












injury and gastrointestinal dysfunction. Our findings suggested that oral
exogenous GSH greatly enhanced the concentrations of GSH, CYS, CYS-
GLY, and g-GC in rat intestines. In our study, the effects of I/R surgeries
and GSH dosing on gastrointestinal dysfunction were investigated by
observing pathologic sections and measuring the levels of inflammatory
factors and tight junction proteins. More precisely, the intestines of
I/R-model rats were characterized by severe accumulation of inflammatory
cells, incomplete structure, or even shedding partial villus, gland de-
generation, and crypt structure change (Fig. 6A). Intragastric administration
of GSH greatly improved the intestinal pathologic features. Besides, the
levels of IL-6, TNF-a, and IL-1b in the I/R rat intestine were signifi-
cantly higher than those of sham-operated group (one-way ANOVA, P,
0.01), and GSH-dosing could significantly reverse the upregulation of
proinflammatory cytokines induced by I/R surgeries (Fig. 6, B–D). In
addition, the tight-junction proteins in rat intestine were determined based
on ELISA assay. As shown in Fig. 6, E–G, the intestinal levels of ZO-1,
claudin-5, and occluding proteins in the I/R group were significantly lower
than those of the sham-operated group. I/R surgeries might lead to the
destruction of intestinal barrier, andGSHdosing could significantly reverse
the downregulation of intestinal ZO-1 and claudin-5 proteins. Thus, oral
exogenous GSH could alleviate intestinal damage caused by brain injury
by reducing intestinal inflammation and intestinal barrier.

Influence of Oral Exogenous GSH on BBB Destruction after I/R
Surgeries

The integrity of the BBB was investigated by determining cerebral
IgG leakage, tight-junction proteins, and the levels of endotoxin. The

results illustrated that there was no IgG leakage in the sham-operated rat
brain. After 24 hours of I/R surgeries, severe IgG leakage occurred on the
left injured hemisphere, and GSH dosing significantly ameliorated IgG
leakage (Fig. 7A). Besides, GSH dosing dramatically reversed the
downregulation of intracerebral ZO-1 and claudin-5 proteins induced
by I/R surgeries (Fig. 7, B–D). The improved intestinal and BBB
disruption might alter the levels of endotoxin, which positively corre-
late with severity of brain injuries (Faries et al., 1998). Herein, the
intracerebral endotoxin levels were determined to further elucidate the
protective effect of GSH on intestinal and BBB. As shown in Fig. 7E,
the intracerebral endotoxin level in I/R model rats was significantly
greater than that in the sham-operated group (P , 0.01). Intragastric
administration of GSH could greatly decrease the intracerebral endotoxin
level of the I/R rats (P , 0.05). Similarly, I/R surgeries could lead to
elevated plasma endomycin level, whereas GSH dosing dramatically
reduced it in the I/R model rat plasma (Fig. 7F). Thus, oral exogenous
GSH could significantly repair the damage of BBB caused by brain injury.

Discussion

Oxidative stress is associated with various CNS diseases, such as
stroke, AD, PD, and others (Merad-Boudia et al., 1998; van Leyen et al.,
2006; Ansari and Scheff, 2010; Cojocaru et al., 2013). As an intracellular
thiol tripeptide present in all mammalian tissues, GSH plays a crucial
role in cellular protection against oxidant damage. Reduction of theGSH
level in vivo may lead to the degeneration of dopaminergic neurons (Li
et al., 1997; Cadenas, 2004; Bilgin et al., 2019). Song et al., 2015

Fig. 4. Intracerebral distribution of GSH-derived ingredients in sham-operated, I/R-model, and I/R 1 GSH rats. (A) GSH, (B) CYS, (C) Glu, (D) GLY, and (E) CYS-GLY.
(F) Concentrations of GSH in striatum, (G) concentrations of GSH in cortex, (H) concentrations of GSH in hippocampus, (I) concentrations of GSH in hypothalamus, (J)
concentrations of CYS in striatum, (K) concentrations of CYS in cortex, (L) concentrations of CYS in hippocampus, and (M) concentrations of CYS in hypothalamus. Data
are mean 6 SD.*P , 0.05, **P , 0.01 and ***P , 0.001 by unpaired two-tailed Student’s t-test.
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reported that intravenous injection of exogenous GSH attenuated cere-
bral infarct volume after ischemic stroke by promoting the PI3K/Akt
pathway. The therapeutic effects of oral GSH were investigated in the
I/R-model rats and OGD/R-model hCMEC/D3 cells in the present study.
The results demonstrated that intragastric administration of GSH could
not only greatly improve the neurologic deficit score, infarct size, and
histologic lesions of the I/R-model rat, but it could also significantly
reverse the upregulation of proinflammatory cytokines (TNF-a, IL-1b,
and IL-6) induced by I/R surgeries. In vitro PD studies further suggested
that exogenous GSH could dose dependently increase the survival
of hCMEC/D3 during OGD/R by increasing the migration rate of the
OGD/R-model cells and suppressing the generation of ROS. BSO is an
inhibitor of the rate-limiting enzyme g-glutamylcysteine synthetase in
GSH biosynthesis (Li et al., 1997). In addition to increasing intracellular
ROS, BSO treatment could lead to a decrease in the survival and
migration rate of OGD/R-model hCMEC/D3 cells. Thus, exogenous
GSH could be used to treat ischemic brain injury; however, the
effectiveness of oral GSH as a therapeutic agent for brain injuries may
be limited because of its low bioavailability and poor ability to permeate
BBB (Homma and Fujii, 2015). According to previous reports, the
intestinal g-glutamyltransferase could hydrolyze GSH’s g-peptide
linkage to produce CYS-GLY and Glu, and the CYS-GLY could be
further cleaved to generate CYS and GLY (Hanigan and Ricketts, 1993;
Meister, 1994). Interestingly, most degradation products of GSH,
including CYS, GLY, and Glu, have been reported to be associated with
oxidative stress and brain damage. For instance, CYS participates in
a wide variety of redox reactions because of its sulfur atom (Vandiver

et al., 2013; Paul et al., 2014, 2018; Scheltens et al., 2016). Another
degradation product, GLY, is a major inhibitory neurotransmitter that
binds to glycine receptors to inhibit postsynaptic neurons (Lynch, 2009;
Liu et al., 2019). Besides, excessive release of Glu into extracellular
spaces is proved to cause excitotoxic neuronal damages, and the
concentration of Glu in the brain should be strictly controlled (Nishizawa,
2001; Ji et al., 2019).
To elucidate the paradox between the pharmacokinetics and pharma-

codynamics of GSH, first we carried out studies on the distribution and
uptake of GSH-derived ingredients, including CYS, GLY, Glu, CYS-
GLY, and g-GC, in both in vitro and in vivo models. In vitro studies
have suggested that exogenous GSH mainly enhanced the intracellular
concentrations of GSH and Glu but had almost no significant effect
on exposure of GLY, CYS-GLY, and g-GC in hCMEC/D3 cells. The
intracellular CYS level increased significantly after OGD/R injury, and
GSH treatment could decrease CYS levels by alleviating OGD/R-induced
cell damage and restoring the synthesizing ability of CYS. To investigate
more fully the uptake capacity of GSH, the OGD/R-model hCMEC/D3
cells were incubated with 200 mM of [3-13C]-L-GSH. The results proved
that the concentration of endogenous GSH was significantly higher than
that of exogenous GSH. GSH had low uptake capability, which was
consistent with its low bioavailability. The cerebral distribution of GSH-
derived ingredients (GSH, CYS, GLY, GLY, CYS-GLY, and g-GC)
showed that I/R surgeries could lead to decreased levels of GSH and CYS
in the rat striatum and cortex of injured cerebral hemisphere, and
intragastric administration of GSH could significantly reverse this decline
in GSH and CYS levels caused by I/R surgeries. We also found that I/R

Fig. 5. Distribution of GSH in rat tissues. (A) Plasma, (B) heart, (C) liver, (D) kidney, (E) stomach, (F) duodenum, (G) jejunum, (H) ileum, and (I) colon. Data are mean 6
SD.*P , 0.05, **P , 0.01 and ***P , 0.001 by unpaired two-tailed Student’s t-test.
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surgeries resulted in an increase in intracerebral Glu concentration. The
main reason might lie in the increased permeability of the BBB, which
always produced severe clinical consequences, such as vasogenic brain
edema, hemorrhagic transformation, and poor neurologic outcomes (Xu
et al., 2005; Moskowitz et al., 2010; Khatri et al., 2012). Our results also
suggested that the increase in Glu exposure in the I/R rat brain could be
significantly reversed by oral GSH, which implied that exogenous GSH
may have the function of repairing BBB. In fact, the leakage of serum
proteins into brain parenchyma could be used to examine the integrity of
the BBB (Mann et al., 2016). Then we investigated the influence of GSH
on the BBB by determining the IgG leakage, intracerebral tight-junction
proteins, and the levels of endotoxin. All indicators showed that GSH
dosing had the function of repairing the damaged BBB caused by I/R
operation. Thus, oral exogenous GSH could play a direct role in the
treatment of brain injury by stabilizing intracerebral GSH, CYS, and Glu,
repairing damaged BBB and downregulating proinflammatory cytokines.
Although oral exogenous GSH could play a direct therapeutic role in

brain injury, we question whether GSH can also play an indirect
therapeutic role owing to its low bioavailability and poor ability to
permeate the BBB. The concentrations of GSH-derived ingredients in rat
plasma, heart, liver, kidney, stomach, duodenum, jejunum, ileum, and
colon were measured to identify other possible action sites of oral GSH.

Unexpectedly, intragastric administration of GSH could significantly
enhance the intestinal exposure of GSH-derived ingredients, including
GSH, CYS, CYS-GLY, and g-GC. According to previous reports, GSH
was formed from CYS by the enzymatic action of glutamate-cysteine
ligase (GCL), which comprised the catalytic subunit (GCLc) and the
modulating subunit (GCLm) (Meister and Anderson, 1983; Lu, 2013;
Homma and Fujii, 2015). The GCLc expression in rat liver, the main
organ for GSH synthesis, was determined to elucidate the effect of
exogenous GSH on GSH synthesis in vivo. As shown in Supplemental
Fig. S7, the expression of GCLc in the rat liver was significantly
decreased by I/R surgeries (P, 0.001), and oral administration of GSH
had no obvious effect on GCLc expression. Thus, the increase in GSH
concentrations in rat brains and intestines was not achieved by increasing
GSH synthesis. Accumulating evidence reveals a close linkage of brain
injury and gastrointestinal dysfunction. The influence of the gastroin-
testinal tract on the brain of human has been noted since the 19th century,
and the neuroinflammation hypothesis has been advocated since the 21st

century (Evrensel et al., 2019). The structure and function of the brain can
be modulated by the gut; conversely, the brain regulates the gut
microenvironment and microbiota composition (Maqsood and Stone,
2016; Zhao et al., 2018). Changes in the intestinal flora easily caused small
intestinal immune dysfunction, which might suppress the transporting of

Fig. 6. Influence of exogenous GSH on intestinal injury caused by I/R surgeries. (A) Pathologic sections, (B) levels of IL-6, (C) levels of TNF-a, (D) levels of IL-1b, (E)
expression of ZO-1, (F) expression of claudin-5 proteins, and (G) expression of occludin proteins. Data are mean6 SD.*P, 0.05, **P, 0.01, ***P,0.001 and **** P,
0.0001 by unpaired two-tailed Student’s t-test.
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IL-17-positive gdT cells and/or Th17 cells from the small intestine to
the peripheral blood and then reduce systemic inflammation after
brain injury (Benakis et al., 2016; Honda and Littman, 2016).
Gastrointestinal dysfunction, including mucosal injury, barrier
disruption, dysmotility, and inflammation, caused by brain injury
might be one of the causes of morbidity and mortality (Tan et al.,
2011; Olsen et al., 2013). Resveratrol has been reported to improve
cerebral ischemia by decreasing the ischemia-induced transfer of
cytokines (IL-17A, IL-23, IL-10, interferon-g, and IL-4) from the
small intestine to the blood by attenuating the small intestinal
epithelial permeability (Dou et al., 2019). In this study, the effects
of I/R surgeries and GSH dosing on the gastrointestinal dysfunc-
tion were investigated by observing pathologic sections and measur-
ing the levels of inflammatory factors and tight-junction proteins.
Our findings suggested that intragastric administration of GSH
could significantly reduce intestinal inflammatory damage and
improve intestinal barrier disruption by decreasing proinflammatory
cytokines and upregulating intestinal tight junction proteins ZO-1
and claudin-5.
In summary, oral exogenous GSH not only plays a direct thera-

peutic role in brain injury by stabilizing intracerebral levels of GSH,
CYS, and Glu, but it can also have an indirect therapeutic role by
enhancing the intestinal exposure of GSH, CYS, CYS-GLY, and
g-GC and improving intestinal barrier disruptions.
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