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ABSTRACT

Individual variations in xenobiotic metabolism affect the sensitivity
to diseases. In this study, the impacts of sex, age, and race/ethnicity
on drug-processing genes and nuclear factor erythroid 2–related
factor 2 (NRF2) genes in human livers were examined via Quanti-
Gene multiplex suspension array (226 samples) and quantitative
polymerase chain reaction (qPCR) (247 samples) to profile the
expression of nuclear receptors, cytochrome P450s, conjugation
enzymes, transporters, bile acid metabolism, and NRF2-regulated
genes. Sex differences were found in expression of about half of the
genes, but in general the differences were not large. For example,
females had higher transcript levels of catalase, glutamate-cysteine
ligase catalytic subunit (GCLC), heme oxygenase 1 (HO-1), Kelch-
like ECH-associated protein 1 (KEAP1), superoxide dismutase 1, and
thioredoxin reductase-1 comparedwithmales via qPCR. Therewere
no apparent differences due to age, except children had higher
glutamate-cysteine ligase modifier subunit (GCLM) and elderly had
higher multidrug resistance protein 3. African Americans had lower
expression of farnesoid X receptor (FXR) but higher expression of
HO-1, Caucasians had higher expression of organic anion trans-
porter 2, and Hispanics had higher expression of FXR, SULT2A1,
small heterodimer partner, and bile salt export pump. An examina-
tion of 34 diseased and control human liver samples showed that

compared with disease-free livers, fibrotic livers had higher NAD(P)
H-quinone oxidoreductase 1 (NQO1), GCLC, GCLM, and NRF2;
hepatocellular carcinoma had higher transcript levels of NQO1 and
KEAP1; and steatotic livers had lower GCLC, GCLM, and HO-1
expression. In summary, in drug-processing gene and NRF2 genes,
sex differences were themajor findings, and there were no apparent
age differences, and race/ethnicity differences occurred for a few
genes. These descriptive findings could add to our understanding of
the sex-, age-, and race/ethnicity-dependent differences in drug-
processing genes as well as NRF2 genes in normal and diseased
human livers.

SIGNIFICANCE STATEMENT

In human liver drug-processing and nuclear factor erythroid
2–related factor 2 genes, sex differences were the main finding.
There were no apparent differences due to age, except children had
higher glutamate-cysteine ligase modifier subunit, and elderly had
higher multidrug resistance protein 3. African Americans had lower
expression of farnesoid X receptor (FXR) but higher expression of
heme oxygenase 1, Caucasians had higher expression of organic
anion transporter 2, and Hispanics had higher expression of FXR,
small heterodimer partner, SULT2A1, and bile salt export pump.

Introduction

Individual variations in xenobiotic metabolism can affect the
effectiveness of drugs in various diseases. Drug-processing genes can
include uptake transporters and phase-I and phase-II enzymes as well as
efflux transporters that are responsible for the absorption, distribution,
metabolism, and excretion of xenobiotics. The constitutive and/or
inducible expression of these drug-processing genes is regulated by

nuclear receptors and other transcription factors (Aleksunes and
Klaassen, 2012; Cui and Klaassen, 2016). Among sex, age, and race/
ethnicity differences in physiologic functions, the adaptive responses
mediated via the nuclear factor erythroid 2–related factor 2 (NRF2)/ARE
antioxidant pathway are of great interest (Pomatto et al., 2018).
Nuclear receptor–mediated regulation of xenobiotic-processing genes

involves the aryl hydrocarbon receptor (AHR), constitutive androstane
receptor (CAR, NR1I3), pregnane X receptor (PXR, NR1I2), and
peroxisome proliferator–activated receptor a (PPARa, NR1C1)
(Aleksunes and Klaassen, 2012). Liver X receptor a (LXRa, NR1H3),
retinoid X receptor a (RXRa, NR2B1), and hepatocyte nuclear factors
(HNF1a andHNF4a) also participate in the regulation of phase 1, phase
2, and transporters (Aleksunes et al., 2009).
Farnesoid X receptor (FXR, NR1H4) and small heterodimer

partner (SHP, NROB2) regulate bile acid homeostasis (Cui et al.,
2012; Liu et al., 2014). FXR signaling and gut microbiota have been
linked to fatty liver disease and hepatocellular carcinoma (Klaassen
and Cui, 2015; Chiang and Ferrell, 2018). Bile acid receptors (FXR,
SHP, and TGR5) regulate not only bile acid synthesis and transport
but also energy metabolism (Klaassen and Cui, 2015). Alteration
of bile acid homeostasis contributes to cholestatic liver diseases,
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inflammatory diseases in the digestive system, obesity, and diabetes
(Chiang and Ferrell, 2018).
Transporters influence the disposition of xenobiotics resulting in

individual variations in the accumulation of xenobitics in the body. The
hepatic uptake transporters include organic anion–transporting peptides
OATP1A2 (SLCO1A2), OATP1B1, OATP1B3, and OATP2B1, whereas
the main efflux transporters are multidrug resistance protein (MRP)
families MRP2 (ABCC2), MRP3, and MRP4. Transporters of the solute
carrier family (SLC) comprise a variety of proteins, including organic
cation transporter OCT1 (SLC22A1), organic cation/carnitine trans-
porters OCTN1 (SLC22A5), organic anion transporter (OAT) OAT2
(SLC22A7), multidrug and toxin extrusion (MATE) transporter
MATE1 (SLC47A1), and equilibrative nucleoside transporter (ENT) ENT1
(SLC29A1). The ATP-binding cassette superfamily, such as ABCA1,
ABCG5, ABCG8, and ATP8B1, are responsible for the unidirec-
tional export of endogenous and exogenous substances (Klaassen
and Aleksunes, 2010). The function of hepatic transport systems can
be affected by interspecies differences and interindividual variabil-
ity (polymorphism) and have been altered with the therapeutic
effects and toxicity of drugs (Pan, 2019).
NRF2 regulates the antioxidant system of cells (Klaassen and

Reisman, 2010). The NRF2-regulated redox homeostasis includes the
glutathione system, such as glutamate-cysteine ligase, catalytic and
modifiers subunits [GCLC, glutamate-cysteine ligase modifier subunit
(GCLM)], glutathione reductase (GSR), and glutathione peroxidase 1
(GPX1) as well as various antioxidant enzymes, such as catalase (CAT),
superoxide dismutase (SOD) 1, and heme oxygenase 1 (HO-1) to
maintain cellular redox balance (Truong et al., 2018). NAD(P)H-quinone
oxidoreductase 1 (NQO1), peroxiredoxin-1 (PRDX1) (Kobayashi and
Yamamoto, 2006), glutaredoxin (GLRX) (Holmgren et al., 2005),
thioredoxin (TXN) and thioredoxin reductase-1 (TXNRD1) (Lu and
Holmgren, 2014), and epoxide hydrolase 1 (EH1) (Cornejo et al.,
2013) play important roles in cellular detoxifying systems and are
also under NRF2 regulation. NRF2 activation induces a number of
phase-II drug-metabolizing enzymes directly as well as metabolic
activities downstream of Aryl hydrocarbon receptor (Yeager et al.,
2009; Wu et al., 2012) or CAR activation (Rooney et al., 2019). The
nonenzymatic thiol-rich protein metallothionein (MT) and its regulators
(MTF-1, MT-1A, MT-2A) play important roles in heavy metal de-
toxification (Klaassen et al., 1999) and are also under influence of Nrf2
(Gu et al., 2017). Thus, the Nrf2/ARE signaling is considered as
a primary defense system against xenobiotic insults.
To better understand sex-, age-, and race/ethnicity-dependent differ-

ences in drug-processing and NRF2 genes, this study used 247 human
liver samples to profile the constitutive expression of nuclear receptors
and cytochrome P450 as well as bile acid metabolism–, transporter-, and
NRF2-regulated genes using QuantiGene multiplex suspension array
and real-time reverse-transcription quantitative polymerase chain re-
action (RT-qPCR). An additional 34 samples from patients who were

diseased were examined for the expression of NRF2-regulated genes in
steatosis, fibrosis, and hepatocellular carcinoma (HCC) via real-time
RT-qPCR.

Materials and Methods

Normal Liver Sample Demographics. Normal human liver samples (n =
247) were purchased from Xenotech LCC (Lenexa, KS). The demographics are
shown in Table 1, including sex (42.5% are females), age (0–86 years old), and
race/ethnicity (8.09% African Americans, 7.28% Hispanics, 83.0% Caucasians).
This study received Institutional Review Board exemption status by the
University of Kansas Medical Center Human Subject Committee because the
specimens were obtained commercially and not identified to the authors of
the study.

Diseased Liver Samples from University of Kansas Liver Bank. Thirty-
four diseased human liver samples (8 fibrosis, 8 steatosis, 8 HCC, and 10 normal
controls) were obtained from the University of Kansas Liver Bank (University of
Kansas Medical Center, Kansas City, KS). All liver samples were provided with
the approval of the Institutional Review Board.

QuantiGene Multiplex Suspension Array. Multiplex suspension array was
performed on 226 human sample analysis (excluding children samples) as
described (Renaud et al., 2011). Total RNA was isolated using TRIzol reagent
(Invitrogen, Carlsbad, CA). RNA quality was determined by the 260:280 ratio
(.1.8) and by formaldehyde-agarose gel electrophoresis for visualization of 18S
and 28S ribosomal RNA bands. Individual bead-based oligonucleotide probe sets
specific for each human gene examined were developed by Panomics, Inc.
(Fremont, CA). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA
expression was used as an internal control. Samples were analyzed using a Bio-
Plex System array reader with Luminex 100 xMAP technology (multianalyte
profiling beads). Briefly, 3mg of total RNAwas incubated overnight at 53�Cwith
X-MAP beads containing oligonucleotide capture probes, label extenders, and
blockers. The beads and bound target RNA were washed and subsequently
incubated with streptavidin-conjugated R-phycoerythrin (Affymetrix/Panomics,
Santa Clara, CA). Fluorescence was analyzed using a Bio-Plex reader and
analyzed with Bio-Plex DataManager Software (BioRad, Hercules, CA). All data
were standardized to the internal control GAPDH.

Real-Time RT-qPCR Analysis. Total RNA was extracted with Trizol and
purified with RNeasyMini Kit (Qiagen, Valencia, CA). RNAquality and quantity
were determined via spectrophotometry, with 260:280 ratio .1.8. One micro-
gram of total RNA was reverse-transcribed with Multiscript reverse transcriptase
using High Capacity RT kits fromApplied Biosystems (Foster City, CA). Primers
were designedwith Primer3 software (version 4). The Power SYBRGreenMaster
Mix (Applied Biosystems) was used for real-time RT-qPCR analysis. Differences
in gene expression between groups were calculated using cycle threshold (Ct)
values, which were calculated by the 22DDCt method and normalized with
GAPDH and Ribosomal Protein L13a of the same sample (averaged).

Principle Component Analysis. Principle Component Analysis (PCA) was
performed via Partek Flow (Partek Inc., St. Louis, MO). The qPCR results of 14
genes in 247 samples were imported into the Partek Flow Server with sex, age,
and race as contributors, respectively. The feature contributors were set equally,
normalization was set by log base, and images of PCAwere generated to visualize
the distribution differences.

Statistical Analysis. Data were expressed as relative mRNA levels (% of
housekeeping genes) and calculated as mean 6 S.E.M. One-way ANOVA was

ABBREVIATIONS: ABC, ATP-binding cassette; AHR, aryl hydrocarbon receptor; ARE, antioxidant responsive element; BSEP, bile salt
export pump; CAR, constitutive androstane receptor; CAT, catalase; CREBBPCREB-, binding protein; ECH Enoyl-coenzyme A (CoA) hydratases
1 EH1, epoxide hydrolase 1; ENT, equilibrative nucleoside transporter; FGF, fibroblast growth factor; FXR, farnesoid X receptor; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier
subunit; GLRX, glutaredoxin; GPX1, glutathione peroxidase 1; GSR, glutathione reductase; HCC, hepatocellular carcinoma; HNF, hepatocyte
nuclear factor; HO-1, heme oxygenase 1; KEAP1, Kelch-like ECH-associated protein 1; LXRa, liver X receptor a; MATE, multidrug and toxin
extrusion; MDR, Multi-Drug Resistance Gene; ME1, malic enzyme 1; MRP, multidrug resistance protein; MT, metallothionein; MTF-1, metal-
responsive transcription factor-1; NQO1, NAD(P)H-quinone oxidoreductase 1; NR, nuclear receptor; NRF2, nuclear factor erythroid 2–related
factor 2; OAT, organic anion transporter; OATP, organic anion–transporting peptide; OCT, organic cation transporter; OCTN, organic cation/
carnitine transporter; OGG1, 8-oxoguanine glycosylase; PCA, Principle Component Analysis; PPARa, peroxisome proliferator–activated receptor a;
PRDX1, peroxiredoxin-1; PXR, pregnane X receptor; qPCR, quantitative polymerase chain reaction; RT-qPCR, reverse-transcription quantitative
polymerase chain reaction; RXRa, retinoid X receptor a; SHP, small heterodimer partner; SLC, solute carrier; SOD, superoxide dismutase; TXN,
thioredoxin; TXNRD1, thioredoxin reductase-1.
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used for statistical analysis via SigmaPlot v.14. Dunn’s multiple-range test was
used for comparisons. The significance level was set at P , 0.05 in all cases.

Results

QuantiGene Multiplex Suspension Array Analysis

Nuclear Receptor and Drug Metabolism Genes. Figure 1 shows
sex-, age-, and race/ethnicity-dependent expression of nuclear receptor,
phase-1, and phase-2 metabolism genes. Compared with males, females
had lower expression of AHR, CYP1A2, CAR, FXR (NR1I2), PPARa, liver
receptor homolog-1 (NR5A2), LXRa (NR1H3), RXRa (NR2B1), HNF1a,
HNF4a, and carnitine palmitoyltransferase 1A except for higher expres-
sion of CREBBP andME1. There were no differences in the expression of
CYP2B6, CYP3A4, PAPPSS2, CEBPb, and FABP1 between sexes. There
were no age differences. African Americans had lower FXR expression,
whereas Hispanics had higher FXR expression as compared with
Caucasians. Hispanics also had higher expression of SULT2A1 compared
with Caucasians.
Bile Acid Metabolism and Homeostasis Genes. Figure 2 shows

sex-, age-, and race/ethnicity-dependent expression of genes involved
in bile acid metabolism and homeostasis. Females had lower expression
of CYP27A1, CYP7B1, CYP39A1, FXR (NR1H4), SHP (NROB2), and
FGF19 than males; there were no differences in the expression of
CYP7A1, CYP8B1, FGF receptor 4, BSEP (ABCB11), FATP5 (SLC27A5),
TAUT (SLC6A6), BAAT, and APEX1 between sexes. There were no age
differences due to age for the expression of bile acid metabolism genes.
Compared with Caucasians, Hispanics had higher expression of SHP
and BSEP.
Transporter Genes. Figure 3 shows sex-, age-, and race/ethnicity-

dependent expression of transporter genes. Males had lower expression
of OATP1B1 (SLCO1A2), OAT2 (SLC22A7), OCTN2 (SLC22A5),
MRP4 (ABCC4), MDR1 (ABCB1), MDR2/3 (ABCB4), ABCG8,
ABCA1, MATE1 (SLC47A1), and ENT1 (SLC29A1) than females;
there were no differences in the expression of OATP1B3 (SLCO1B3),
OATP2B1(SLCO2B1), OCT1 (SLC22A1), MRP2 (ABCC2), MRP3
(ABCC3), MRP6 (ABCC6), ABCG5, ATP8B1, and breast cancer
resistance protein (ABCG2) between the sexes. There were no differ-
ences between sexes in expression of transporter genes, except elderly
had higher expression of MRP3. Compared with Caucasians, both
African Americans and Hispanics had lower expression of OAT2.
NRF2 Targeted Genes. Figure 4 shows a heat map of the relative

transcript levels of the 21 NRF2-regulated genes examined by the
QuantiGene multiplex suspension array and normalized with GAPDH on
the plate. The lowest expressionwasNQO1, and the highest expressionwas
PRDX1. The data were sorted by age: adult (21–59 years old) and elderly
(.60 years old) for females (upper panel) and males (lower panel).
Expression levels in females appeared to be greater compared with males.
Females had higher expression of Kelch-like ECH-associated protein 1
(KEAP1), GSR, GCLC, GPX1, NQO2, CAT, EH1, GLRX, H6PD, HO-1,
OGG1, PRDX1, SLC3A1, SLC3A9, ciliary rootlet coiled-coil, rootletin

familymember 2, TXNRD1, andTXN (asterisk label byANOVAP, 0.05),
and there were no differences in expression between sexes for GCLM and
NQO1.Males had higher expression ofNRF2. Therewere no age differences
in NRF2 genes as determined by one-way ANOVA. The expressions of
some of the genes were subsequently verified using RT-qPCR.

Real-Time RT-qPCR Analyses of NRF2 Genes

One-Way ANOVA Comparisons. Sex differences in the ex-
pression of NRF2-relevant genes via qPCR are shown in Fig. 5A.

Fig. 1. Sex, age, and race/ethnicity differences in nuclear receptor and drug
metabolism genes. Total liver RNA was isolated from 226 human livers and
subjected to QuantiGene multiplex suspension arrays. The results were normalized
with GAPDH on the plate. (A) Sex, (B) age, and (C) race/ethnicity differences. The
values of #CREBBP and #ME1 were multiplied by 10 to allow the expression to be
visible. Data are mean 6 S.E.M.; *significantly different from male, adult, and
Caucasians, respectively, by one-way ANOVA at P , 0.05.

TABLE 1

Sample demographics

Sex Male n = 142
Female n = 105

Age Children (0–18) n = 13
Adult (19–59) n = 170
Elderly (60 and over) n = 63

Race/ethnicity African American n = 20
Asian American n = 4
Caucasian n = 205
Hispanic n = 18
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Similar to QuantiGene multiplex suspension array (Fig. 4), females
had higher expression of 6 of 14 genes examined than males: KEAP1
(18.5 vs. 15.8), GCLC (54.4 vs. 41.5), HO-1 (68.8 vs. 50.0), CAT
(133 vs. 90.6), SOD1 (301 vs. 125), and TXNRD1 (133 vs. 86.2).
There were no statistical differences in expression between sexes for
NRF2, GCLM, MT-1A, MT-2A, MTF-1, and GSTP1.

Age differences in NRF2-regulated gene expression via qPCR are
shown in Fig. 5B. Similar to QuantiGene multiplex suspension array
(Fig. 4), there were no differences among age groups except for the
slightly higherGCLM in children as comparedwith adult levels (34.1 vs.
24.8 of housekeeping genes), whereas no significant differences were
observed in the expression of other genes.
Race/ethnic differences in NRF2-regulated gene expression via qPCR

are shown in Fig. 5C. There were no differences in NRF2-regulated gene
expression noted among race/ethnic groups except a slightly higher
expression of HO-1 (82 vs. 57) in African Americans as compared with
Caucasians.

Fig. 2. Sex, age, and race/ethnicity differences in bile acid metabolism genes.
Total liver RNA was isolated from 226 human livers and subjected to
QuantiGene multiplex suspension arrays. The results were normalized with
GAPDH on the plate. (A) Sex, (B) age, and (C) race/ethnicity differences.
The values of #CYP7A1, #FGF19, and #TAUT were multiplied by 10 to allow
the expression to be visible. Data are mean 6 S.E.M.; *significantly differ-
ent from male, adult, and Caucasians, respectively, by one-way ANOVA at
P , 0.05.

Fig. 3. Sex, age, and race/ethnicity differences in transporter genes. Total liver RNA was
isolated from 226 human livers and subjected to QuantiGene multiplex suspension arrays.
The results were normalized with GAPDH on the plate. (A) Sex, (B) age, and (C) race/
ethnicity differences. The values of #OATP1B1 and #MRP4 were multiplied by 10 to
allow the expression to be visible. Data are mean6 S.E.M.; *significantly different from
male, adult, and Caucasians, respectively, by one-way ANOVA at P , 0.05.
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Principle Component Analysis. The 247 human samples were then
analyzed by PCA (Fig. 6). The PCA value is 51.26%, with PC1 =
27.56%, PC2 = 13.80%, and PC3 = 9.91%. Distribution by sex, age, and
race/ethnicity is shown in Fig. 6, A–C, respectively. There were more
outliers in the female group. There was no clear separation between any
of the groups.

Nrf2-Regulated Gene Expression in Diseased Liver Samples

Diseased liver samples were examined using RT-qPCR for the
expression of seven Nrf2-related genes (Fig. 7). In steatosis liver
samples, a lower expression of GCLC (50%), GCLM (15%), and HO-1
(5%) was observed. In eight HCC samples, there was a higher
expression of NQO1 (2.8-fold) and KEAP1 (1.2-fold) and a lower
expression ofHO-1 (20%). In liver fibrosis samples, a higher expression
ofNRF2 (3.5-fold),NQO1 (5.2-fold),GCLC (4.3-fold), andKEAP1 (11-
fold) was observed, whereas the expression of PRDX1was lower (27%)
compared with 10 normal liver samples.

Discussion

The present study used 247 normal human liver samples to profile
drug-processing genes and NRF2-regulated genes to identify differences
in expression with regard to sex, age, and race/ethnicity. Sex differences
were found in the expression of about half of the genes. There were no
apparent differences due to age, except children had higher GCLM, and
elderly had higher MRP3. African Americans had lower expression of
FXR but higher expression of HO-1, Caucasians had higher expression
ofOAT2, and Hispanics had higher expression of FXR, SULT2A1, SHP,

and BSEP. The study on 34 disease-related human liver samples showed
alterations in NRF2 gene expression with disease: fibrotic livers had
higher NQO1, GCLC, GCLM, and NRF2; HCC had higher NQO1 and
KEAP1; and steatotic livers had lower GCLC, GCLM, and HO-1. The
information obtained, although descriptive, adds to our understanding of
individual variation.
Sex Differences in Drug Processing and NRF2 Genes. In the

present study, sex differences in drug-processing genes and NRF2 genes
were major findings. Sex differences in pharmacokinetics and pharma-
codynamics of many drugs contribute to individual differences in drug
efficacy and toxicity (Waxman and Holloway, 2009). The sex-
dependent variations in humans are much less as compared with rodents
(rats and mice) (Waxman and O’Connor, 2006).
Males had higher expression of AHR, CYP1A2, CAR, FXR, PPARa,

liver receptor homolog-1, LXRa, RXRa, HNF1a, HNF4a, and carnitine
palmitoyltransferase 1A, whereas females had higher expression of
CREBBP andME1 (Fig. 1). RXRa is an obligate partner for many nuclear
receptors and considered a master regulator of hepatic gene expression.
RXRa binding showsmore unique genes inmales than in females with sex
dimorphism; for example, Cyp7b1 is male-dominant, whereas Me1 is
female-dominant (Kosters et al., 2013). In human liver microsomes, there
were no significant differences in 10 CYP activities between sexes except
a higher CYP1A2 inmales; however, in cytoperserved human hepatocytes,
higher CYP3A4 mRNA was observed (Parkinson et al., 2004). Sex
dimorphism in CYP2B6 activity was not evident, but CYP2B6 poly-
morphisms are associated with CYP2B6 activity (Zanger et al., 2005; Ilic
et al., 2013). In human liver tissues, males also had higher expression of
CYP1A2, HNF4a, and START5b (Waxman and Holloway, 2009).

Fig. 4. NRF2-regulated gene expression in
human livers. Total RNA was extracted from
226 human livers (no children samples) and
subjected to QuantiGene multiplex suspension
array for 21 NRF2-regulated genes. The 1–100
scale indicates that the more abundant the
transcript level the deeper the color. The values
of #KEAP1, #NQO1, #OGG1, #SLC3A1,
#SLC7A9, and #XRCC2 were multiplied 10-
fold to allow the expression to be comparable
with the other genes. Data are mean 6 S.E.M.;
*significantly different from male by one-way
ANOVA at P , 0.05.
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In bile acid homeostasis genes, males had higher expression of
CYP27A1, CYP7B1, CYP39A1, FXR, SHP, and FGF19 (Fig. 2). Some
of this sex dimorphism is in agreement with the literature [e.g., males had
higher expression ofCYP7B1 (Leuenberger et al., 2009)], whereas some
is in contridiction with the literature [e.g., females had higher not lower
expression of CYP27A1 and CYP39A1 (Yang et al., 2012)]; the
discrepancy requires further studies.
In transporters, females had higherOATP1B1, OAT2,OCTN2,MRP4,

MDR1, MDR2/3, ABCG8, ABCA1, MATE1, and ENT (Fig. 3). In one
study, OATP1B1 expression was higher in females (Yang et al., 2012),
but in another study there were no sex differences in OATP1B1,
OATP1B3, and OATP2B1 proteins (Badée et al., 2015). Female rats
have higher expression of Mrp3 (Fuscoe et al., 2020). In the liver of
Oatp1a4-null mice, females had higher expression of Mrp4, Mdr1a,
Mdr1b, and Abcg5 (Zhang et al., 2013). In a review on sex differences in
transporters, female mice had higher hepatic expression of Oatp1a4,
Oatp2b1, Mrp3, and Mate1 (Klaassen and Aleksunes, 2010). Overal,
women and female rodents appeared to have higher transporter gene
expression than males.
In the present study, females had higher expression of most of NRF2-

regulated genes (KEAP1, GSR, GCLC, GPX1, NQO2, CAT, EH1,
GLRX, G6PD, HO-1, MT-1A, OGG1, PROX1, SLC3A1, SLC7A9,
ciliary rootlet coiled-coil, rootletin family member 2, SOD, TXNRD1,
and TXN (Figs. 4 and 5). In a large mouse microarray compendium (86
biosets) analysis, the livers of female mice exhibited higher NRF2
activation than males under basal and chemical-treated conditions
(Rooney et al., 2018). The cysteine transporter SLC3A1, which is
important for glutathione synthesis, is also female-dominant in mice and
humans (Yang et al., 2012; Uno et al., 2017;Wu et al., 2020). Deficiency
in NRF2 renders female NRF2-null mice to lower antioxidative and
detoxifying enzyme genes than males (Pellegrini et al., 2017).
Age-Differences in Drug-Processing and NRF2 Genes. The

ontogeny of drug-processing and NRF2 genes is important for adequate
interpretation of the findings during development (de Zwart et al., 2008;
Wu et al., 2019) that impacts drug efficacy and the risk of adverse events
in the neonate and young child (Hines, 2013). In the present study, the
QuantiGene multiplex suspension array did not include children, and
only the qPCR-on-NRF2 gene study included a children group (13
sample), and a higher expression of HO-1 was found in the children
group. HO-1 is important in pediatric nonalchoholic fatty liver disease,
and obese children with longer allelic frequencies of (GT)n repeats of
HO-1 are more susceptible to nonalchoholic fatty liver disease (Chang
et al., 2015).
Elderly are more susceptible to therapeutic failure and adverse drug

reactions (Cardelli et al., 2012). However, the aging liver appears to
preserve its function relatively well (Anantharaju et al., 2002). In the
present study, no apparent differences in drug-processing and NRF2
genes between adults and elderly were evident, except there was a slightly
higher expression of GCLM in the elderly. GCLM expression is reported
to be 20%–80% higher with liver diseases (Cheng et al., 2015).
Race/Ethnicity-Differences in Drug-Processing and NRF2 Genes.

PXR variants greatly affect drug metabolism and protein-protein
interactions (Brewer and Chen, 2016). The human immunodeficiency
virus protease inhibitor atazanavir clearance is 35% slower in African
Americans because of polymorphisms of PXR and CYP3A5 (Kile et al.,
2012) coinciding with lower PXR in African Americans (Fig. 1).
SULT2A1 catalyzes dehydroepiandrosterone sulfation in the adrenal
cortex. Polymorphisms in SULT2A1 in African Americans are associ-
ated with decreased activity and expression (Wilborn et al., 2006), but
little is known about Hispanics.
Mutations in SHP are associated with mild obesity in childhood

and increased susceptibility of Japanese to type 2 diabetes later in life

Fig. 5. Sex, age, and race/ethnicity differences in NRF2-regulated gene expression.
Total liver RNA was isolated and purified from 247 normal human livers, and the
expression of specific genes of interest was examined with specific primers via RT-
qPCR compared with housekeeping genes (GAPDH and b-actin). (A) Sex, (B) age,
and (C) race/ethnicity differences. The values of #NQO1 and #MTF-1 were
multiplied by 10 to allow the expression to be visible. Data are mean 6 S.E.M.;
*significantly different from male, adult, and Caucasians, respectively, by one-way
ANOVA at P , 0.05.
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(Enya et al., 2008). In Caucasians, BSEP and MDR3 genetic variations
play a role in the pathogenesis of primary biliary cirrhosis and primary
sclerosing cholangitis (Pauli-Magnus et al., 2004). The significance of
higher expression of SHP and BSEP in the Hispanic group in the present
study needs further investigation.

OAT2 mRNA is highly expressed in the liver to transport organic
anions and is regulated byHNF1a and HNF4a as well as by CAR, PXR,
and NRF2 activators (Burckhardt, 2012). In the present study,
Caucasians had higher expression of OAT2 than African American
and Hispanics. A microsatellite polymorphism in the HO-1 promoter in

Fig. 6. The principal component analysis of the distribution of 247
human liver samples labeled by (A) sex (female, male), (B) age
(children, adult, elderly), and (C) race (African American, Asian
American, Caucasian, Hispanic).
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Austrians is associated with a risk for melanoma (Okamoto et al., 2006).
In the present study, African Americans had higher expression of HO-1.
The significance for these race dfferences requires further investigation.
It is known that NRF2 polymorphisms can affect the susceptibility of

humans to various diseases. For example, lower expression of NRF2
was found to be associated with ulcerative colitis in a Japanese
population (Arisawa et al., 2008). A lower expression of NRF2 is
associated with vitiligo in a Chinese Han population (Guan et al., 2008),
which could be associated with oxidative stress. Compared with
Caucasians, Asians have lower NQO1 activity in the liver, and
overweight children have higher NQO1 (Rougée et al., 2016), suggest-
ing obesity may increase NQO1. Genetic variations in NRF2, NQO1,
HO-1, andMT are associated with the severity of coronary artery disease
(Sarutipaiboon et al., 2020).
NRF2 Gene Expression in Liver Diseases. Compared with disease-

free liver samples, we observed a higher expression of NRF2, NQO1,
GCLC, and KEAP1 and a lower expression of PRDX1 in fibrotic liver
samples as well as a higher expression of NQO1 and KEAP1 in HCC
samples, but a lower expression of GCLC, GCLM, and HO-1 was
evident in steatotic liver samples. These results are largely in agreement
with the findings in end-stage human disease samples in that NQO1 and
KEAP1were increased in the end-stage liver diseases, andGCLC,HO-1,
and PRDX1 were lower in HCC compared with surrounding liver tissue
(Cheng et al., 2015). In end-stage human liver diseases, the ratio of Nrf2/
Keap1 is decreased (Kurzawski et al., 2012), which is consistent with the
increased KEAP1 expression in the present observations. In HCC
specimens, expressions of KEAP1 can be increased (55%) or decreased
(45%) that are often associated with NRF2 levels (Chen et al., 2016).
KEAP1 can also act as a therapeutic target; its inactivation could lead to
activation of the NRF2 pathways to reduce oxidative stress during
chemotherapy (Zheng et al., 2019), but sustained NRF2 overexpression,
especially NQO1 overexpression, is associated with poor prognosis of
HCC (Eichenmüller et al., 2014). The downregulation of GCLC, except
for liver fibrosis, is also in agreement with end-stage liver diseases
(Kurzawski et al., 2012) and in HCC (Cheng et al., 2015). The Keap1/
Nrf2 is a cellular protective system, thus it not only protects normal cells
but also facilitates HCC progression and aggressiveness (Raghunath
et al., 2018). Thus, upregulation of NQO1 and KEAP1 and decreases in
GCLC might be associated with liver diseases, but their changes are

dependent on the type and the stage of the liver diseases. Liver fibrosis
seems to be associated with more NRF2-dependent gene expression
changes.
In summary, this study profiled the expression of drug-processing and

NRF2-regulated genes based on the sex, age, and race/ethnicity differ-
ences. Diseased human liver samples exhibited changes in NRF2-
regulated gene expression; these data provide additional information that
adds to our understanding of individual variation in drug-processing
genes and the NRF2/ARE antioxidant pathway.
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