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ABSTRACT

Drugmetabolism is a biotransformation process of drugs, catalyzed
by drug-metabolizing enzymes (DMEs), including phase I DMEs and
phase II DMEs. The aberrant expression ofDMEsoccurs in the different
stages of cancer. It can contribute to the development of cancer and
lead to individual variations in drug response by affecting themetabolic
process of carcinogen and anticancer drugs. Apart from genetic
polymorphisms, which we know the most about, current evidence
indicates that epigenetic regulation is also central to the expression of
DMEs. This reviewsummarizesdifferentially expressedDMEs in cancer
and related epigenetic changes, including DNA methylation, histone
modification, and noncoding RNAs. Exploring the epigenetic regulation
of differentially expressed DMEs can provide a basis for implementing

individualized and rationalized medication. Meanwhile, it can promote
the development of new biomarkers and targets for the diagnosis,
treatment, and prognosis of cancer.

SIGNIFICANCE STATEMENT

This review summarizes the aberrant expression of DMEs in cancer
and the related epigenetic regulation of differentially expressed
DMEs. Exploring the epigenetic regulatory mechanism of DMEs in
cancer can help us to understand the role of DMEs in cancer
progression and chemoresistance. Also, it provides a basis for
developing newbiomarkers and targets for the diagnosis, treatment,
and prognosis of cancer.

Introduction

With an increasing incidence and mortality every year, cancer is
a major public problem worldwide and is one of the most deathful diseases
for both men and women. In the United States, prostate, lung, and
colorectal cancers are three major cancers in men, whereas the three most
common cancers in women are breast, lung, and colorectal cancers (Siegel
et al., 2019). The high cancer mortality rate is because of a combination of
factors, including the lack of reliable biomarkers for cancer diagnosis, drug
resistance, and deficiency in effective targeted treatment.
Drug metabolism is a biotransformation process of drugs that is

usually mediated by specific enzymes (Almazroo et al., 2017). The
drug-metabolizing pathways mediated by drug-metabolizing enzymes
(DMEs) are classified into phase I (functionalization) and phase II
(conjugation) reactions. Phase I reactions are the redox or hydrolysis
process of the drug to activate or detoxify it, which are mainly mediated

by phase I DMEs, including cytochrome P450 enzymes (P450s), Flavin-
containing monooxygenases, alcohol dehydrogenases (ADHs), and
aldehyde dehydrogenases. P450s comprise 70%–80% of all phase I
DMEs (Nebert and Dalton, 2006). The P450 superfamily can be divided
into two parts; CYP1-4 families are responsible for the biotransforma-
tion of most xenobiotic compounds, whereas CYP7-51 families are
mainly involved in the metabolism of endogenous substances in
a substrate-specific manner. Most P450s are located in the liver,
resulting in its strong detoxification effect. The most abundantly
expressed P450 isoforms in the liver are CYP3A4, 2C9, 2C8, 2E1,
and 1A2, whereas CYP2A6, 2D6, 2B6, 2C19, and 3A5 are less
abundant (Zanger and Schwab, 2013). P450s, including CYP2C9,
2C19, 3A4, and 3A5, are also distributed in mature intestinal epithelial
cells and are responsible for intestinal metabolism. Besides, some P450s
such as CYP1A1 and 1B1 mainly express extrahepatically, which are in
accordance with their metabolic roles of environmental pollutants and
endogenous compounds. In phase II reactions catalyzed by phase II
DMEs, the products from phase I pathways conjugate with a hydrophilic
endogenous compound. After conjugation, the substances are converted
into water-soluble products, which are easy to excrete. Most of phase II
DMEs consist of transferases, including UDP-glucuronosyltransferases
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(UGTs), sulfoctransferases (SULTs), glutathione S-transferases (GSTs),
and N-acetyltransferases (NATs) (Almazroo et al., 2017). Phase II
DMEs aremostly located in the liver and kidney.UGTs aremajormembers
of phase II DME, which mediate glucuronidation and elimination of
a variety of endogenous and exogenous substances and are considered
integral parts of detoxification enzymes in the human body (Pathania et al.,
2018). GSTs catalyze the conjugation reactions of nucleophilic glutathione
with various electronic xenobiotics, thus facilitating their elimination and
protecting cells from oxidative stress and other stimuli (Pljesa-Ercegovac
et al., 2018). The abnormal expression of DMEsmay lead to changes in the
metabolism of drugs or procarcinogens, thus causing diseases. It also brings
a considerable challenge for individualized treatment by affecting the
metabolic process and adverse effects.
Epigenetics is the study of heritable changes in gene expression

without any alternation in the DNA sequence. The main contents of
epigenetics include DNA methylation, histone modification, and non-
coding RNAs (ncRNAs) (Ivanov et al., 2012; Zanger et al., 2014). Many
factors can influence Epigenetic regulation, such as age, diet, lifestyle,
environment, and disease. Accumulating evidence demonstrates that
epigenetic modification changes a lot during tumorigenesis. DNA
methylation and histone modification patterns of some genes, as well
as the expression of ncRNAs, are expected to be biomarkers for early
detection, diagnosis, prognosis, drug disposition, and clinical response
of cancer (Chen et al., 2013; Xu et al., 2017; Tan et al., 2018). Reversing
gene expression in cancer by changing the abnormal epigenetic
modification also provides a new train of thought for the treatment of
cancer (Lachenmayer et al., 2012; Liu et al., 2016). This reviewwill give
a brief summary of abnormal expression of DMEs in cancer and
epigenetic regulation of differential expression of DMEs.

Differential Expression of DMEs in Cancer

P450s are themost abundant family of DMEs, expressing in almost all
organs. P450s are involved in the metabolic inactivation of endogenous
and exogenous compounds. However, in some instances, they also
mediate the metabolic activation of many carcinogens, which increase
the risk of cancer. CYP1A1 and CYP1B1 are causally implicated in
activation of procarcinogens such as polycyclic aromatic hydrocarbons
(PAHs). CYP2A6, CYP2A13, andCYP2E1 canmetabolize nitrosamines
into unstable metabolites, which can form diazonium ions. CYP2E1 is
also involved in the metabolic activation of tetrachloromethane, accom-
panying the production of free radicals (He and Feng, 2015). CYP3A4
participates in the metabolic activation and detoxification of hepatic
carcinogen aflatoxin B1 and is tightly related to the carcinogenesis of
hepatocellular carcinoma induced by aflatoxin B1 (Kamdem et al., 2006).
Emerging evidence indicates that DMEs play an essential role in the

formation, prevention, metastasis, and treatment of cancer (Alzahrani
and Rajendran, 2020). The high expression of some DMEs is commonly
considered a reason for carcinogenesis, metastasis, and chemoresistance
because of the increased activation of procarcinogens and inactivation of
anticancer drugs. For instance, the high expression of CYP1A1
promotes the activation of PAH, and the active metabolites covalently
bond to DNA and produce DNA adducts, which eventually leads to
DNA damage and tumorigenesis (Moorthy et al., 2015). The over-
expression of CYP2J2 in cancer cell lines brings on increased four
regioisomeric epoxyeicosatrienoic acids, which promote cancer metas-
tasis (Jiang et al., 2007). Besides, dihydropyrimidine dehydrogenase is
pivotal to the catabolism of Fluorouracil, so the upregulation of
dihydropyrimidine dehydrogenase can reduce the activity of cyclophos-
phamide (CTX) greatly (Pathania et al., 2018). The abnormal low
expression of DMEs is also a risk factor for tumor initiation. Some
DMEs act on carcinogen and play a detoxifying role, so the repression of

them cause tumor growth. For prodrugs that require DMEs for metabolic
activation, the repression of these DMEs can also cause drug resistance.
CTX, a broad-spectrum antineoplastic prodrug, is converted to its
active form by CYP2B6 and 3A4 (Lindley et al., 2002). Therefore, the
suppression of these P450s will materially affect the efficacy of CTX.
The aberrant expression of DMEs occurs in several cancer types,
including liver, prostate, and lung cancers. A summary of the differen-
tially expressed DMEs and their functions is listed in Table 1.
Liver Cancer. The liver is the most vital organ for drug biotransfor-

mation and is rich in DMEs. The expression and activity of DMEs can be
modulated by several factors, such as genetic polymorphisms and disease
states. It has been confirmed that the metabolism activities of P450
isoforms are severely impaired in patients with hepatocellular carcinoma
(HCC) by investigating the activities ofmajor P450s in microsomes from
normal and HCC liver tissue samples (Yan et al., 2015b).
Several studies represent a series of evidence implicating that the

expression of DMEs changed in HCC samples. Because of the decrease
of functional hepatocytes in HCC, most of the phase I and phase II
metabolizing enzymes are expressed at lower levels compared with
noncancerous liver tissues, including CYP1A2, CYP2A6, CYP2B6,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5,
CYP3A7, CYP4A11, NAT1, NAT2, UGT1A1, UGT1A4, UGT1A9,
and UGT2B7 (Chen et al., 2014; Lu et al., 2015; Yan et al., 2015a,b).
The silence of CYP2C19 expression in hepatitis B virus–infected
patients with HCC is reported to be regulated by e-box methylation of
the constitutive androstane receptor (Tang et al., 2016). The dysregu-
lation of DMEs in HCC is a pivotal reason for clinical chemotherapy
failure (Ul-Islam et al., 2018). The expression of DMEs is also
associated with the risk of liver cancer. CYP2E1 is related to the
activation of many toxicants. The high expression of CYP2E1 is
recognized as a risk factor for hepatic fibrosis (Guo et al., 2019). The
research revealed that hepatic fibrotic rats with higher CYP2E1 activity
develop a more severe form of HCC (Gao et al., 2018). Besides,
CYP2E1 also participates in the formation of etheno-DNA adducts,
which are potent carcinogens of liver cancer (Linhart et al., 2014). GSTs
are detoxifying enzymes and play a predominant role in cell protection.
A meta-analysis suggested that the inactivation of GSTP1 in HCC
correlates with the hepatocarcinogenesis (Li et al., 2018).
Lung Cancer. The lung is the main organ exposed to the inhaled

chemical toxicants and carcinogens, so the metabolizing enzymes that
participate in xenobiotic metabolism are essential for respiratory protection
(Leclerc et al., 2010). In some instances, they can convert procarcinogens to
active metabolites. These active intermediates can formDNA adducts, cause
gene mutation, and eventually lead to cancer (Castell et al., 2005). The
increase of CYP1A1 activity contributes to the metabolic activation and
carcinogenicity of PAHs. The researchers designed a liposome-based
CYP1A1 silencing nanomedicine, showing the potential for the treatment
of lung cancer (Zhang et al., 2019). CYP1B1 catalyzes the activation of
N-nitrosamines such as 4-methylnitrosamino-l-3-pyridyl-butanone (NNK).
NKK can also induce CYP1B1 expression, thus accelerating lung cancer
progression (Li et al., 2015b). GSTM2 is a detoxifying enzyme that
expressed a low level in lung cancer cells (Tang et al., 2011). The mRNA
expression level of DMEs in pulmonary parenchyma, bronchial mucosa,
and tumoral lung tissues were detected using a high throughput quantitative
real-time reverse-transcription polymerase chain reaction method. It is
demonstrated that ADH1B, CYP3A7, and CYP4B1 show decreased
mRNA levels in lung cancer (Leclerc et al., 2011).
Prostate Cancer. Prostate cancer is the most common cancer that

occurs in men, which is mostly androgen-dependent. Androgen
deprivation therapy (ADT) is still the first-line treatment of metastatic
prostate cancer (Litwin and Tan, 2017). UGT2B15 and UGT2B17 are
involved in androgen inactivation in prostate cells (Pâquet et al., 2012).
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TABLE 1

List of differentially expressed DMEs during carcinogenesis and their functions

Cancer type Variation Trend Functional Classification DMEs Roles in Cancer Reference

Liver cancer Upregulation Increased activation of
procarcinogens

CYP1B1 CYP1B1 increases the HCC risk and associated
with the activation of procarcinogens.

Su et al., 2007; Liu
et al., 2015

Downregulation Potential impact on
drug efficacy and

toxicity

CYP1A2, CYP2A6,
CYP2B6, CYP2C8,
CYP2C9, CYP2C19,
CYP2D6, CYP3A4,

CYP3A5

They are responsible for the metabolism of various
drugs. Because of the decrease of functional

hepatocytes, their expressions are downregulated,
which may reduce drug efficacy and increase drug

toxicity.

Chen et al., 2014; Yan
et al., 2015a; Hu et al.,

2019

Potential biomarkers
in cancer

CYP2E1 CYP2E1 activity decreases during
hepatocarcinogenesis, the specific mechanism

remains unknown.

Ho et al., 2004

CYP11A1 The loss of CYP11A1 contributes to abnormal
steroid synthesis.

Fan et al., 2016

Decreased inactivation
of carcinogens

CYP26A1 CYP26A1 participates in the inactivation of retinoic
acid, which may promote HCC progression.

Brodeur et al., 2019

NAT1, NAT2 They are responsible for the biotransformation of
most arylamine and hydrazine substrates.

Yu et al., 2000; Hu
et al., 2019

UGT1A1, UGT1A4,
UGT1A9, UGT2B7

These UGTs detoxify endogenous and
environmental carcinogens through glucuronidation

reaction.

Lu et al., 2015; Yan
et al., 2015b

GSTP1 GSTP1 is a detoxifying enzyme that protects cells
from various stimuli such as hypoxia and oxidative

stress.

Tchou et al., 2000; Li
et al., 2018

Lung cancer Upregulation Catabolism of
antiproliferation

compound

CYP24A1 CYP24A1 catabolizes the antiproliferation
compound 1, 25-D3.

Chen et al., 2011b

Increased activation of
procarcinogens

CYP1A1, CYP1B1 They catalyze the activation of carcinogens related
to tobacco use, such as NNK and PAHs.

Li et al., 2015b; Zhang
et al., 2019

CYP19A1 CYP19A1 is an estrogen synthesis enzyme that can
promote the steroidal growth-stimulatory pathway.

Weinberg et al., 2005

Downregulation Potential biomarkers
in cancer

ADH1B ADH1B is indispensable in the metabolism of fatty
acids, retinoid, and ethanol, which are associated

with lung cancer.

Mutka et al., 2012

CYP3A7, CYP4B1 The specific role is not clear. Leclerc et al., 2011
CYP11A1 The loss of CYP11A1 contributes to abnormal

steroid synthesis.
Fan et al., 2016

Decreased inactivation
of carcinogens

GST-M2 GST-M2 is a detoxifying enzyme that can protect
lung cells from DNA damage.

Tang et al., 2011

Prostate cancer Upregulation Increased activation of
procarcinogens

CYP1A1 CYP1A1 mediates the metabolic activation of
procarcinogens PAHs.

Mitsui et al., 2016

Elimination of
anticancer drugs

CYP1B1 CYP1B1 metabolizes estradiol to carcinogen
4-hydroxy estradiol and is related to the resistance

to docetaxel.

Pastina et al., 2010

Potential biomarkers
in cancer

UGT2B17 UGT2B17 is responsible for the elimination of the
inactive metabolites androstane-3a-diol and

androsterone. It is also associated with metastasis.

Pâquet et al., 2012;
Lévesque et al., 2020

Downregulation Decreased inactivation
of carcinogens

CYP3A4, CYP2B6 They are key inactivators of testosterone which are
significantly related to the development of prostate

cancer.

Kumagai et al., 2007;
Fujimura et al., 2009

GSTP1 The loss of GSTP1 leads to an increase of
intracellular reactive oxygen species (ROS) and

DNA damage; promotes the occurrence of cancer.

Hokaiwado et al., 2008;
Kanwal et al., 2014

UGT2B15 UGT2B15 is a negatively regulated target gene in
castration-resistant prostate cancer (CRPC),

inactivating the active androgen
dihydrotestosterone in prostate cells.

Pâquet et al., 2012

Potential biomarkers
in cancer

CYP11A1 The loss of CYP11A1 contributes to abnormal
steroid synthesis.

Fan et al., 2016

Breast cancer Upregulation Increased activation of
procarcinogens

CYP1B1 CYP1B1 metabolizes estradiol to carcinogen
4-hydroxy estradiol, resulting in DNA adducts.

Gajjar et al., 2012

Promote tumor growth CYP4Z1 CYP4Z1 is a fatty acid hydroxylase that promotes
angiogenesis and the development of breast cancer.

Yu et al., 2012

Downregulation Decreased inactivation
of carcinogens

GSTP1 GSTP1 detoxifies carcinogens and cytotoxic drugs. Schnekenburger et al.,
2014

Kidney cancer Downregulation Potential impact on
drug efficacy and

toxicity

UGT1A9, UGT2B7 UGT1A9 and UGT2B7 are responsible for the
clearance of drugs such as propofol and sorafenib in

the kidney.

Margaillan et al., 2015

Esophageal
cancer

Upregulation Promote tumor growth CYP2C9 CYP2C9 promotes the proliferation of early
esophageal cancer.

Schmelzle et al., 2011

Ovarian cancer Upregulation Increased activation of
procarcinogens

CYP1B1 CYP1B1 metabolizes estradiol to carcinogen
4-hydroxy estradiol.

Gajjar et al., 2012

Elimination of
anticancer drugs

GSTP1 GSTP1 is closely related to the chemoresistance of
platinum drugs.

Sawers et al., 2014

(continued )
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Some studies have found that UGT2B17 deletion polymorphism is related
to prostate cancer susceptibility (Karypidis et al., 2008). UGT2B15 and
UGT2B17 differentially expressed during prostate cancer progression
(Pâquet et al., 2012). Besides, P450s are key inactivators of testosterone in
the prostate. It was reported that decreased CYP2B6 and CYP3A4 are
significantly related to the development and poor prognosis of prostate
cancer (Kumagai et al., 2007; Fujimura et al., 2009). After continuous
ADT, these cancers may become androgen-independent and resistant to
ADT. In this process, the expression of GST-p increases, indicating its role
in the development of prostate cancer (Hokaiwado et al., 2008).
Kidney Cancer. In the kidney, UGT expression is related to the

clearance of many xenobiotics. A proteomic study reported that UGT1A6,
UGT1A9, and UGT2B7 are the most abundant UGT subtypes in the
kidney. The mRNA and protein levels of UGT1A9 and UGT2B7 are
significantly downregulated in tumor kidneys, accompanied by de-
creased glucuronidation capacity (Margaillan et al., 2015).
Esophageal Cancer. A study revealed the potential clinical relevance

between the expression of CYP2C9 and esophageal cancer. The
expression of CYP2C9 in esophageal adenocarcinoma and adjacent
esophageal mucosa was higher compared with esophageal squamous
cell carcinoma. CYP2C9 is likely to promote esophageal cancer
proliferation (Schmelzle et al., 2011).
Other Hormone-Induced Cancers. Some DMEs are relevant to the

metabolism of hormones, so the aberrant expression of these DMEs may
occur in hormone-induced cancers. CYP1B1 is mainly responsible for
the metabolism of estradiol, forming carcinogens 4-hydroxy estradiol.
The enrichment of 4-hydroxy estradiol in breast, ovarian, and prostate is
considered an increased risk for developing cancers (Yager, 2000).
CYP1B1 is causally implicated in the carcinogenesis of breast cancer,
ovarian cancer, prostate cancer, and lung cancer. CYP1B1 expression
increases in estrogen-related tumors but is very low in normal tissues
(McFadyen et al., 1999; Carnell et al., 2004; Gajjar et al., 2012). The
CYP11 subfamily is responsible for steroid biosynthesis (Thomas, 2007).
The downregulation of CYP11A1 in cancers may affect the biosynthesis of
steroids. Data obtained from The Cancer Gene Atlas database revealed that
CYP11A1 is significantly downregulated in six cancers types, including
colon adenocarcinoma, renal clear cell carcinoma, hepatocellular carci-
noma, lung squamous cell carcinoma, prostate adenocarcinoma, and
uterine corpus endometrial carcinoma (Fan et al., 2016).

Epigenetic Regulation of Differentially Expressed DMEs in Cancer

DNA Methylation

DNA methylation is a dynamic process involving methylation and
demethylation. DNA methyltransferase (DNMT) 1, 3A, and 3B can

transfer a methyl group to the cytosine at cytosine-phosphoric acid-
guanine (CpG) motif to form 5-methylcytosine. Passive or active DNA
demethylation can reverse DNA methylation patterns. Passive DNA
demethylation is likely to be because of the reduction or inhibition of
DNAmethyltransferase, so the DNAmethylation status cannot maintain
during DNA replication (Piccolo and Fisher, 2014). Active DNA
demethylation is mainly mediated by activation-induced cytidine de-
aminase/apolipoprotein B mRNA-editing enzyme complex or ten-eleven
translocation (Tet) enzymes Tet1, Tet2, and Tet3. Methyl-CpG binding
proteins can recognize 5-methylcytosine, which has a high affinity for 5-
methylcytosine. Methyl-CpG binding proteins cause chromatin structure
modification and remodeling by recruiting corepressor complexes such as
histone deacetylase (HDAC) tomethylated promoter regions, thus reducing
gene expression (Clouaire and Stancheva, 2008). DNA methylation plays
a critical role in gene expression and chromatin remodeling. It can repress
gene expression by changing the chromatin structure directly, hindering
transcription factor, or coactivator binding to the promoter region of the
target gene (Moore et al., 2013).
It has been widely reported that DNA methylation is involved in the

regulation of differentially expressed DMEs in tumors. In tumors, the
methylation status of CpG islands in the gene promoter regions is closely
related to the expression level of the target gene. Abnormal DNA
methylation in tumors and normal tissues can be detected in body fluids
such as blood and urine, indicating that DNA methylation is expected to
be a biomarker for liquid biopsy, which can be used for diagnosis and
monitoring of cancer. Also, the abnormal expression of DNA methyl-
transferase may occur in the process of cancer development and affect
the expression level of DMEs, thus promoting the development of
cancer. Therefore, DNA methyltransferase is a potential therapeutic
target of cancer. Changing the expression of DNA methyltransferase
may reverse the expression of DMEs in cancer. DNA methylation
inhibitor decitabine (5-aza-2’-deoxycytidine) has been approved by the
US Food and Drug Administration for the treatment of hematologic
malignancies (Nie et al., 2014).
Besides, considering the importance of DMEs toward personalized

medicine, Genome-wide integrative analysis was used to analyze the
DNA methylation and mRNA expression profiles of human tissues and
hepatoma cells, which revealed that some DME genes, including
CYP1A2, CYP2C19, CYP2D6, GSTA4, GSTM5, GSTT1, and SULT1A1
are regulated by DNA methylation, potentially leading to individual
differences in drug metabolism (Habano et al., 2015).

Hypomethylation Status of DME Genes in Cancer

DNAhypomethylation is always considered themain reason for high-
level gene expression. Some DMEs are responsible for the metabolic

TABLE 1—Continued

Cancer type Variation Trend Functional Classification DMEs Roles in Cancer Reference

Colorectal
cancer

Upregulation Increased activation of
procarcinogens

CYP1A1 CYP1A1 participates in the metabolic activation of
PAHs in tobacco and increases the risk of colorectal

cancer.

Slattery et al., 2004

CYP2E1 CYP2E1 is involved in the metabolic activation of
potent carcinogens azoxymethane and

methylazoxymethanol.

Sohn et al., 2001

Bladder cancer Upregulation Increased activation of
procarcinogens

CYP4B1 CYP4B1 metabolic activates the carcinogen
2-aminofluorene.

Imaoka et al., 2000

Downregulation Potential biomarkers
in cancer

CYP1A1, CYP1B1 Metabolomic profiling revealed their deficiency in
bladder cancer; the specific mechanism remains

unknown.

Putluri et al., 2011

Hematologic
malignancy

Upregulation Increased activation of
procarcinogens

CYP2J2 CYP2J2 converts arachidonic acid to carcinogen
epoxyeicosatrienoic acids and promotes cancer

growth.

Chen et al., 2011a
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activation of environmental toxicants and carcinogens; their high
expression can contribute to cancer progression. Meanwhile, some
DMEs can metabolically inactivate anticancer drugs, thus causing
chemoresistance (Fig. 1).
CYP1A1 can activate multiple carcinogens and therefore promote

cancer progression. The expression andmethylation status were detected
in prostate cancer cells. CYP1A1 expression is higher in cancer cells
compared with normal cells. When treated with decitabine, the expression
of CYP1A1 becomemuch higher (Mitsui et al., 2016). In breast cancer cell
line MCF-7 and T47D, estrogen receptor a can repress the expression of
CYP1A1 through recruiting DNMT3b(Marques et al., 2013).
Aberrant DNA methylation status of CYP1B1 has been observed in

several hormone-related cancer types, such as prostate cancer and breast
cancer. The methylation status of CYP1B1 was analyzed in prostate
cancer tissues and benign prostatic status hyperplasia samples; the
results revealed that methylation of its promoter/enhancer region was
much lower in prostate cancer, which may play a role in cancer
development. It is well known that CYP1B1 is induced by the aryl
hydrocarbon receptor (AhR) and AhR nuclear translocator directly. When
treated with DNA methyltransferase inhibitor, 5-Aza-dC, no cell line
showed a significant change of the expression of AhR and AhR nuclear
translocator, indicating that CpGmethylation ofCYP1B1 promoter is key to
its expression (Tokizane et al., 2005).Moreover, considering the function of
metabolizing estradiol and tamoxifen, CYP1B1 hypomethylation is per-
ceived as a carcinogenic factor as well as predictive markers for response to
tamoxifen therapy in breast cancer (Widschwendter et al., 2004).
UGT1A1 is a critical phase II metabolizing enzyme involved in the

metabolic inactivation of SN38, the active metabolite of irinotecan.
Irinotecan is a first-line drug for the treatment of metastatic colorectal
cancer (Hahn et al., 2019), so the hypomethylation status of UGT1A1
may accelerate the inactivation of irinotecan to reduce the efficacy of
irinotecan. Bisulfite sequencing of UGT1A1 observed the abnormal
methylation modification of specific CpG islands in UGT1A1-negative
cells such as HCT-116, HCT-15, and COLO-320DM, whereas in HT-
29, HT-115, and LOVO cell lines with high expression of UGT1A1,
these sites were in the hypomethylation states. Methylation of the
UGT1A1 promoter can repress its transcriptional activity completely. A
combination of DNA methyltransferase inhibitor and histone deacety-
lase inhibitor can reverse the hypermethylation and restore the
expression of UGT1A1 in UGT1A1 negative cells (Gagnon et al.,
2006). Another research investigated the correlation between UGT1A1
expression and its sensitivity to irinotecan in seven colorectal cell
lines. The cell lines with low UGT1A1 expression are more sensitive
to irinotecan. The methylation status of UGT1A1 can obviously affect
the cytotoxicity of irinotecan (Xie et al., 2014).

Hypermethylation Status of DME Genes in Cancer

In general, DNA hypermethylation suppresses the expression of
DMEs, which are involved in detoxification. It is causally implicated
in the occurrence and development of cancer (Fig. 1).
As we mentioned before, CYP1B1 hypomethylation was observed in

several hormone-related cancers. However, the hypermethylation status
of the CYP1B1 promoter can be found in colon cancer (Habano et al.,
2009), bladder cancer (Putluri et al., 2011), and adolescents with acute
lymphocytic leukemia(DiNardo et al., 2013), indicating a worse out-
come. Metabolic profiling revealed that CYP1B1 hypermethylation
could also be found in body fluids such as urine, suggesting it might be
a potential biomarker for distinguishing benign bladder and bladder
cancer (Putluri et al., 2011).
GSTs are significant phase II detoxification enzymes. GST-M2,

a member of GST subfamily m-class GST, has special clinical features.

The activity of GST-M2 in human normal embryonic lung fibroblast
MRC-5 is significantly higher than in lung cancer cell line H1355. The
catalytic activity of GST-M2 is closely related to DNA damage induced
by carcinogens (Weng et al., 2005). The low expression of GST-M2 in
lung cancer cell lines can be reversed after treatment with DNMT
inhibitor decitabine. The CpG islands on the GST-M2 promoter are
highly methylated. It is demonstrated that in lung cancer tissues, the low
expression of GST-M2 is accompanied by high expression of DNMT3b,
indicating a close relationship between DNA methylation and GST-M2
expression. GST-M2 expression in lung cancer cell lines can be induced
after silencing DNMT3b. Consequently, the expression of GST-M2 in
lung cancer cells is negatively regulated by DNA methylation. CpG
hypermethylation of GST-M2 blocks the binding of transcription factor
specificity protein toGST-M2 promoter, thus inhibiting the transcription
of GST-M2 (Tang et al., 2011). GST-M2 hypermethylation is also
investigated in Barrett’s adenocarcinoma and pancreatic cancers (Peng
et al., 2009; Tan et al., 2009).
GSTP1, the gene encoding the p-class GST, is repressed in multiple

cancer subtypes, including solid tumors such as prostate (Henrique and
Jerónimo, 2004), breast (Fang et al., 2015), liver (Revill et al., 2013),
lung cancers (Gao et al., 2009), and hematologic malignancies, because
of CpG island hypermethylation in the promoter regions. The aberrant
methylation status of the GSTP1 promoter is regarded as a specific
marker for prostate cancer and can be found in at least 90% of prostate
cancers (Nakayama et al., 2004). It has been reported that GSTP1
promoter methylation may increase the incidence and recurrence of
prostate cancer (Maldonado et al., 2014; Zhou et al., 2019). Besides,
GSTP1 CpG island hypermethylation can also be detected in the urine
and plasma from patients with prostate cancer. This means that GSTP1
CpG island hypermethylation can be used as a biomarker for the
diagnosis and prognosis of prostate cancer. In a recent study, a sensitive
methylation-specific polymerase chain reaction assay was applied to
detect the serum-free methylated GSTP1 DNA in patients with
metastatic castration-resistant prostate cancer. It has been demonstrated
that the expression of serum-free methylatedGSTP1 is closely correlated
with overall survival and response to docetaxel in metastatic castration-
resistant prostate cancer (Mahon et al., 2019).
NAT1 is a phase II metabolizing enzyme that is responsible for the

biotransformation of most arylamine and hydrazine substrates. Several
studies have shown that NAT1 can influence the development and drug
resistance of breast cancer (Rodrigues-Lima et al., 2010). The frequency
of NAT1 methylation was significantly lower in the control group
compared with the tamoxifen-resistant breast cancer group. The hyper-
methylation of the NAT1 gene may affect the initiation of tamoxifen
resistance in breast cancer (Kim et al., 2010).

Histone Modification

Histones are the basic structural proteins of chromatin. Histone
octamer consists of two copies each of histones H2A, H2B, H3, and H4,
which are wrapped with 147 base pairs of DNA. Histone is a basic
protein because it contains a high proportion of basic amino acids such
as lysine and arginine. The N terminal of histone is dissociated from the
nucleosome, so the specific amino acid residues can be modified by
methylation, acetylation, phosphorylation, ubiquitination, and similar
processes. The chromatin structure changed after modification, thus
regulating the gene transcription (Luger et al., 2012). Aberrant histone
modifications may lead to abnormal gene expression in cancer. Histone
acetylation neutralizes its positive charge, thereby opening the chroma-
tin structure and making it easier for transcription factors to bind to their
target genes, so histone acetylation is always regarded as a transcriptional
activation signal (Haberland et al., 2009). HDACs are potential targets
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for cancer therapy, and the US Food and Drug Administration has
approved several HDAC inhibitors such as Vorinostat and Belinostat
(PXD101) for the treatment of cutaneous T-cell lymphoma and
peripheral T-cell lymphoma. Furthermore, bromodomain-containing
proteins recognize the acetylated lysine residues of histone, which play
an essential role in the process of cancer development. Thus, designing
small-molecule bromodomain-containing protein inhibitors may be
a promising strategy (Fu et al., 2015; Yu et al., 2015b). Histone
methylation exhibits distinct functions of gene activation or repression
with different modification sites (H3K4, H3K9, H3K27, etc.) and
methylation states (mono-/di-/tri-methylation) (Barski et al., 2007).
Enhancer of zeste homolog 2 is a methyltransferase that can add methyl
groups to histone H3 at lysine 27 (H3K27), thus repressing gene
transcription. Disruptor of telomeric silencing 1–like methyltransferase
is responsible for H3K79methylation. Now the inhibitors of enhancer of
zeste homolog 2 and disruptor of telomeric silencing 1–like are in
clinical trials and show potent anticancer capacity (Mohammad et al.,
2019).
Although emerging evidence suggests that these histone modifica-

tions affect the expression of DMEs in the nontumor environment (Tang
and Chen, 2015; Yan et al., 2017), the regulation of histone modification
of DMEs in the tumor has not yet been reported. Considering the
extensive aberrant histone modifications in cancer and their essential
roles, we need to clarify the relationship between histone modification
and differential expression patterns of DMEs to provide references to
personalized medicine.
1a, 25-dihydroxyvitaminD3 (1, 25-D3), the active form of vitaminD,

is antiproliferative in lung adenocarcinoma. 1, 25-D3 is catabolized by
CYP24A1, which is overexpressed in multiple types of cancer.
CYP24A1 mRNA was elevated 8- to 50-fold in lung adenocarcinoma
compared with normal tissues. The overexpression of CYP24A1 is
much more significant in poorly differentiated cancers, accompanied by
lower survival rates (Chen et al., 2011b). In lung adenocarcinoma cells,
combined treatment with DNMT inhibitor 5-Aza-dC and HDAC
inhibitor Trichostatin A (TSA) increases the CYP24A1 expression and
enzyme affinity to its substrate 1, 25-D3. The chromatin immunopre-
cipitation coupled by quantitative polymerase chain reaction (ChIP-
qPCR) assay revealed that TSA enriched H3K4me2 and H3K9ac and

simultaneously decreased H3K9me2 at the CYP24A1 promoter, thus
activating the transcriptional expression of CYP24A1 (Ramnath et al.,
2014). In human neuroblastoma cells, histone deacetylase inhibitors
such as valproic acid and TSA affect the expression of CYP1A1,
CYP1B1, and CYP3A4 (H�reba�cková et al., 2009). Another study found
that inhibition of the b-catenin signaling pathway induced the CYP1A1
expression through histone H2AX phosphorylation (Kabátková et al.,
2015).

Noncoding RNA

The term “noncoding RNA” refers to RNA molecules that are
transcribed from genome but not translated into proteins, including
microRNA (miRNA), long noncoding RNA (lncRNA), and circular
RNA (circRNA) (Klingenberg et al., 2017). They can give full play to
the function of gene regulation at the transcriptional and post-
transcriptional levels. Mature miRNAs are single-stranded ncRNAs of
22–25 nucleotides in length, which are derived from primary miRNA
transcripts (Li and Rana, 2014). The mature miRNAmust assemble into
the RNA-induced silencing complex to target its complementary
mRNAs for translational repression or target gene degradation (Li
et al., 2014). lncRNAs are transcripts longer than 200 nucleotides that
have little or no protein-coding capacity, and they are transcribed by
RNA polymerase II, capped, spliced, and polyadenylated. lncRNAs can
regulate gene expression at different levels, including chromatin
modification, transcription, and post-transcriptional processing (Mercer
et al., 2009). Emerging evidence indicates the translation potential of
lncRNAs with open reading frames, which has been overlooked over
a long period (Matsumoto et al., 2017). These polypeptides encoded by
lncRNAs may also play a crucial role in cancer occurrence and
development, it was reported that a peptide encoded by lncRNA
HOXB-AS3 suppresses colon cancer growth through a complex
regulatory mechanism (Huang et al., 2017). circRNAs are a novel type
of RNA molecule that are different from traditional linear RNAs. They
have a closed-loop structure and exist in a lot of eukaryotic tran-
scriptomes (Qu et al., 2015). Most circRNAs are composed of exon
sequences, which are conserved in different species and have regulatory
potency (Memczak et al., 2013). circRNAs are not sensitive to nuclease,
which makes them more stable than linear RNA, owing to their closed-

Fig. 1. The methylation status of DME genes contributes to cancer progression and chemoresistance. White dots represent cytosine, and black dots represent 5-methyl
cytosine.
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loop structures. Therefore, circRNAs have more potential to become
biomarkers in the screening of cancer (Li et al., 2015a,c). The most
common regulatory mechanism of lncRNA and circRNA is acting as the
“sponge” of miRNA, which can regulate the target gene through
changing miRNA expression (Wang et al., 2010; Yu et al., 2016).
With the development of RNASequencing, researchers have obtained

the expression profiles of miRNA, lncRNA, and circRNA in different
types of cancer and their matched paracancerous normal tissues, such as
liver cancer, kidney cancer, and breast cancer. They screen the ncRNAs,
which are closely related to the occurrence, development, and prognosis
of cancer, providing a new biomarker or target for the diagnosis or
treatment of cancer (Xie et al., 2013; Li et al., 2015a,c). At present, the
regulation of ncRNA on differentially expressed DMEs in the tumor is
still limited in the field of miRNA. The regulation of lncRNA and
circRNA needs to be further explored.
Phase I DMEs. Abnormal miRNA expression occurs in lung cancer

tissues compared with normal tissues. To clarify the functions of these
miRNA, researchers established a tobacco-induced cancer rat model to
investigate the relationship between miRNA and the occurrence of early
lung cancer. It has been demonstrated that carcinogen could reduce the
expression of miR-101, miR-126*, miR-199, and miR-34. These
miRNAs overlap with previously published reports on altered miRNA
expression in human lung cancer samples, suggesting these four
miRNAs may be involved in lung cancer development. Treatment with
NNK inhibits miR-126* but induces CYP2A3 expression, an essential
enzyme to activate NNK, indicating that miR-126* has the possibility of
regulating CYP2A3 (Kalscheuer et al., 2008).
The low expression level of miR-27b may contribute to the high

expression of CYP1B1 in the mammary gland(Tsuchiya et al., 2006),
thus causing the accumulation of 4-hydroxy estradiol and increasing the
risk of breast cancer. In HCC, a report has established a negative
correlation between the level of hsa-miR-128-3p, hsa-miR-143-3p,
and CYP2C9 expression based on in silico analysis and a series of
biochemical assays (Yu et al., 2015a).
Recently, RNA-interfering miRNA materials have been designed to

interfere with the expression of DMEs. It was reported that a newly
established bioengineered RNA agent (BERA), BERA/miR-27b-3p, can
be processed into mature miR-27b-3p in human cells, thus decreasing
the expression and metabolic capability of CYP3A4 (Li et al., 2019b).
Phase II DMEs. In prostate cancer, miRNA is causally implicated in

post-transcriptional regulation of UGTs. Androgen plays a vital role
in the development of prostate cancer. UGT2B15, UGT2B17, and
UGT2B28 mediate the biotransformation of androgen in vivo. Reporter
gene assays validated that miR-376c, miR-409, and miR-494 could
interact with UGT2B17, and miR-331-5p and miR-376c could bind to
UGT2B15 (Margaillan et al., 2016). miR-376c can effectively repress
UGT2B15 and UGT2B17 expression, accompanied by a consequent
decrease in dihydrotestosterone glucuronidation. The expression of
UGT2B15 andUGT2B17 are negatively related tomiR-376c expression
but positively correlated to metastasis rate in advanced prostate cancer
(Wijayakumara et al., 2015). miR-331-5p is also confirmed to reduce the
UGT2B15 mRNA level by targeting its 39-UTR via canonical and
noncanonical pairing (Wijayakumara et al., 2018).
Furthermore, UGT2A1 is responsible for the detoxification of PAHs

found in cigarette smoke and exhibits high expression in the lung. A
recent study suggested that the UGT2A1 expression level can be
regulated by both miR-196a-5p and miR-196b-5p (Sutliff et al., 2019).
In breast cancer, miR-1290 is confirmed to target the 39-UTR of

NAT1 directly, which is positively correlated with the overall survival of
patients with breast cancer (Endo et al., 2014). The expression of NAT10
is dysregulated in colorectal cancer, which is validated to be inhibited by
miR-7616-5p (Liu et al., 2019). Published studies have identified that

hsa-miR-486-5p and hsa-miR-495-3p decrease the mRNA stability of
phase II detoxification enzymes SULT2A1 in HepG2 human hepato-
cellular carcinoma cell line (Li et al., 2019a).

Summary and Prospect

DMEs are implicated in the metabolic activation or inactivation of
xenobiotics, which are strongly associated with the occurrence and
development of cancer. During the development of cancer, the
expression level of DMEs changes, thus reducing the detoxification
ability of DMEs and promoting cancer progression. In the treatment of
cancer, the differentially expressed DMEs may influence the efficacy of
anticancer drugs or cause adverse effects by affecting the metabolic
process of these drugs.
Epigenetics, especially DNA methylation, plays a critical role in the

regulation of differentially expressed DMEs in tumors. DNA methyl-
transferases are expected to be the target of antitumor drugs. Aberrant
DNAmethylation modifications are also promising biomarkers in liquid
biopsy. A growing body of research suggests that histone modification
and ncRNA can regulate the expression of DMEs under nontumor
conditions. Histone modification and miRNA have already been proven
to participate in the transcriptional regulation of differentially expressed
DMEs in lung, liver, prostate, and breast cancer, and the regulatory
mechanism in other cancer types needs to be further studied.
Emerging studies showed that the cross talk among various epigenetic

mechanisms is noteworthy and needs to be further explored in the
regulation of DMEs. Histonemodification andDNAmethylation always
work in concert to regulate gene expression. Methyl-CpG binding
proteins recruit protein complex, which contains HDACs and/or histone
methyltransferases, inducing the formation of repressive chromatin
circumstance (Nan et al., 1998; Fuks et al., 2003). In some instances, the
administration of HDAC inhibitors such as TSA and valproic acid
reverse the hypermethylation status of certain genes (Ou et al., 2007; Gu
et al., 2012). The combination of DNMT and HDAC inhibitors always
led to better efficacy, which is considered a good strategy. Histone
methylation displays closer ties with DNA methylation. S-adenosyl-l-
methionine is a universal methyl group donor, so the content of
S-adenosyl-l-methionine in cells affects the methylation status of
DNA and histone simultaneously. Furthermore, the cross talk between
DNA and histone methylation can be mediated by the interaction
between DNA and histone methyltransferases (Cedar and Bergman,
2009). DNA hypermethylation status, increased repressive histone
modification H3k9me2, decreased H3K9ac, and H3K4me2 modifica-
tion at CYP24A1 promoter contribute to the suppression of CYP24A1 in
prostate cancer. Combined treatment with DNMT inhibitor DAC and
HDAC inhibitor TSA upregulated the CYP24A1 expression, accompa-
nied by increased recruitment of vitamin D receptor to CYP24A1
promoter (Luo et al., 2010). The interplay between miRNA and DNA
methylation in gene regulation is also widely reported. The transcription
and synthesis of miRNAs can be repressed by DNA methylation, and
certain miRNAs can change the DNA methylation status of the gene by
targeting DNMTs in return (Fuso et al., 2020). In colorectal cancer,
inflammatory factor cytokine interleukin-6 was reported to promote
DNMT1 nuclear translocation, and then DNMT1 caused DNA meth-
ylation of CpG islands near miR27b, thus suppressing its transcription.
Because of the reduced degradation bymiR27b, CYP1B1 showed a high
expression level (Patel et al., 2014).
Also, further research is required to clarify if the epigenetic

regulations of DMEs contribute to the metabolism of endogenous
substrates during cancer progression and its downstream impacts.
Elucidating the epigenetic regulatory mechanism of DMEs in tumors
can provide a basis for implementing individualized and rationalized
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medication as well as developing new biomarkers and targets for the
diagnosis, treatment, and prognosis of cancer.
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