0.15</td>
</tr>
<tr>
<td>CYP2B6.17</td>
<td>5.5 ± 0.5</td>
<td>13 ± 2</td>
<td>1.4 ± 0.1</td>
<td>0.23</td>
<td>71 ± 8</td>
<td>2.6e-5 ± 0.44</td>
</tr>
<tr>
<td>CYP2B6.19</td>
<td>3.5 ± 0.2</td>
<td>14 ± 2</td>
<td>1.5 ± 0.1</td>
<td>0.13</td>
<td>13 ± 48</td>
<td>7.1e-5 ± 0.21</td>
</tr>
<tr>
<td>CYP2B6.26</td>
<td>2.1 ± 0.4</td>
<td>9 ± 4</td>
<td>1.2 ± 0.3</td>
<td>0.15</td>
<td>56 ± 11</td>
<td>5.7e-5 ± 0.18</td>
</tr>
</tbody>
</table>

![Fig. 5. Stereoselectivity of efavirenz metabolism. Shown is formation of S-hydroxyefavirenz from S-efavirenz (●) and R-efavirenz (▲) by CYP2B6.1. The solid line represents predicted concentrations on the basis of parameters from nonlinear regression using the Hill equation for S-hydroxylation of S-efavirenz and R-efavirenz. The inset compares predicted concentrations for R-efavirenz hydroxylation on the basis of parameters from nonlinear regression using the Hill equation (solid line) and Michaelis-Menten equation (dotted line).](image-url)
8-hydroxylation were primarily owing to lower \(V_{\text{max}} \) as substrate affinity (K) was not substantially different between enantiomers. In addition, whereas both the primary metabolite 8-hydroxyefavirenz and very low amounts of the secondary metabolite 8,14-dihydroxyefavirenz was observed with \(S \)-efavirenz, only 8-hydroxyefavirenz was detected from \(R \)-efavirenz. This may well relate, however, to the lower \(R \)-efavirenz turnover and assay sensitivity. The considerable stereoselectivity of efavirenz 8-hydroxylation is a novel observation and contrasts with other CYP2B6 substrates. For example, N-demethylation of individual enantiomers by CYP2B6.1 was 2-fold greater for \(R \)-versus \(S \)-methadone (Totah et al., 2007) and \(S \)-versus \(R \)-ketamine (Wang et al., 2018), and hydroxylation of \(S \)-bupropion was 3-fold greater than \(R \)-bupropion (Coles and Kharasch, 2008). Similar enantioselectivities occurred with methadone and ketamine with several CYP2B6 variants (Gadel et al., 2015; Wang et al., 2018). N-Dechloroethylation by CYP2B6.1 was approximately 1.5- to 2-fold greater for \(S \)-versus \(R \)-ifosfamide, although the difference between \(S \)-and \(R \)-ifosfamide was substantially greater for 4-hydroxylation (Roy et al., 1999). Although these other CYP2B6 substrates follow Michaelis-Menten kinetics and are characterized by \(C_{\text{max}} \), efavirenz was characterized by \(C_{\text{max,clmax}} \) from non-hyperbolic metabolism can be used as a substitute for \(C_{\text{max}} \) when assessing metabolism (Houston and Kenworthy, 2000). Thus, efavirenz appears to be the CYP2B6 substrate with the greatest metabolic enantioselectivity yet observed.

A crystal structure of CYP2B6 in complex with an efavirenz analog, with a methyl group replacing the carbonyl oxygen, has been reported (Shah et al., 2018). Docking was described as consistent with the major and minor efavirenz metabolites. The chlorine of the efavirenz analog contains engineered mutations of K262R (as in CYP2B6.4) and Y226H, which appears to be the CYP2B6 substrate with the greatest metabolic inactivation. The naturally occurring cytochrome P450 2B6, containing substitutions for the K262R and Y226H residues threonine T255 and aspartic acid D266 to form hydrogen bonds with the neighboring residues. This difference between CYP2B6.4 and CYP2B6.1 may influence their structures and functions and account for differences in the metabolism of efavirenz and other substrates by these variants. The highly substrate-specific effect of the K262R substitution further informs on CYP2B6.

Catalytic data for \(S \)-and \(R \)-efavirenz metabolism by wild-type CYP2B6 and variants may be useful in future computational studies to better understand mechanisms of metabolism by this clinically important isozyme.

Authorship Contributions

- **Conducted experiments:** Wang, Neiner.
- **Wrote or contributed to the writing of the manuscript:** Wang, Kharasch.

References

CYP2B6 Efavirenz Metabolism Genetics and Stereoselectivity

