ARTICLES

870 □ Preclinical Drug Metabolism, Pharmacokinetic, and Pharmacodynamic Profiles of Ivosidenib, an Inhibitor of Mutant Isocitrate Dehydrogenase 1 for Treatment of Isocitrate Dehydrogenase 1-Mutant Malignancies. Yue Chen, Nelamangala V. Nagaraja, Bin Fan, Luke Utley, Rene M. Lemieux, Janeta Popovici-Muller, Lenny Dang, Hyeryun Kim, Liping Yan, Shin-San M. Su, Scott A. Bille, and Hua Yang

882 □ Cytochrome P450-Catalyzed Metabolism of Cannabidiol to the Active Metabolite 7-Hydroxy-Cannabidiol. Jessica L. Beers, Dong Fu, and Klarissa D. Jackson

892 □ Icotinib Induces Mechanism-Based Inactivation of Recombinant Human CYP3A4/5 Possibly via Heme Destruction by Ketene Intermediate. Chen Sun, Huimin Zhao, Wei Li, Yudi Jia, Yi Yang, Ying Peng, and Jiang Zheng

902 □ Cytochrome b5 Binds Tightly to Several Human Cytochrome P450 Enzymes. Donghak Kim, Vitchan Kim, Yasuhiro Tateishi, and F. Peter Guengerich

Tetrahydrocannabinol and Its Major Metabolites Are Not (or Are Poor) Substrates or Inhibitors of Human P-Glycoprotein [ATP-Binding Cassette (ABC) B1] and Breast Cancer Resistance Protein (ABCG2). Xin Chen, Jashvant D. Unadkat, and Qingcheng Mao

919 □ Successful Prediction of Human Fetal Exposure to P-Glycoprotein Substrate Drugs Using the Proteomics-Informed Relative Expression Factor Approach and PBPK Modeling and Simulation. Olena Anoshchenko, Flavia Storelli, and Jashvant D. Unadkat

929 □ Prediction of Pregnancy-Induced Changes in Secretory and Total Renal Clearance of Drugs Transported by Organic Anion Transporters. Jinfu Peng, Mayur K. Ladumor, and Jashvant D. Unadkat


947 □ Static and Dynamic Projections of Drug-Drug Interactions Caused by Cytochrome P450 3A Time-Dependent Inhibitors Measured in Human Liver Microsomes and Hepatocytes. Elaine Tseng, Heather Eng, Jian Lin, Matthew A. Cerny, David A. Tess, Theunis C. Goosen, and R. Scott Obach

Supplemental material is available online at http://dmd.aspetjournals.org.

About the cover: Direct effect of macromolecules in food on intestinal function was demonstrated by finding that apple-derived nanoparticles are taken up by Caco-2 cells via endocytosis and miRNAs contained in the nanoparticles as cargos decreased OATP2B1 expression. See the article by Komori et al., (dx.doi.org/10.1124/dmd.121.00380).