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ABSTRACT

Elements of key enteric drug metabolism and disposition pathways
are reviewed to aid the assessment of the applicability of current
cell-based enteric experimental systems for the evaluation of enteric
metabolism and drug interaction potential. Enteric nuclear recep-
tors include vitamin D receptor, constitutive androstane receptor,
pregnane X receptor, farnesoid X receptor, liver X receptor, aryl
hydrocarbon receptor, and peroxisome proliferator–activated re-
ceptor. Enteric drug metabolizing enzyme pathways include both
cytochrome P450 (P450) and non-P450 drug metabolizing enzymes
based on gene expression, proteomics, and activity. Both uptake
and efflux transporters are present in the small intestine, with
P-glycoprotein found to be responsible for most drug-drug and
food-drug interactions. The cell-based in vitro enteric systems
reviewed are 1) immortalized cell line model: the human colon
adenocarcinoma (Caco-2) cells; 2) human stem cell–derived enter-
ocyte models: stem cell enteric systems, either from intestinal crypt
cells or induced pluripotent stem cells; and 3) primary cell models:
human intestinal slices, cryopreserved human enterocytes,
permeabilized cofactor-supplemented (MetMax) cryopreserved

human enterocytes, and cryopreserved human intestinal mu-
cosa. The major deficiency with both immortalized cell lines and
stem cell–derived enterocytes is that drug metabolizing enzyme
activities, although they are detectable, are substantially lower than
those for the intestinal mucosa in vivo. Human intestine slices,
cryopreserved human enterocytes, MetMax cryopreserved human
enterocytes, and cryopreserved human intestinalmucosa retain robust
enteric drug metabolizing enzyme activity and represent appropriate
models for the evaluation of metabolism and metabolism-dependent
drug interaction potential of orally administered xenobiotics including
drugs, botanical products, and dietary supplements.

SIGNIFICANCE STATEMENT

Enteric drugmetabolism plays an important role in the bioavailability
andmetabolic fateoforally administereddrugsaswell as inentericdrug-
drug and food-drug interactions. The current status of key enteric drug
metabolism and disposition pathways and in vitro human cell–based
enteric experimental systems for the evaluation of the metabolism and
drug interaction potential of orally administered substances is reviewed.

Introduction

Due to species differences, human-based in vitro experimental
systems serve important functions in the assessment of human drug
properties such as bioavailability, metabolic fate, drug-drug interac-
tion potential, toxic potential, and pharmacological activity. For drug
metabolism, emphasis routinely has been placed on hepatic events,
with human hepatocytes serving as the “gold standard” due to the
presence of all organelles and their associated drug metabolizing
enzymes. Successful cryopreservation of human hepatocytes allows

this experimental system to be routinely applied in drug development to
guide the selection of the drug candidates for clinical trials, as well as in
mechanistic research to further our knowledge in hepatic biology, including
metabolism, toxicology, pharmacology, and gene/protein functions.
Human small intestines can arguably be as important as the liver as

a determinant of human drug properties. Oral dosing is the preferred and
predominant route of administration for drugs, herbal medicines, and
health supplements. The small intestines serve as the gateway for the
entrance of the orally administered xenobiotics into the systemic
circulation via the provision of a biologic barrier, uptake and efflux
transport, and metabolic clearance. In vitro human enteric models,
akin to hepatocytes for the liver, are now being recognized ashttps://doi.org/10.1124/dmd.120.000053.

ABBREVIATIONS: Ahr, aryl hydrocarbon receptor; CAR, constitutive androstane receptor; CHIM, cryopreserved human intestinal mucosa; FXR,
farnesoid X receptor; GFJ, grapefruit juice; iPSC, induced pluripotent stem cell; LXR, liver X receptor; MAO, monoamine oxidase; MRP, multidrug
resistance protein; OATP, organic anion transporting polypeptide; OCT, organic cation transporter; P-gp, P-glycoprotein; P450, cytochrome P450;
PPAR, peroxisome proliferator–activated receptor; PXR, pregnane X receptor; UGT, UDP-glucuronosyltransferase; VDR, vitamin D receptor.
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important tools to provide information complementing that obtained
with in vitro hepatic models to improve our understanding of the
properties of orally administered drugs. As a large and well perfused
organ, the small intestine may also contribute extensively to
xenobiotic metabolism in the systemic circulation.
This review will focus on current advances in human cell–based

experimental systems for the assessment of the metabolic fate of orally
administered xenobiotics. The strengths and limitations of the available
in vitro experimental systems to model key enteric events will be
reviewed, with an emphasis on their applicability for the evaluation of
drug metabolism and drug interaction potential of orally administered
drugs and natural products. Nonhuman systems and cell-free experi-
mental models such as enteric microsomes are not included. This review
is intended to be complementary to that recently reported by Sawant-
Basak et al. (2018), with a focus on enteric drug metabolism, which is
not extensively covered in other reviews of the human small intestine
(Gjorevski and Ordonez-Moran, 2017; Pearce et al., 2018; Dutton et al.,
2019; Ponce de León-Rodríguez et al., 2019; Maares and Haase, 2020).

Clinical Significance of Enteric Drug Metabolism

The significance of enteric metabolism in drug disposition is
illustrated by the accidental discovery of the effects of grapefruit juice
(GFJ) intake on oral drug bioavailability of the dihydropyridine calcium
channel antagonist, felodipine. Patients taking the drug with GFJ had
plasma concentrations several-fold higher than expected, an event
eventually attributed to the inhibitory effects of GFJ on presystemic
enteric metabolism of the drug (Bailey et al., 1989; Lown et al., 1997;
Gandhi et al., 2013). This clinically significant phenomenon of GFJ-
drug interaction subsequently was extended to a long list of orally
administered drugs that are substrates of CYP3A (Bailey et al., 1998),
the cytochrome P450 (P450) isoform known to be responsible for the
hepatic metabolism of over 50% of known drugs (Li et al., 1995).
Clinical evaluation of the effects of GFJ upon intravenous and oral
administration of the CYP3A4 probe substrate, midazolam, demon-
strates conclusively that enteric drug metabolism, not hepatic metabo-
lism, is responsible for this phenomenon (Kupferschmidt et al., 1995).
The GFJ phenomenon highlights two important aspects of enteric drug
metabolism: 1) enteric drug metabolism can be a major determinant of

oral bioavailability and subsequent plasma drug concentrations (Miz-
uma, 2002; Galetin et al., 2008; Chen and Yu, 2009), and 2)
bioavailability of a drug can be significantly affected by enteric contents,
including coadministered drugs, foods, and dietary supplements, that
can have a significant impact on the activity of enteric drug metabolizing
enzymes (Won et al., 2010). It is to be noted that, beside CYP3A4
inhibition, GFJ is known to cause clinically significant drug interactions
via its inhibitory effects on drug transporters including the elevation of
plasma drug concentrations via inhibiting P-glycoprotein (P-gp)–mediated
efflux (Bailey and Dresser, 2004) and the reduction of plasma drug
concentrations via inhibition of organic anion transporting polypeptide
(OATP)–mediated drug uptake (Dresser et al., 2005).

Enteric Nuclear Receptors

Identification of enteric nuclear receptors is key to the understanding
drug metabolizing enzyme gene expression, which can provide insight
on environmental and genetic effects on enteric drug metabolism. The
key enteric nuclear receptors with regulatory roles in drug metabolizing
enzyme expression are presented in Table 1 and described as follows:

1. Vitamin D receptor (VDR): VDR is a unique enteric receptor
originally detected in nuclei of enterocytes lining crypts in
duodenal mucosa (Colston et al., 1994), and later found all
through the human small intestine and colon (Barbáchano
et al., 2017) as well as other extrahepatic organs including
bone, kidney, parathyroid glands, and tumors (Pike et al., 2017).
VDR binding by the active vitamin D metabolite, 1alpha,25-
dihydroxyvitamin D3 (D3), leads to increased expression of
CYP24A1, which is responsible for its catabolism (Peng et al.,
2012; Li et al., 2018a), as well as the induction of CYP3A4,
which may lead to increased presystemic metabolism of orally
administered drugs (Makishima et al., 2002; Thompson et al.,
2002; Li et al., 2018a). D3 binding to VDR has been reported to
increase gene expression of enteric transporters including
SLC30A10 (zinc and manganese transporter ZnT10) (Claro da
Silva et al., 2016), ABCB1 (P-glycoprotein) (Tachibana et al.,
2009), proton-coupled folate transporter (Eloranta et al., 2009),
and apical sodium-dependent bile acid transporter (Chen et al.,
2006).

TABLE 1

Nuclear receptors identified in the human small intestine

Examples of ligands and effects of ligand binding on drug metabolizing enzyme and drug transporter expression are presented.

Nuclear
receptors

Ligands
Effects of activation on enteric drug metabolism enzyme

targets
Effects of activation on enteric transporter targets

VDR 1,25(OH)2D3 Induction of CYP24A1, CYP3A4 Induction of SLC30A10 (zinc and manganese transporter
ZnT10), ABCB1 (P-glycoprotein), proton-coupled folate
transporter, apical sodium-dependent bile acid transporter

CAR Phenobarbital; phenytoin;
polybrominated biphenyls

Induction of CYP2B6, CYP3A4/5/7 Induction of ABCB1 (P-glycoprotein),

PXR Rifampin, phenobarbital, statins,
and St. John’s wort

Induction of CYP3A4/5/7, CYP27A1 Induction of ABCB1 (P-glycoprotein)

FXR Bile salts Induction of intestinal fibroblast growth factor 19,
which activates hepatic fibroblast growth factor
receptor 4, resulting in repression of hepatic
CYP7A

Induction of SLC51A and B (OSTa and OSTb)

LXR Oxysterols Unknown for enteric drug metabolizing enzymes
(Induction of hepatic CYP7A1)

Induction ABCG5/ABCG8 (transporters responsible for
cholesterol efflux)

AhR Aryl hydrocarbons (3-
methylcholanthrene;
b-naphthoflavone); TCDD

Induction of CYP1A1, CYP1A2, UGT Not known

PPAR-
b/d

Fatty acids and fatty-acid
metabolites

Not known Not known

TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
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2. Constitutive androstane receptor (CAR): CAR, the nuclear
receptor responsible for CYP2B6 induction, is known to be
expressed in human intestinal mucosa ( and has been postulated
to be involved in the regulation of P450 (Burk et al., 2004; Fritz
et al., 2019) and efflux transporter MDR1 expression (Burk
et al., 2005) in the human small intestines as observed for
hepatocytes (Pascussi et al., 2000). A study comparing wild-
type and CAR knockout mice has demonstrated a regulatory role
of CAR on the expression of a variety of drug metabolism and
transporter genes including Cyp2b10, Cyp3a11, Ugt1a1,
Ugt2b34, Ugt2b36, and Mrp2-4 (Park et al., 2016). The exact
role of CAR on enteric P450 gene expression in the human
intestine is yet to be fully defined.

3. Pregnane X receptor (PXR): PXR, the key nuclear receptor for
CYP3A and CYP27A1 induction, is highly expressed in human
intestinal mucosa. Similar to PXR in the liver, enteric PXR
expression is reported to be attenuated by inflammatory
responses (Blokzijl et al., 2007; Shakhnovich et al., 2016;
Deuring et al., 2019). Activation of CYP3A by rifampin,
a model PXR ligand, has been observed in human intestinal
biopsies (Burk et al., 2004).

4. Farnesoid X receptor (FXR): FXR is highly expressed in the
small intestines with bile acids as endogenous agonists (Cariou
and Staels, 2006). Enterohepatic recirculation and microbial
metabolism of bile salts are reported to modulate FXR
expression and subsequent events including the induction of
an intestinal hormone, fibroblast growth factor 19, which
activates hepatic fibroblast growth factor receptor 4 signaling to
inhibit the hepatic bile acid synthesis by CYP7A (Chiang, 2009).
In human hepatocytes, FXR activation has been reported to result
in repression of CYP3A4 expression, presumably via enhanced
expression of a repressor of multiple transcription factors, the
small heterodimer partner (Zhang et al., 2015). FXR is believed
to regulate the expression of the bile acid efflux transporters
OSTa and OSTb (Dawson et al., 2005; Ballatori et al., 2013).

5. Liver X receptor (LXR): In spite of having been named after the
liver, LXRa is known to be expressed in numerous metabol-
ically active tissues including liver and intestine, with oxidized
cholesterols as endogenous ligands (Zhao and Dahlman-Wright,
2010). Intestinal LXR activation has been reported to be associated
with decreased intestinal cholesterol absorption (Lo Sasso et al.,
2010), mainly attributed to the upregulation of enteric
efflux transporters responsible for reverse transport of cholesterol
into the intestinal lumen (Pl�osch et al., 2002; Colin et al., 2008).

6. Aryl hydrocarbon receptor (AhR): AhR, originally discovered in
the liver, is also found in extrahepatic tissues, including the
intestine, with ligands including the environmental pollutant
2,3,7,8-tetrachlorodibenzo-p-dioxin (Csanaky et al., 2018) as
well as dietary components such as tryptophan metabolites
(Manzella et al., 2018). Besides the regulation of CYP1A
expression (Do et al., 2012), AhR is now known to play an
important role in immune modulation (Li et al., 2016; Ehrlich
et al., 2017; Metidji et al., 2018) and the maintenance of barrier
functions (Liu et al., 2018) in the intestine.

7. Peroxisome proliferator–activated receptors (PPARs): The three
major PPARs are PPARa, PPARb/d, and PPARg [nuclear
receptor subfamily 1, group C, members 1, -2, and -3,
respectively]. In humans, PPARa is present mainly in liver,
heart, and kidney; PPARb/d is in all organs evaluated including
intestine (Peters et al., 2019); and PPARg in adipose tissue,
large intestine, macrophages, monocytes, and Caco-2 cells
(Dubuquoy et al., 2006; Couvigny et al., 2015; Fumery et al.,

2017). Intestinal microbiota play key roles in intestinal
inflammation via the production of PPAR agonists and
antagonists, suggesting that PPAR may be involved in the
pathophysiology of intestinal inflammatory diseases such as
irritable bowel syndrome (Belmonte et al., 2012). Although
activation of PPARa in hepatocytes is well established to lead to
hepatocyte proliferation (Brocker et al., 2017) and CYP4a
induction (Li and Chiang, 2006), the role of PPAR on the
expression and activity of enteric drug metabolizing enzymes
and transporters remains to be elucidated.

Enteric Drug Metabolizing Enzymes

It has been well established that the human small intestine possesses
robust drug metabolizing enzyme activities. Reports on the gene
expression, protein expression, and activity of the various drug metabo-
lizing enzyme pathways in the human small intestine are reviewed here.

Clinical Findings

CYP3A. The robust enteric CYP3A activity has been demonstrated
conclusively by the increased bioavailability of orally administered
CYP3A substrate drugs upon coadministration of GFJ, a potent enteric
CYP3A inhibitor in vivo. CYP3A substrate drugs with peak and area
under the concentration time curve values increased upon oral co-
administration with GFJ include sertraline (Ueda et al., 2009),
itraconazole (Gubbins et al., 2008), triazola (Sugimoto et al., 2006),
felodipine (Goosen et al., 2004), itraconazole (Gubbins et al., 2004),
atorvastatin (Gubbins et al., 2004), and midazolam (Veronese et al., 2003).
UDP-Glucuronosyltransferase. Clinical pharmacokinetic studies

with raloxifene show that UDP-glucuronosyltransferase (UGT) can
play a significant role in the oral bioavailability of its substrates.
Raloxifene has an extremely low (approximately 2%) oral bioavailabil-
ity resulting from presystemic metabolism by UGT (Trdan et al., 2011),
especially UGT1A1, UGT1A8, UGT1A10, and UGT1A28 (Mizuma,
2009; Trontelj et al., 2009).

In Vitro/Ex Vivo Findings

Activity. Early studies employing homogenates, postmitochondrial
supernatents, and microsomes of human intestinal biopsy samples have
been found to be active in phase 1 oxidation, including testosterone
6 beta-hydroxylase, (+)-bufuralol 19-hydroxylase, carboxyesterse, 7-
ethoxycoumarin O-deethylase, and 7-ethoxyresorufin O-deethylase
(Hoensch et al., 1984; Kaminsky and Fasco, 1991; Prueksaritanont
et al., 1996); piperidine N-dealkylation of fentanyl to norfentanyl
(Labroo et al., 1997) as well as phase 2 conjugation including bilirubin-,
4-nitrophenol-, and 4-methylumbelliferone UDP-glucuronosyltransferase
(Peters et al., 1989); and characterization of CYP3A4 activity (Paine et al.,
1997). Reported drug metabolizing enzyme activities with intact cell
systems including precision cut human intestinal slices, showing
robust CYP2C9 and CYP3A4 but undetectable CYP2A6 activities
(van de Kerkhof et al., 2006), and the metabolism of tegaserod,
a selective 5-hydroxytryptamine receptor 4 partial agonist with
promotile activity in the gastrointestinal tract, to the N-glucuronides
(Vickers et al., 2001). In our laboratory, we have developed
cryopreserved intact cell human enteric systems including cryopre-
served purified human enterocytes (Ho et al., 2017), permeabilized
cofactor-supplemented (MetMax) cryopreserved human enterocytes
(Li et al., 2018b; Wong et al., 2018), and cryopreserved human
intestinal mucosa (CHIM) (Li et al., 2018a; Zhang et al., 2020). These
systems represent practical in vitro experimental systems for the
definition of enteric drug metabolism activities. Using these systems,
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robust activities have been detected in the human small intestines
including both P450 and non-P450 drug metabolizing enzyme
activities including CYP1A1, CYP1A2, CYP2B6, CYP2C8,
CYP2C9, CYP2C19, CYP2D6, CYP2J2, CYP3A4, UGT, SULT,
monoamine oxidase (MAO), FMO, CES, NAT1, and NAT2 activity
(Tables 2 and 3) as well as confirming the lack of quantifiable CYP2A6
activities. The overall highest specific activity was observed for MAO,
with CYP3A4 representing the P450 isoform with the highest activity.
Using CHIM, UGT2B7 and UGT2B17 activities further defined using
isoform selective substrates and inhibitors, with significant correlation
with protein abundance based on proteomics (Zhang et al., 2020). The
results with the P450 isoforms with the intact cell enteric models are
similar to those reported for intestinal microsomes (Clermont et al., 2019).
Gene Expression. Gene expression has been applied extensively to

identify metabolizing enzymes present in the human intestine, although
it is generally accepted that gene expression results do not always
correlate quantitatively with protein and activity (Hayashi et al., 2011).
CYP2E1, CYP3A4, and CYP3A5 mRNA were found to express in
gastric, duodenal, colonic, and rectal mucosa biopsies obtained during
routine gastro-colonoscopy in 27 patients (Thörn et al., 2005). An
independent finding with duodenum, jejunum (proximal and mid-
jejunum), and ileum (proximal and mid-ileum) regions demonstrated
expression of P450 mRNA ranked as follows: CYP3A4. CYP2C9.
CYP2C19 . CYP2J2 . CYP4F2 (Clermont et al., 2019). Gene
expression results with intestinal biopsies show that PXR, CYP3A4,
and villin 1 expression was decreased in the inflamed small intestinal
tissue in childrenwithCrohn’s disease (Shakhnovich et al., 2016), a result
consistent with that observed in hepatocytes (El-Kadi et al., 1997;
Assenat et al., 2004), suggesting that environment factors may have
effects on the expression of drug metabolizing enzymes in the human
small intestine via similar mechanisms as observed in the human liver.
Proteomics. Proteomics represent an important approach for the

quantification of protein expression. A recent proteomics study on drug
metabolizing enzymes in the human small intestinal mucosal tissues
from 26 patients undergoing intestinal surgery confirms the presence of
the various P450 (CYP2C9, CYP2C19, CYP2D6, CYP2J2, CYP3A4)
and UGT (UGT1A1, UGT1A3, UGT1A6, UGT2B7, UGT2B15) iso-
forms, with CYP3A4 and with UGT1A1 as the most abundant isoforms,
respectively (Couto et al., 2020).

Enteric Transporters

As an organ serving as a barrier between the environment and the
systemic circulation specializing in nutrient absorption, the intestinal
mucosal epithelium has evolved tight junctions to allow it to serve as
a protective barrier as well as various transporters for the uptake and
efflux of selective molecules that are relatively impermeable to the
mucosal membranes. These transporters are now known to be involved
in xenobiotic uptake and efflux of drug substances, environmental
pollutants, and ingredients of botanical origin.

Clinical Findings

GFJ and Orange Juice Inhibition of Enteric Transporters. The
significant role of enteric uptake and efflux transporters on drug absorption
is illustrated by the clinically significant effects of GFJ and orange juice on
the bioavailability of drugs that are uptake or efflux transporter substrates.
Transporters identified as being inhibited by GFJ are listed below.

P-glycloprotein. P-gp is a protein located on apical membranes of
enterocytes, serving to remove absorbed P-gp substrates from the
cytoplasm back to the intestinal lumen. P-gp thereby can play an
important role on the bioavailability of ingested xenobiotics. GFJ is now
known to be a potent inhibitor of P-gp and CYP3A4 and has been found

in clinical trials to enhance the systemic burden of orally administered
P-gp substrates (which in general are also CYP3A substrates) including
verapamil (Ho et al., 2000), diltiazem (Christensen et al., 2002), and
cyclosporin (Brunner et al., 2000). In general, it is believed that both
P-gp and CYP3A inhibition are key mechanisms for the GFJ effects.

OATP1A2. OATP1A2 is an uptake transporter located on the apical
membranes of enterocytes. Clinical evidence for the involvement of
OATP1A2 in drug uptake is provided by the observation that the plasma
concentration of orally administered aliskiren, a substrate of OATP1A2,
is significantly decreased upon coadministration with GFJ (Rebello
et al., 2012) or orange juice (Tapaninen et al., 2011).

In Vitro/Ex Vivo Findings

Activity. Although enteric uptake and efflux transporters have been
readily identified via gene expression and proteomics studies, at this
writing, there are no in vitro experimental systems with the complete
array of these transporters working in concert as in the human small
intestine in vivo. Especially lacking is an in vitro system with both
transporters and drug metabolizing enzymes allowing the evaluation of
transport-drug metabolism interplay akin to the use of primary human
hepatocytes for the evaluation of hepatic drug properties. Enteric P-gp
efflux is routinely evaluated using Caco-2 transwell cultures, with
known substrates and inhibitors showing the expected properties. Early
studies with grapefruit juice in Caco-2 cells were instrumental in the
development of the hypothesis that P-gp inhibition is a key mechanism
for GFJ-drug interactions using various P-gp substrates including vinblas-
tine (Takanaga et al., 1998), taninolol (de Castro et al., 2007), and digoxin
(Xu et al., 2003), and the identification of 69,79-epoxybergamottin, 69,79-
dihydroxybergamottin and naringenin as key P-gp inhibitors present in the
grapefruit juice (de Castro et al., 2007). Enteric transporters responsible for
drug uptake have also been identified using Caco-2 cells as exemplified by
the identification of organic cation transporter 1 (OCT1; SLC22A1),
plasma membrane monoamine transporter, serotonin reuptake transporter
(SLC6A4), and choline high-affinity transporter (SLC5A7) for metformin
uptake into the enterocytes (Han et al., 2015).
Gene Expression. Human small intestine has been reported to

express mRNA for numerous transporter genes. Hilgendorf et al. (2007)
reported that 26 of the 36 transporter genes evaluated were found in the
jejunum, with the highly expressed being dipeptide uptake carrier PepT1
and the ABC efflux transporters multidrug-resistance protein (MRP) 2,
MDR1, and BCRP and with undetectable bile salt export pump, sodium
(Na+) taurocholate co-transporting polypeptide, OCT2, and OAT1.
Drozdzik et al. (2019) compared human liver and intestinal tissues and
reported the expression of P-gp, MRP2, MRP3, MRP4, BCRP,
OATP2B1, OCT1, apical sodium-bile acid transporter, MCT1, and
peptide transporter (PEPT1) in the intestine, with hepatic gene
expression found to be substantially higher than enteric gene expression
for MRP2, OCT1, and OATP2B1. Kim et al. (2007) evaluated
transporter gene expression in human duodenum with the highly
expressed genes being peptide transporter HPT1; amino acid trans-
porters LAT3, 4F2HC, and PROT; nucleoside transporter CNT2;
organic cation transporter OCTN2; organic anion transporters NADC1,
NBC1, and SBC2; glucose transporters SGLT1 and GLUT5; multidrug
resistance-associated protein RHO12; fatty acid transporters FABP1 and
FABP2; and phosphate carrier PHC.
Proteomics. The protein abundance of enteric transporters can be

quantified by proteomic approaches. Besides the evaluation of gene
expression as described above, Kim et al. (2007) also evaluated liver and
intestinal expression of transporters based on protein abundance
detected by liquid chromatography–tandem mass spectrometry and
found similar relative abundance for protein and mRNA. A recent report
by Couto et al. (2020) quantified protein abundance of various
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transporters in human jejunum and ileum, showing similar expression
for the two regions of the small intestine, with MRP2, BCRP, OST-a,
OST2b, OATP1A1, and OATP2B1 being the most abundant and poor
correlation with mRNA expression except for P-gp and OST-a.

In Vitro Human Cell–Based Enteric Systems

As reviewed above, the intestinal mucosal epithelium is responsible
for absorption and metabolism of orally administered substances. An
ideal in vitro enteric experimental system is one that can model the

various events that occur in vivo including absorption, metabolism, and
efflux (Fig. 1) via the expression of in vivo levels of the key components
of the intestinal mucosal epithelium, including nuclear receptors, drug
metabolizing enzymes, and uptake and efflux transporters. For all the
key components to be functional and interactive as in vivo, intact cells
are required rather than cell-free systems such as cell homogenates,
postmitochondrial supernatants, and microsomes, as exemplified by
intact human hepatocytes versus cell-free hepatic systems (Li, 2005;
Hewitt et al., 2007). The currently available human cell–based enteric
systems are reviewed below.

Cell Lines

Caco-2

Findings with Caco-2 cells are reviewed here as research with this cell
line contributes extensively to our understanding of intestinal drug
absorption. Caco-2 cells were originally cloned from a human colorectal
adenocarcinoma culture and later found to differentiate to express
enterocyte properties upon prolonged (3–4 weeks) culturing as confluent
monolayer cells (Hidalgo et al., 1989). For the evaluation of intestinal
permeability, Caco-2 cells are cultured in transwell consisting of an
upper (apical) well with a semipermeable membrane modeling the
intestinal lumen and a lower (basolateral) well modeling the enteric
blood compartment connecting to the systemic circulation via the portal
circulatory system. Upon prolonged culturing (approximately 14–21
days), the Caco-2 cells form confluent, polarized monolayer cultures
with tight cell-cell junctions akin to those found in the intestinal mucosal
epithelium. The drug to be evaluated is added to the apical chamber and
its intestinal permeability is determined by quantifying its appearance in
the basolateral chamber. Caco-2 cells express both uptake and efflux
transporters, especially the key enteric efflux transporter P-gp (MDR1)
(Seithel et al., 2006). The strengths of the Caco-2 transwell system
include the well established experimental protocol with an extensive
database for myriads of drug substances showing relatively good
correlation with clinical oral availability. An important application of

TABLE 2

Drug metabolizing enzyme activities (picomoles per minute per milligram protein) in CHIM

Means and S.E.s (S.E.M.) of CHIM from four donors are shown. The results are derived from those previously published (Li et al., 2018a).

Drug metabolizing enzyme Substrate
Substrate
conc. (mM)

Marker metabolite Mean S.E.M.

CYP1A1 7-Ethoxyresozufin 20 Resozufin 0.26 0.13
CYP1A2 Phenacetin 100 Acetaminophen 3.34 0.89
CYP2A6 Coumarin 50 7-HC, 7-HC-sulfate, 7-HC-glucuronide NA NA
CYP2B6 Buproprion 500 Hydroxybuproprion 0.69 0.11
CYP2C8 Paclitaxel (taxol) 20 6a-Hydroxypaclitaxel 0.12 0.02
CYP2C9 Diclofenac 25 4-OH diclofenac 0.39 0.05
CYP2C19 S-mephenytoin 250 4-OH S-mephenytoin 0.86 0.26
CYP2D6 Dextromethorphan 15 Dextrophan 0.04 0.02
CYP2E1 Chlorzoxazone 250 6-OH chlorzoxazone 0.04 0.01
CYP2J2 Astemizole 50 O-demethyl astemizole 2.27 0.31
CYP3A4-1 Midazolam 20 1-Hydroxymidazolam 1.83 0.65
CYP3A4-2 Testosterone 200 6b-Hydroxytestosterone 24.82 5.47
ECOD 7-Ethoxycoumarin 100 7-HC, 7-HC-sulfate, 7-HC-glucuronide 0.81 0.24
UGT 7-Hydroxycoumarin 100 7-Hydroxycoumarin glucuronide 0.71 0.26
SULT 7-Hydroxycoumarin 100 7-Hydroxycoumarin sulfate 1.85 0.44
GST Acetaminophen 10 mM Acetaminophen glutathione 0.26 0.09
UGT Acetaminophen 10 mM Acetaminophen glucuronide 1.04 0.51
SULT Acetaminophen 10 mM Acetaminophen sulfate 4.52 0.84
FMO Benzydamine HCl 250 Benzydamine-N-oxide 8.11 0.99
MAO Kynuramine HBr 160 4-Hydroxyquinoline 317.09 80.12
AO Cabazeran 20 4-Hydroxycabazeran 0.02 0.00
NAT1 4-Aminobenzoic acid 200 N-acetyl-p-aminobenzoic acid 2.17 0.58
NAT2 Sulfamethazine 100 N-acetyl-sulfamethazine 1.46 0.16
CES2 Irinotecan 50 SN38 1.21 0.13

ECOD, 7-ethoxycoumarin O-deethylase; NA, no activity.

TABLE 3

A comparison of cryopreserved human enterocytes, MetMax cryopreserved human
enterocytes, and CHIM in the major drug metabolizing enzyme pathways

The specific activities for CHE, MMHE, and CHIM were extracted from previously published
data (Ho et al., 2017; Li et al., 2018a,b), with the data for CHE and MMHE converted from
picomoles per minute per million cells to picomoles per minute per milligram. The numbers of
donors for the calculation of mean activities were 25 (CHE), 10 (MMHE), and 3 (CHIM). CHE
and MMHE were prepared from the entire small intestines. CHIM were prepared from the
duodenum (D), jejunum (J), and ileum (I).

DME Pathway

Mean specific activity (pmol/min per milligram
protein)

CHE MMHE CHIM(D) CHIM(J) CHIM(I)

CYP2C9 Diclofenac
4-hydroxylation

0.6 2.9 2.1 5.3 5.2

CYP2C19 S-mephenytoin
4-hydroxylation

0.2 1.7 5.9 2.0 1.1

CYP2J2 Astemizole
O-demethylation

0.4 2.8 2.5 2.7 3.5

CYP3A Midazolam
19-hydroxylation

0.5 2.1 4.7 8.2 5.0

CYP3A Testosterone
6b-hydroxylation

10.0 73.5 91.3 86.5 42.4

UGT 7-Hydroxycoumarin
glucuronidation

7.2 137.5 7.2 4.0 11.3

SULT 7-Hydroxycoumarin
sulfation

2.9 6.5 3.2 1.2 0.4

CHE, cryopreserved human enterocyte; DME, Drug metabolizing enzyme; MMHE, MetMax
cryopreserved human enterocyte.
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the Caco-2 in vitro permeability assays is the Biopharmaceutics
Classification System and Biopharmaceutics Drug Disposition Classi-
fication System, in which drugs are classified based on solubility,
permeability, and metabolic clearance for drug development and
regulation (Benet, 2013). Caco-2 cells are reported to express low
levels of the key enteric drug metabolizing enzyme, CYP3A4 (Raeissi
et al., 1999; Fan et al., 2009; Sergent et al., 2009), which can be further
enhanced by transfection with CYP3A4 (Cummins et al., 2004) or
nuclear receptors (Korjamo et al., 2006), subcloning (Raeissi et al.,
1999), or the addition of CYP3A4 inducers in the culture medium (Aiba
et al., 2005). Caco-2 cells are considered an important in vitro
experimental system for the evaluation of oral drug permeability and
P-gp–mediated efflux, but not for enteric drug metabolism due to low
endogenous drug metabolizing enzyme activities.

Non–Caco-2 Cell Lines

Besides Caco-2 cells, cell lines used for the evaluation of intestinal
physiology and functions include those derived from human colon
carcinoma (HT29, HRT-18, HCT-8R, SW-480, and CO-115) (Zwei-
baum et al., 1983). As these cell lines provide information similar to that
obtained Caco-2 cells, they are not included in this review.

Stem Cell–Derived Models

Crypt Cell Enteric Systems. The surface area of the small intestine
is greatly increased due to the presence of villi, finger-like projections
into the intestinal lumen composed of enterocytes, and further increased
by the presence of microvilli, microscopic projections on the cell surface
of the enterocytes. The enterocytes of each of the villus originate from
the stem cells situated at the crypts (crypts of Lieberkuhn), the pits
between villi. Crypt cell–derived enterocytes continue to migrate and
mature up the villus and eventually enter into apoptosis and slough off
into the intestinal lumen at the tip. The journey from the crypt to
detachment from the tip takes approximately 4 to 5 days (Vachon et al.,
2000; van der Flier andClevers, 2009). Crypt cells from the human small

intestine have been successfully cultured as primary monolayer cells
(Browning and Trier, 1969; Panja, 2000; Benoit et al., 2010; Beaulieu
andMénard, 2012) as well as three-dimensional organoids (enteroids) as
an in vitro model for the evaluation of intestinal physiology and diseases
including the evaluation of major histocompatibility complex class II
regulation (Wang et al., 2018; Wosen et al., 2019), interaction of the
enterocytes with pathogenic microbiota (In et al., 2019; Stewart et al.,
2020), modeling infectious diarrheal diseases (Kovbasnjuk et al., 2013;
Foulke-Abel et al., 2014, 2016), elucidation of pathogenesis of intestinal
diseases such as inflammatory bowel disease (Rees et al., 2019) and
necrotizing enterocolitis (Senger et al., 2018; Ares et al., 2019), and the
elucidation of the cell and molecular pathways controlling stem cell
maturation into enterocytes (Das et al., 2015; Mahe et al., 2015;
Schilderink et al., 2016). As of this writing, there are no reports defining
the expression and activity of drug metabolizing enzymes in human
enteroids.
Induced Pluripotent Stem Cell Enteric Systems. Differentiation of

induced pluripotent stem cells (iPSCs) into organ-specific cell types
represents a significant scientific achievement with important medical
and biomedical applications including cell therapy and in vitro evalu-
ation of organ-specific biology and drug properties. Technological
advancement continues to be made to improve the efficiency of the
differentiation of iPSCs to various differentiated cell types including
three-dimensional beating cardiomyocytes (Sasano et al., 2020), hepa-
tocytes (Takayama et al., 2018), neurons (Cheng et al., 2017), and three-
dimensional kidney organoids (Takasato et al., 2016). Successful
differentiation of iPSCs into enterocytes has also been reported (Iwao
et al., 2014, 2015; Negoro et al., 2016; Blutt et al., 2017; Nadkarni et al.,
2017; Uchida et al., 2017; Kondo et al., 2018; Macedo et al., 2018; Lees
et al., 2019; Kondo et al., 2020), including three-dimensional enterocyte
organoids (Onozato et al., 2018). The efficiency of enterocyte differen-
tiation from human iPSCs was significantly improved by advancements
in culture medium formulation and differentiation protocol (Ozawa
et al., 2015). Enterocytes derived from iPSCs express key enterocyte

Fig. 1. Schematic representation of the enteric com-
partments and key events that occur upon oral
administration of xenobiotics (blue circles) as a blue-
print for a “complete” in vitro experimental system
for the evaluation of enteric drug metabolism. The
three major compartments are 1) the intestinal
lumen with the resident microbiome in an anaero-
bic atmosphere, 2) the mucosal epithelium, and 3)
the systemic circulation (blood). Not represented
are the mucus layer, nonenterocytes in the mucosa,
and blood vessels. Upon ingestion, the xenobiotics
are subjected to absorption into the intestinal mucosal
epithelium via concentration-dependent diffusion across
the enteric cells (transcellular diffusion; A) or between
enteric cells across cell-cell junctions (paracellular
diffusion; B). Xenobiotics that are not freely perme-
able to the plasma membranes can enter the enter-
ocytes via transporter-mediated uptake (C) and, upon
entering the enterocytes, may exit back to the lumen
or into the enteric circulation via transporter-mediated
transport. An orally administered xenobiotic is subjected
to metabolism by the drug metabolizing enzymes in the
brush border and enterocytes (D) upon entering the
mucosal epithelium or by intestinal microflora in
the intestinal lumen, with the subsequent metabolite
subjected to the various uptake and efflux pathways
followed by either entering the enteric blood circula-
tion or excretion via the colon (E). The schematic
illustrates the various processes required to be modeled
by an in vitro enteric experimental system as well as the
challenges of developing a single system to model all the
key processes.
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markers including PEPT1, MDR1, MRP3, OATP2B1, EAAC1, TAUT,
CYP3A4. CYP2E1, and CES2 (Ogaki et al., 2015). The iPSC enter-
ocytes represent a significant scientific achievement with promising
applications toward the evaluation of drug-inducedmucosal damage and
intestinal permeability (Ozawa et al., 2015; Kondo et al., 2018). A major
challenge with the iPSC enterocytes is that the drug metabolizing
enzyme activities are not fully characterized. A report on CYP3A
activity, for instance, shows extremely low activities using luciferin
isopropyl acetal as substrate, with luciferin formation detected only after
a prolonged incubation of 24 hours (Iwao et al., 2015). At the time of this
writing, iPSC enterocytes are not yet readily applicable for the
evaluation of the metabolic fate of orally administered drugs.

Primary Human Enteric Models

Intestinal Slices. Tissue slices, pioneered by Klaus Brendel,
represent an important approach for in vitro evaluation of organ-
specific drug properties, including drug metabolism, pharmacology,
and toxicity (Smith et al., 1985; Brendel et al., 1987). Intestinal slices
have been successfully applied in the evaluation of organ and species
differences in the metabolism of various drugs including cyclosporin A
and its analog (Vickers et al., 1992, 1995), lidocaine (De Kanter et al.,
2002), and quinidine (Li et al., 2017). Appropriately prepared human
intestinal slices without extensive tissue damage should retain all enteric
drug metabolizing enzyme activities and therefore be appropriate for use
in the evaluation of enteric drug metabolism. A practical drawback is
that fresh human intestine is required for the application of human
intestinal slices in experimentation.
Primary Enterocytes/Intestinal Mucosa Isolates. Successful cryo-

preservation of human hepatocytes to retain viability and various key
hepatic functions including transporter-mediated uptake and efflux, drug
metabolism, and response to enzyme and transporter inhibitors and
inducers is a major reason for this experimental system to be considered
the “gold standard” in vitro experimental system for the evaluation of
human hepatic drug metabolism (Li et al., 1997, 1999; Hewitt et al.,
2007; Li, 2007, 2008, 2010, 2014). We thereby apply this approach
toward the development of in vitro enteric models for drug metabolism
studies.
Below is a review of the three experimental systems developed

recently in our laboratory, namely, cryopreserved human enterocytes,
permeabilized cofactor-supplemented (MetMax) human enterocytes,
and cryopreserved human intestinal mucosa. The systems were de-
veloped using human small intestines procured but not used for
transplantation (provided to our laboratory by the International Institute
for the Advancement of Medicine, Edison, NJ). The schematic
illustrating the preparation of three enteric systems from the human
intestine is shown in Figure 2.

Cryopreserved human enterocytes. Cryopreserved human enter-
ocytes (Ho et al., 2017) were isolated via collagenase digestion of the
intestinal mucosa. The enterocytes were purified by density gradient
centrifugation and the purity of the cells have been validated via
morphology (showing homogenous cell size), enzyme activities (alka-
line phosphatase; P450), and gene expression (gene markers including
sucrose isomaltase; maltase glucoamylase). Upon recovery from
cryopreservation, the enterocytes retain over 50% viability and express
robust CYP2C9, CYP2C19, CYP2J2, CYP3A4, CYP2J2, UGT, and
SULT activities (Table 3). The cryopreserved enterocytes, as purified
cells, have been applied in a proteomics study (Zhang et al., 2018),
demonstrating correlation between protein abundance and activity of
CYP2B17 for enterocytes from 16 human donors. The robust drug
metabolizing enzyme activities of the cryopreserved human enterocytes
allow them to be used to evaluate the metabolic fate of orally
administered drugs. Challenges to cryopreserved human enterocytes

include the following: 1) Low yield: Due to the need to enzymatically
digest the intestinal mucosa to single cells and to purify the enterocytes
(via density gradient) from the nonenterocytes, the yield per human
intestine is no more than 500 million enterocytes from the entire human
small intestine including duodenum, jejunum, and ileum. 2) Limited
culture duration: As of this writing, we are only able to use the
enterocytes for short-term (up to 4 hours) incubation. The enterocytes do
not attach and cannot be maintained as long-term cultures. 3) Relatively
low drugmetabolizing enzyme activities: Although there are the expected
donor-to-donor differences, the cryopreserved enterocytes in general
have lower drug metabolizing enzyme activities than the MetMax
enterocytes and the cryopreserved intestinal mucosa described below.

Permeabilized cofactor-supplemented (MetMax) cryopreserved
human enterocytes. MetMax cryopreserved human enterocytes (Li
et al., 2018b) were prepared using a proprietary technology previously
developed for MetMax cryopreserved human hepatocytes (Li et al.,
2018c). MetMax cryopreserved human enterocytes are prepared via the
permeabilization of the plasma membrane of intact cryopreserved
human enterocytes. The major purpose of the modification of the intact
cell system is to enhance the ease of application: MetMax hepatocytes
and enterocytes can be stored at 280�C instead of with liquid nitrogen
and can be used immediately upon thawing without the relatively
cumbersome procedures of centrifugation andmicroscopic cell counting
and viability determination as required for conventional cryopreserved
cells. One advantage of MetMax metabolic systems is that the cells are
supplemented with phase I oxidation and phase II conjugation cofactors
for use in the evaluation of overall drug metabolism; thereby drug
metabolism pathways can be selected via the use of specific cofactor
mixtures. Another significant advantage over the intact cryopreserved
enterocytes is that the metabolic capacity ofMetMax cells is not affected
by the cytotoxicity of the test substance—a major complication with the
application of intact cell systems to evaluate drug metabolism at
cytotoxic drug concentrations. The MetMax cryopreserved human
enterocytes possess the same metabolizing enzymes as the intact
cryopreserved human enterocytes but with a higher activity (Table 3),
presumably due to the presence of optimal cofactor concentrations. The
MetMax human enterocytes have recently been applied toward the
evaluation of intrinsic enteric metabolic clearance of various model
compounds and compared with intrinsic hepatic clearance using
cryopreserved human hepatocytes (Wong et al., 2018), showing that
enteric metabolism can be higher or lower than hepatic metabolism for
various drugs. Enteric clearance was found to be lower than hepatic
clearance for the CYP3A4/5 substrates midazolam, amprenavir, and
loperamide and for procaine, a CES2 substrate. Enteric clearance was
found to be substantially higher than hepatic clearance for raloxifene,
a UGT activity substrate. Salbutamol, a SULT1A3 substrate, was
metabolized to the sulfate conjugate at a higher abundance than
hepatocytes. The MetMax human enterocytes represent a practical
in vitro enteric system for the evaluation of metabolic fate and enteric
drug-drug interactions of orally administered drugs and should be
applicable toward the evaluation of enteric metabolic fate and drug
interaction potential of botanical-based herbal medicine and health
supplements. A major challenge to the use of MetMax enterocytes is
that, due to the permeabilized plasma membrane, the experimental
system cannot be used for the evaluation of transporter-mediated uptake
and efflux.

Cryopreserved human intestinal mucosa. CHIM (Li et al., 2018a) are
prepared from the entire human mucosal epithelium without further cell
separation and purification and thereby contain all cell types in the
intestinal mucosa, representing a relatively complete experimental
model for the intestinal mucosa. The human intestinal mucosal
epithelium is detached from the intestinal lumen via collagenase
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digestion. The mucosa preparation is then homogenized with a loose-
fitting Dounce homogenizer to small, multicellular fragments that can be
readily delivered with a micropipette. CHIM have been shown to retain
robust drug metabolizing enzyme activities including those for
CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP2E1, CYP2J2, CYP3A4, UGT, SULT, FMO, AO,
CES2, NAT1, and NAT2 (Table 2). In our laboratory, we have applied
CHIM in the comparison of the cytotoxic potential of the anti-
inflammatory drugs naproxen and acetaminophen, with results showing
a higher cytotoxic potential of naproxen than acetaminophen (Li et al.,
2018a), a result similar to the comparative gastrointestinal toxicity of the
two nonsteroidal anti-inflammatory drugs in human in vivo, suggesting
that CHIM may be applied toward the evaluation of the enterotoxic
potential of orally administered drugs, especially for nonsteroidal anti-
inflammatory drugs (Willett et al., 1994; Dobrilla et al., 1997; Dajani,
1998; Bjarnason and Thjodleifsson, 1999; Tenenbaum, 1999; Goldstein,
2004; Goldstein and Cryer, 2015). We have demonstrated CYP3A4
induction by rifampin and vitamin D3 (Li et al., 2018a) and CYP3A
inhibition by grapefruit juice and several commercially available herbal
supplements (Loretz et al (in press)). CHIM therefore represents an
appropriate in vitro enteric experimental system for the evaluation of
enteric drug properties including drug metabolism, drug-drug interac-
tions, toxicity, and pharmacology. A major challenge with CHIM is that
enterocyte-specific events cannot be readily identified as this experi-
mental model consists of all cell types present in the intestinal mucosa.
A comparison of the procedures involved in the preparation of

cryopreserved enterocytes, MetMax cryopreserved enterocytes, and
CHIM is presented in Figure 2, and the procedures involved in the
application of these systems to evaluate drug metabolism and drug-drug

interactions are presented in Figure 3. A comparison of drug metabo-
lizing enzyme activities of the three systems is shown in Table 3. The
advantages and challenges for each category of the in vitro experimental
systems reviewed are shown in Table 4.

Discussion

The human small intestine serves as a gateway for orally administered
substances to enter the systemic circulation. Clinical findings, especially
those concerning the effect of grapefruit juice on oral bioavailability of
drugs that are substrates of CYP3A and the efflux transporter P-gp,
demonstrate clearly that enteric drug transporters and drug metabolizing
enzymes play an important role in bioavailability in additional to
permeability. Investigations on human enteric drug properties can be
greatly enhanced by human-based in vitro experimental systems
modeling key determinants of bioavailability, namely, concentration
diffusion via transcellular uptake across the enterocytes or paracellular
uptake through the cell-cell junctions, transporter-mediated uptake and
efflux, and enteric drug metabolism by the microflora in the intestinal
lumen and enterocytes (Fig. 1).
Caco-2 transwell culture is well recognized for its application in the

definition of intestinal permeability, including the evaluation of
transporter-mediated uptake and efflux. Caco-2 cells also represent an
important in vitro experimental system for the evaluation of transporter-
mediated drug-drug and food-drug interactions, especially those in-
volving P-gp inhibition. Successful transfection of Caco-2 with in-
dividual P450 isoforms, especially CYP3A4, allow this experimental
model to be used to define the transporter-drug metabolism interplay,
especially the interplay between CYP3A4 and P-gp. However, due to the

Fig. 2. Schematics for the isolation and cryo-
preservation of human enterocytes, MetMax
human enterocytes, and cryopreserved human
intestinal mucosa. The schematics are modified
from those previously published (Ho et al.,
2017; Li et al., 2018a,b). Collagen digestion of
the human intestinal lumen releases the in-
testinal mucosa, which are then further digested
with collagenase to yield single cell suspen-
sions of enterocytes, which are purified by
density gradient centrifugation, followed by
cryopreservation as cryopreserved human enter-
ocytes. For the preparation of MetMax human
enterocytes, the cryopreserved enterocytes are
recovered from cryopreservation, permeabilized,
and recryopreserved. Cryopreserved human in-
testinal mucosa are prepared by gently homog-
enizing the human intestinal mucosal epithelium
followed by cryopreservation.
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presence of incomplete drug metabolizing enzyme activities, Caco-2
cells are not appropriate for the definition of enteric drugmetabolism and
pharmacokinetic drug-drug interactions per se.
Stem cell–derived human in vitro models represent promising

approaches for the development of organ-specific cultures. In general,
most organ-specific markers can be expressed with the exception of drug
metabolizing enzymes, especially P450 isoforms. This is the major
challenge in the application of iPSC-derived human hepatocytes and
human enterocytes in the evaluation of events related to drug
metabolism, such as pharmacokinetic drug interactions, and metabolic
activation of prodrugs and protoxicants. Overcoming this challenge will
greatly enhance the utility of the iPSC-derived cells for drug metabolism
studies.
An ideal in vitro experimental model for the evaluation of human drug

metabolism should have drug metabolizing enzyme pathways with
activities similar to those in vivo. As of this writing, intestinal slices and
primary enterocyte isolates—cryopreserved human enterocytes, Met-
Max cryopreserved human enterocytes, and cryopreserved human
intestinal mucosa—represent appropriate experimental models for this
application. Drug properties that can be defined with these experimental
systems include enteric clearance, enteric metabolite profiling, enter-
otoxicity, and potential enteric drug-drug interactions. These models can
be readily applied toward the evaluation of natural products, with an
immediate important application in the definition of herb-drug inter-
actions. The cryopreserved enteric systems have the advantage of the
convenience of long-term storage in a laboratory and can be recovered
and used as needed for experimentation. Tissue slices require prepara-
tion on the day of use, which may be challenging for human small
intestines due to limited availability.
A relevant application of human enteric systems is the evaluation of

drug interaction potential of herbal products. Herbal products are
primarily delivered orally. Each herbal product has myriad components.
Enteric herbal-drug interactions may occur resulting from the activity
(e.g., CYP3A induction and inhibiton) of some of the components, either
individually or working synergistically. As observed for grapefruit juice,

these components may not enter into the portal circulation with plasma
concentrations that would elicit effects on hepatic drug metabolizing
enzymes. Due to their active drug metabolizing enzyme activities,
human intestinal slices, cryopreserved human enterocytes, MetMax
cryopreserved human enterocytes, and cryopreserved human intestinal
mucosa are promising experimental systems for the evaluation of natural
product-drug interactions.
As illustrated in Figure 1, an ideal in vitro enteric experimental

model would be one with the various intestinal compartments, with
enterocytes cultured as polarized cells with the apical side facing the
anaerobic intestinal lumen containing intestinal microbiome, and the
basal side adjacent to the blood, with the enterocytes exhibiting
barrier functions, uptake and efflux transporters, and drug metabo-
lizing enzymes. For enteric models derived from cell lines, crypt cells,
and stem cells, emphasis should be placed toward to the development
of models with adequate expression of enteric drug metabolizing
enzymes and transporters. In our laboratory, efforts will be focused on
the development of experimental approaches to evaluate uptake and
efflux transport to further extend the application of cryopreserved
human enterocytes and cryopreserved human intestinal mucosa in the
assessment of human enteric drug properties. An ultimate goal of our
laboratory is to develop approaches for the culturing of primary
human enterocytes to express the key features of the intestinal
mucosal epithelium in vivo, namely, tight cell-cell junctions, uptake
transporters, drug metabolizing enzymes, and efflux transporters.
Further improvements will be the inclusion of intestinal microbiome
and the engineering of a culture vessel with the lumen compartment
maintained in an anaerobic atmosphere with an aerobic atmosphere
for the cell and blood compartments. Before the achievement of this
ideal in vitro enteric system, one can apply each in vitro system to
obtain information for each key event, and integrate the various data
sets mathematically using various available physiologically based
pharmocokinetic and in vitro–in vivo correlation approaches to
provide an accurate assessment of the in vivo enteric properties of
an orally administered xenobiotic.

Fig. 3. Experimental procedures for the application of cryopreserved human enterocytes, CHIM, and MetMax cryopreserved human hepatocytes in the evaluation of the
effects of botanical extracts on enteric metabolism. Cryopreserved human enterocytes and CHIM are stored in liquid nitrogen, whereas MetMax is stored in a280�C freezer.
Upon thawing, cryopreserved human enterocytes and CHIM are added to a recovery medium (50 ml) and centrifuged at 100g for 10 minutes, with the pellet resuspended in
an incubation medium. Cryopreserved enterocytes are evaluated microscopically for viability (trypan blue exclusion) and cell concentration followed by adjustment of the
cell concentration to 2� the final incubation (e.g., 2 million cells/ml for a final concentration of 1 million cells/ml), whereas CHIM is cryopreserved at 2 mg protein/ml and is
resuspended in 1 ml of incubation to constitute a final protein concentration of 2 mg/ml, 2� the final concentration of 1 mg/ml. MetMax requires the least manipulation. It is
cryopreserved at a cell density of 2 million cells/ml so can be added directly as a 2� cell suspension to the reaction plate. In this example, the wells of a 96-well plate are first
loaded with medium containing 2� drug metabolizing enzyme substrate and botanical extract for the evaluation of potential P450 inhibition potential (e.g., using midazolam
and enzyme substrate). After addition of the enteric suspension, the reaction plate is returned to a cell culture incubator. At the end of the incubation period, acetonitrile
containing internal standard is added to each well followed by processing for liquid chromatography–tandem mass spectrometry (LC-MS/MS) quantification of metabolite
formation.
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