










and 78% of siControl, respectively), CYP2A6 (71% and 72% of
siControl, respectively), CYP2C9 (60% of siControl), CYP2C19
(76% and 47% of siControl, respectively), CYP2D6 (26% and 40% of
siControl, respectively), CYP2E1 (78% and 81% of siControl, re-
spectively), and CYP3A5 (72% and 40% of siControl, respectively)
mRNA levels were decreased by ADAR1 or ADAR2 knockdown,
although the changes in CYP1A2 and CYP2D6 by ADAR1 knockdown
and the changes in CYP3A5 by ADAR knockdown did not show
significant differences. The CYP3A4 mRNA was decreased (76% of
siControl) by the knockdown of ADAR2, but unexpectedly, it was
increased 3-fold by the knockdown of ADAR1 (Fig. 6G). Next, the
effects of ADAR knockdown on the P450 activities were evaluated by
using LC–tandem mass spectrometry. We measured phenacetin O-
deethylation, diclofenac 49-hydroxylation, and bufuralol 19-hydroxyl-
ation as the typical activities of CYP1A2, CYP2C9, and CYP2D6,
respectively. The CYP1A2 activity (24% of siControl) was not changed
by ADAR knockdown (Fig. 6I), whereas the CYP2C9 (44% siControl)

and CYP2D6 (59% of siControl) activities were decreased by ADAR1
knockdown (Fig. 6, J and K). This phenomenon was consistent with the
results of mRNA alteration. Taken together, the results show that the
alteration of HNF4a expression affects multiple hepatic P450 mRNA
levels. In the case of CYP3A4, there is a possibility that some factors
other than HNF4amay also contribute to the change in the expression of
ADARs.

Discussion

A-to-I RNA editing has the potential to change gene expression and
function. The effects of RNA editing on the pharmacokinetic-related
genes have not yet been clarified. In this study, we investigated the
possibility that ADARs regulate human P450 expression and activity in
the liver.
We found that ADAR knockdown resulted in a decrease in CYP2B6

mRNA via enhancing mRNA stability (Fig. 3A). In REDIportal, RNA

Fig. 5. Effects of ADAR1 or ADAR2 knockdown on the transactivity of CYP2C8. ADARs positively regulate the transactivity of CYP2C8 via HNF4a. (A) siADAR1- or
siADAR2-transfected HepaRG cells were treated with 10 mg/ml of a-amanitin and CYP2C8 mRNA was determined by real-time reverse transcription PCR (RT-PCR). The
values are expressed as relative to the values of the CYP2C8 mRNA levels at 0 hours. Each point represents the mean 6 S.D. of three independent experiments. (B) Huh-7
cells were transfected with 5 nM siADAR1 or siADAR2. After 24 hours, the reporter plasmids were transfected. The values are expressed as the activity relative to that of the
pGL3p plasmid/siControl. (C and D) HNF4a mRNA and protein levels (using nuclear extracts) in siADAR1- or siADAR2-transfected Huh-7 cells were determined by real-
time RT-PCR and western blotting, respectively. The HNF4a protein level was evaluated as the sum of the densities of two bands. The values represent the levels relative to
the siControl. Each column represents the mean 6 S.D. of three independent experiments. *P , 0.05; **P , 0.01; ***P , 0.001, compared with siControl.
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editing sites are registered within the two Alu elements in the 39-UTR of
CYP2B6. It has been reported that ;90% of RNA editing sites are
located in Alu elements in the human transcriptome (Picardi et al., 2017).

Because RNA editing in the 39-UTR may be relevant to the changed
stability of mRNA, we examined whether the 39-UTR of CYP2B6 in
HepaRG cells is actually subjected to RNA editing by direct sequencing.

Fig. 6. Effects of ADAR1 or ADAR2 knockdown on the other P450 mRNA levels and activities in differentiated HepaRG cells. CYP1A2 (A), CYP2A6 (B), CYP2C9 (C),
CYP2C19 (D), CYP2D6 (E), CYP2E1 (F), CYP3A4 (G), and CYP3A5 (H) mRNA levels in siADAR1- or siADAR2-transfected HepaRG cells were determined by real-time
reverse transcription PCR and normalized to the b-actin levels. The values represent the levels relative to the siControl. Phenacetin O-deethylation (I), diclofenac 49-
hydroxylation (J), and bufuralol 19-hydroxylation (K) in siADAR1- or siADAR2-transfected HepaRG cells were measured as the CYP1A2, CYP2C9, and CYP2D6 marker
activities, respectively. Each column represents the mean 6 S.D. of three independent experiments. *P , 0.05; **P , 0.01; ***P , 0.001, compared with siControl.
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However, no editing sites were detected in this region (data not shown).
Recently, it has been reported that ADARs regulate gene expression in
an editing-independent manner. For example, ADARs repressed the
expression of methyltransferase such as 7A (METTL7A), a tumor
suppressor gene, by promoting the processing of miR-27a that targets
the 39-UTR of METTL7A. This phenomenon was also observed in an
ADAR mutant lacking enzymatic activity, indicating that ADARs
regulate METTL7A in an editing-independent manner (Qi et al.,
2017). In another paper, it was reported that ADAR2 enhances the
stability of nuclear-retained, Cat2-transcribed nuclear RNA by limiting
the access of the RNA binding protein HuR and poly(A) specific
ribonuclease deadenylase (Anantharaman et al., 2017). It is worth
investigating the possibility that CYP2B6 is regulated in an editing-
independent manner. In addition, there is a possibility that ADARs
regulate CYP2B6 at the transcriptional level as well as the post-
transcriptional level because the alteration of CYP2B6 mRNA stability
by knockdown of ADARs was somewhat small (Fig. 3A). It has been
reported that CYP2B6 is transactivated by HNF4a (Kamiyama et al.,
2007), whose expression was decreased by knockdown of ADARs
(Fig. 5D). Therefore, the regulation of HNF4a by ADAR1 possibly
contributes CYP2B6 expression.
We found that CYP2C8 expression and activity were decreased by

ADAR knockdown (Fig. 4), and this alteration occurred in a transcrip-
tional manner (Fig. 5A). It has been reported that CYP2C8 upstream has
the response elements of peroxisome proliferator-activated receptor a,
glucocorticoid receptor, and HNF4a (Ferguson et al., 2005; Makia and
Goldstein, 2016). The luciferase activity of the pGL3b/2C8-514 plasmid
was decreased by ADAR1 or ADAR2 knockdown (Fig. 5B). When
mutations were introduced in the response element of HNF4a, the
luciferase activity was not changed by the knockdown of ADAR1 or
ADAR2 (Fig. 5B). Additionally, the HNF4a protein level was also
decreased by ADAR1 or ADAR2 knockdown (Fig. 5D). Thus, it was
suggested that ADAR1 or ADAR2 positively regulates the expression of
CYP2C8 through the upregulation of HNF4a. Since the HNF4amRNA
level was not changed by ADAR1 or ADAR2 knockdown (Fig. 5C), it
was believed that ADARsmay positively regulate HNF4a expression in
a post-transcriptional manner. According to REDIportal, HNF4a
mRNA does not have any RNA editing sites, indicating that ADARs
indirectly regulate HNF4a expression. Some miRNAs have been
reported to regulate HNF4a expression (Takagi et al., 2010;
Ramamoorthy et al., 2012; Wang and Burke et al., 2013), and A-to-I
changes in anmiRNA transcript can alter its processing to cause changes
in mature miRNA expression (Ekdahl et al., 2012; Vesely et al., 2012).
Therefore, it is possible that ADARs regulate HNF4a by changing the
miRNA processing.
CYP2C8 plays a role in the metabolism of clinically used drugs, such

as paclitaxel (Rahman et al., 1994), amodiaquine (Walsky and Obach,
2004), and amiodarone (Ohyama et al., 2000). Since the CYP2C8
activitywas decreased byADAR1 knockdown, the alteration of ADAR1
expression may influence the metabolism of these drugs; this results in
alterations to the drug efficacy or causes adverse effects. There are large
interindividual differences in the CYP2C8 protein level and activity
(Naraharisetti et al., 2010), and the variability is partially attributed to the
genetic polymorphism of CYP2C8. Among the 14 CYP2C8 alleles,
CYP2C8*2,CYP2C8*3, andCYP2C8*4 are common alleles with amino
acid changes. These alleles have been reported to contribute to
alterations in CYP2C8 activity. For example, liver samples from
heterozygotes of CYP2C8*3 showed significantly lower paclitaxel 6a-
hydroxylase activity compared with wild-type samples (Bahadur et al.,
2002). In contrast, another research group reported no difference in the
activities between two groups (Taniguchi et al., 2005). There is a large
interindividual difference in the CYP2C8metabolic activities among the

same genotype; therefore, it is possible that the interindividual variation
could be due to factors other than genetic factors. The present study
revealed that CYP2C8 expression was modulated by ADARs (Fig. 4).
The ADAR-dependent regulation of CYP2C8 also contributes to the
interindividual differences in CYP2C8.
Since the CYP2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4 expression

levels are also regulated by HNF4a (Kamiyama et al., 2007; Chen et al.,
2018), these P450 mRNA levels were evaluated. We found that the
CYP2A6, 2C9, 2C19, 2D6, and 3A4 mRNA levels were decreased by
ADAR1 or ADAR2 knockdown (Fig. 6, B–F), and these alterations
were consistent with HNF4a expression (Fig. 5E). Thus, HNF4a could
be involved in the decreases in these P450 mRNA levels by ADAR1 or
ADAR2 knockdown. Unlike other P450 isoforms, the CYP3A4 mRNA
levels were significantly increased by the knockdown of ADAR1 (Fig.
6G). The change was not consistent with that of HNF4a expression. In a
recent paper, it was shown that the contribution of HNF4a in the
regulation of CYP3A4 is smaller than that of the other P450 isoforms
(Chen et al., 2018).
In conclusion, the present study has demonstrated that the RNA

editing enzymes, ADARs, are novel factors regulating P450. Our
previous study revealed a large interindividual variation (220-fold) in
ADAR1 protein expression in human liver samples (Nakano et al.,
2016). Therefore, the variation in ADAR1 expression could be one of
the factors causing the interindividual variation in P450 expression.
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