CONTENTS

ARTICLES

The Presence of a Transporter-Induced Protein Binding Shift: A New Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo Extrapolation. Christine M. Bowman, Hideaki Okochi, and Leslie Z. Benet 358

Induction of Cytochrome P450 Involved in the Accelerated Blood Clearance Phenomenon Induced by PEGylated Liposomes In Vivo. Fengling Wang, Yifan Wu, Jiwen Zhang, Huihui Wang, Xiaoting Xie, Xi Ye, Datyin Peng, and Weidong Chen .. 364

Effect of Osmolality on the Pharmacokinetic Interaction between Apple Juice and Atenolol in Rats. Yuta Funai, Yoshiyuki Shirasaka, Marika Ishihara, Miyuki Takemura, Kazuki Ichijo, Hisanao Kishimoto, and Katsuhisa Inoue ... 386

In Vitro–In Vivo Extrapolation of Key Transporter Activity at the Blood–Brain Barrier. Patrick E. Trapa, Matthew D. Troutman, Thomas Y. Lau, Travis T. Wager, Tristan S. Maurer, Nandini C. Patel, Mark A. West, John P. Umland, Anthony A. Carlo, Bo Feng, and Jennifer L. Liras ... 405

Hepatocyte Concentrations of Imaging Compounds Associated with Transporter Inhibition: Evidence in Perfused Rat Livers. Pierre Bonnaventure, Fabien Cusin, and Catherine M. Pastor 412

SHORT COMMUNICATION

Fraction Unbound for Liver Microsome and Hepatocyte Incubations for All Major Species Can Be Approximated Using a Single-Species Surrogate. John T. Barr, Julie M. Lade, Thuy B. Tran, and Upendra P. Dahal ... 419

Continued on next page
ERRATA

Correction to “In Vitro Hepatic Oxidative Biotransformation of Trimethoprim” 392

Correction to “Developmental Changes in Hepatic Organic Cation Transporter OCT1 Protein Expression from Neonates to Children” 424

Supplemental material is available online at http://dmd.aspetjournals.org.

About the cover: Michaelis Menten curves of the enzymatic activities of the recombinant wild-type and variant CYP2C9 allozymes (including CYP2C9*3). See the article by Devarajan et al. (dx.doi.org/10.1124/dmd.118.084269).