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ABSTRACT

Numerous studies have been reported in the past 50-plus years
regarding the stimulatory role of cytochrome b5 (b5) in some, but
not all, microsomal cytochrome P450 (P450) reactions with drugs
and steroids. A missing element in most of these studies has been
a sensitive and accurate measure of binding affinities of b5 with
P450s. In the course of work with P450 17A1, we developed a fluo-
rescent derivative of a human b5 site-directed mutant, Alexa 488-
T70C-b5, that could be used in binding assays at sub-lM concentra-
tions. Alexa 488-T70C-b5 bound to human P450s 1A2, 2B6, 2C8,
2C9, 2E1, 2S1, 4A11, 3A4, and 17A1, with estimated Kd values rang-
ing from 2.5 to 61 nM. Only weak binding was detected with P450
2D6, and no fluorescence attenuation was observed with P450 2A6.
All of the P450s that bound b5 have some reported activity stimula-
tion except for P450 2S1. The affinity of P450 3A4 for b5 was
decreased somewhat by the presence of a substrate or inhibitor.

The fluorescence of a P450 3A4�Alexa 488-T70C-b5 complex was
partially restored by titration with NADPH-P450 reductase (POR)
(Kd,apparent 89 nM), suggesting the existence of a ternary P450 3A4-
b5-POR complex, as observed previously with P450 17A1. Gel filtra-
tion evidence was also obtained for this ternary complex with P450
3A4. Overall, the results indicated that the affinity of b5 for many
P450s is very high, and that ternary P450-b5-POR complexes are
relevant in P450 3A4 reactions as opposed to a shuttle mechanism.

SIGNIFICANCE STATEMENT

High-affinity binding of cytochrome b5 (b5) (Kd < 100 nM) was
observed with many drug-metabolizing cytochrome P450 (P450)
enzymes. There is some correlation of binding with reported stimu-
lation, with several exceptions. Evidence is provided for a ternary
P450 3A4-b5-NADPH-P450 reductase complex.

Introduction

The story of the involvement of cytochrome b5 (b5) in cytochrome
P450 (P450) drug oxidations began with observations on the enhance-
ment of some NADPH-dependent microsomal catalytic activities by
NADH (Hildebrandt and Estabrook, 1971). The initial explanation was
that NADH could deliver electrons to P450 via the flavoprotein NADH-
b5 reductase and b5 and augment electron flow (Hildebrandt and Esta-
brook, 1971; Correia and Mannering, 1973). However, purification and
reconstitution experiments indicated that b5 was not an obligatory com-
ponent of P450 systems (Lu and Coon, 1968). Further research in multi-
ple laboratories showed that the addition of b5 to reconstituted P450
systems could either stimulate, inhibit, or have no effect (Gorsky and
Coon, 1986). Evidence that b5 was not only an effector in reconstituted
systems but also important in the endoplasmic reticulum came from
immunochemical experiments with antib5 and reactions in liver micro-
somes (Noshiro et al., 1979; Noshiro et al., 1980; Yamazaki et al.,
1996b). For a summary of some of the early literature in this area, see
Peterson and Prough (1986).

A number of proposals have been addressed to explain the effect of
b5. One is electron transfer (Bhatt et al., 2017). b5 can provide the first
electron in the P450 catalytic cycle (reducing ferric iron to ferrous),
although the difference in redox potentials (Em,7) is unfavorable. The
more widespread proposal has been that b5 is providing the second elec-
tron (i.e., to the Fe21O2 complex) (Noshiro et al., 1981), although
reconstituted systems have been reported with only NADH, NADH-b5
reductase, b5, and P450 (West et al., 1974). This NADH-dependent
electron transport system may be how drug metabolism occurs in liver-
specific NADPH-P450 reductase (POR) knockout (Por–/–) mice (Gu et
al., 2003; Henderson et al., 2003). Another proposal is that b5 is acting
in an allosteric manner, changing the conformation of a P450 to make it
more active in some reactions. This hypothesis has its basis in studies
showing that some (but not all) P450 activities are enhanced by apo-b5
or mangano-porphyrin-b5, which are incapable of electron transfer
(Yamazaki et al., 1996a; Auchus et al., 1998; Lee-Robichaud et al.,
1998; Yamazaki et al., 2001; Yamazaki et al., 2002). Further, coexpres-
sion of P450 17A1 with apo-b5 (lacking the globular head domain)
stimulates the steroid lyase activity in mammalian COS-1 cells (Stor-
beck et al., 2012). Another proposal, related to both of the above, is that
b5 somehow improves the efficiency of the NADPH-coupling system,
reducing the leakage of electrons to form reactive oxygen species
(Peterson and Prough, 1986; Zhang et al., 2008; Peng et al., 2016).
Discerning the mechanism of stimulation by b5 has been difficult, for

a number of reasons. Electrons can flow through POR to b5 (Guenger-
ich, 2005), as well as NADH-b5 reductase, the pathway used in fatty
acid desaturation. Although a number of studies have identified sites of
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b5 interactions with several P450s using site-directed mutagenesis and
chemical crosslinking studies (Gao et al., 2006; Peng et al., 2014; Brid-
ges et al., 1999), no structures of binary complexes are yet available.
There is also a conundrum regarding evidence that POR and b5 occupy
the same site on some P450s (Estrada et al., 2013) and how rapid inter-
change of the accessory proteins can support catalysis. One proposal is
that P450 dimers could bind POR on one end and b5 on the other
(Holien et al., 2017).
An important issue has been the measurement of binding parameters

of b5 and P450s. To our knowledge, no spectral titrations have been
useful (Naffin-Olivos and Auchus, 2006), presumably because of the
strong Soret absorbance of both heme proteins. Regarding previous
attempts to estimate Kd values for binding of b5 and other P450s by
optical spectroscopy (Bridges et al., 1998; Ahuja et al., 2013), no data
were presented, and the tabulated results show high error and inconsis-
tency of an order of magnitude, demonstrating the difficulty of the
approach.
NMR measurements (Ahuja et al., 2013; Estrada et al., 2013) are

problematic in that high (>100 mM) concentrations of the proteins are
needed, and estimation of what might be sub-mM Kd values is impossi-
ble. Surface plasmon resonance (SPR) measurements suffer from the
need to bind one component, and the rates observed are notoriously
slow, not reflective of diffusion-controlled events (Johnson, 2019).
Recently, we expressed a b5 mutant, T70C (Fig. 1) (Stayton et al.,

1988), conjugated it with a fluorescent dye (Alexa 488 maleimide) (Fig.
2), and used this probe in studies on the interaction of b5 with P450
17A1 (Kim et al., 2021). The results were interpreted in a model of
very tight binding of b5 and P450 17A1, with POR binding to form a
ternary complex during catalysis (Kim et al., 2021). We have now
extended this approach to other human P450s, particularly those with
precedents for stimulation by b5.

Materials and Methods

Enzymes. Recombinant human b5 (Guengerich, 2005) and rat POR (Hanna
et al., 1998) were expressed in Escherichia coli and purified as described, with-
out the use of affinity tags. Expression (in E. coli) and purification of C-terminal
(His)6-tagged P450s was as in the indicated references: 1A2 (Sandhu et al.,
1994), 2A6 (Kim et al., 2005), 2B6 (Hanna et al., 2000), 2C8 (Tang et al.,
2009), 2C9 (Sandhu et al., 1993), 2D6 (Hanna et al., 2001), 2E1 (Gillam et al.,
1994), 2S1 (Wu et al., 2006), 3A4 (Gillam et al., 1993; Hosea et al., 2000),

4A11 (Kim et al., 2014), and 17A1 (Gonzalez and Guengerich, 2017). These
P450s all have N-terminal amino acids modified, plus deletions, for optimal het-
erologous expression, but still show a requirement of phospholipid vesicles for
maximum catalytic activity. All have been found to be catalytically active under
appropriate reconstitution conditions and, in several cases, to show b5 stimulation
(Yamazaki et al., 2002). Alexa 488-T70C-b5 was prepared as described else-
where in a study of P450 17A1 (Kim et al., 2021). All proteins were of high
purity as judged by SDS-gel electrophoresis and did not contain any obvious
cleavage products. The concentrations of P450 were estimated using the extinc-
tion coefficient De450-490 5 91,000 M�1 cm�1 for the Fe21-CO versus Fe21 dif-
ference spectra (Omura and Sato, 1964). The concentration of b5 was estimated
using the extinction coefficient e4235 100,000 M�1 cm�1 (Spatz and Strittmatter,
1971) or the difference extinction coefficient De424-409 5 180,000 M�1 cm�1 for
the Fe21 versus Fe31 difference spectra (Velick and Strittmatter, 1956). The con-
centration of POR was estimated using the extinction coefficient e455 5 23,600
M�1 cm�1 (Yasukochi and Masters, 1976).

Fluorescence Titrations. A solution of 50 nM Alexa 488-T70C-b5 in 1 mM
potassium phosphate buffer (pH 7.4) was placed in a 1.0-ml cuvette in an OLIS
DM45 spectrofluorometer (On-Line Instrument Systems, Athens, GA). Excita-
tion was at 480 nm, and the emission spectrum was scanned from 500 to 650
nm, with a peak at 513 nm. F513 values were collected, plotted, and fit to a
hyperbolic curve with a standard quadratic equation,

Y ¼ Bþ A
2E

Kd þ E þ Xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kd þ E þ Xð Þ2 � 4EX

q� �
,

in GraphPad Prism software (GraphPad, San Diego, CA), where Y is the observed
fluorescence, E is the Alexa 488-T70C-b5 concentration, X is the concentration of
ligand added (P450), Kd is the dissociation constant, and B is the intercept [this is
set in Prism as: Y 5 B 1 (A/2)*(1/E)*((Kd 1 E 1 X)-sqrt((Kd 1 E 1 X)^2-
(4*E*X))), with E set at the value used and B being the fluorescence at the starting
point, F0]. The extrapolated endpoint was used in each case, in that there is no
independent evidence that the interaction of each P450 with Alexa 488-T70C-b5
will generate the same fluorescence decrease in every case. Most of the results are
expressed as F/F0 � 100, where F is the fluorescence at 513 nm (excitation at 480
nm) and F0 is the fluorescence in the absence of any added ligand.

Association Kinetics of Alexa 488-T70C-b5 and P450 3A4. The rate of
association of Alexa 488-T70C-b5 with P450 3A4 was estimated by mixing 1-mM
concentrations of each (in 100 mM potassium phosphate buffer, pH 7.4), in an
OLIS RSM1000 instrument (23�C, 4 mm � 4 mm cell, 1.24 mm slits, 480 nm
excitation, and detecting emission >530 nm with an Oriel long-pass filter attached
to the photomultiplier tube). The decrease in fluorescence was fit to a single-expo-
nential, with the S.D., using the OLIS GlobalWorks program. The fit was trans-
formed using residuals analysis with the software.

Gel Filtration Studies. Size-exclusion chromatography was done with a
Superose 12 10/300 GL column (11 mm, 10 mm � 300 mm, GE Healthcare)
with an NGC Quest 100 Plus Chromatography system (BioRad). The buffer
was 50 mM potassium phosphate (pH 7.4) containing 0.15 M NaCl, and the
flow rate was 1.0 ml min�1. The column was equilibrated for each run with 1
column volume (23.6 ml); the injection volume was 3% of the column volume
(10 nmol of each protein was injected, i.e., 100 ml of 100 mM solutions). Elu-
tion was with 1.5 column volumes, and absorbance was monitored at 280 nm.
Fractions were collected (1.0 ml) and analyzed by SDS-polyacrylamide gel

Fig. 1. Structure of human b5. The solution structure was determined by NMR
spectroscopy (Protein Data Bank 2I96). The positions of heme, the T70C muta-
tion site, and two residues implicated in binding to P450 17A1 (E48, E49) are
indicated.
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Fig. 2. Alexa 488 maleimide and site of attachment to Cys.
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electrophoresis (4%–15% gradient gel), with staining with Coomassie Blue and
densitometry using GelAnalyzer 19.1 software (www.gelanalyzer.com, Istvan
Lazar and Istvan Lazar, Jr.).

The molecular mass (Mr) of protein complexes were estimated using fitting to
a curve developed by plotting log10 Mr versus corrected elution volume (cor-
rected for void volume based on elution volume of blue dextran), using chicken
ovalbumin (43 kDa), chicken conalbumin (75 kDa), rabbit muscle aldolase (158
kDa), ferritin (440 kDa), and blue dextran ($2,000 kDa) (Cytiva Life Sciences).

Results

Rationale. In recent work with P450 17A1 (Kim et al., 2021), we
labeled a human b5 mutant (T70C) with a dye based on a previous
approach used to monitor the binding of bacterial P450cam and rat b5
(Stayton et al., 1988; Stayton et al., 1989). The site of attachment is
removed from the putative sites of binding (Glu-48, Glu-49), at least to
P450 17A1 (Naffin-Olivos and Auchus, 2006), on the opposite side of
the heme prosthetic group (Fig. 1). The dye Alexa 488 was attached
using a maleimide linker (Fig. 2). Alexa 488-T70C-b5 was still capable
of stimulating the lyase activity of P450 17A1, one of the P450 reac-
tions most sensitive to b5 stimulation (Kim et al., 2021). The fluores-
cence of Alexa 488-T70C-b5 was attenuated upon binding P450 17A1,
in a concentration-dependent manner (Kim et al., 2021). We extended
the approach to other human P450s, several of which are known to be
stimulated by the presence of b5 (Yamazaki et al., 2002).
Titrations of Human P450s. Alexa 488-T70C-b5 was titrated with

increasing concentrations of P450 3A4 (Fig. 3), with the attenuation of
fluorescence indicative of the binding between Alexa 488-T70C-b5 and
P450 3A4. As noted before with an acrylodan-labeled b5 mutant and
other hemoproteins (Stayton et al., 1988; Stayton et al., 1989), the fluo-
rescence changes were more marked at lower ionic strength, indicative
of charge-charge interactions. The decrease in the fluorescence was fit
to a quadratic equation and yielded an apparent Kd value of 13 nM for
the affinity of Alexa 488-T70C-b5 and P450 3A4 (Fig. 3 inset, Table 1).
These are charge-charge interactions, and the presence of phospholipid
(L-a-dilauroyl-sn-glycero-3-phosphocholine) did not appreciably affect
the titration results (Supplemental Fig. 1).
The titration analysis of Alexa 488-T70C-b5 was extended to nine

other human P450 enzymes (Supplemental Fig. 2). P450s 1A2, 2B6,
2C9, 2D6, 2S1, and 4A11 showed attenuation of fluorescence, indicat-
ing tight binding between Alexa 488-T70C-b5 and P450 (Fig. 4). P450s

1A2, 2C9, 2E1, and 2S1 displayed very tight binding affinities with Kd

values of �15 nM (Table 1). In particular, P450 2S1 showed a decrease
in the F480/513 amplitude as strong as that of P450 17A1 (Supplemental
Fig. 2, Table 1). However, P450 2A6 did not significantly decrease the
fluorescence (Supplemental Fig. 2, Fig. 4).
The effects of P450 3A4 substrates and inhibitor on the binding affin-

ity of b5 were examined (Supplemental Fig. 3). The titration spectra
indicated similar fluorescence changes as in the absence of ligands, with
somewhat increased Kd values of 73, 84, and 68 nM in the presence of
the substrates testosterone and midazolam and the inhibitor/substrate
ketoconazole, respectively (Supplemental Fig. 3), which are still indica-
tive of tight binding. This result suggests that there is still tight binding
of Alexa 488-T70C-b5 to P450 3A4 in the presence of substrate or
inhibitor, or at least those that we used.
Rate of Association of P450 3A4 and b5. The rate of binding of

Alexa 488-T70C-b5 to P450 3A4 was measured by observing the decrease
of fluorescence uponmixing the two proteins using a stopped-flow fluorim-
eter. Fluorescence attenuation was observed with a first order kobs value of
0.22 (± 0.03) s�1 with concentrations of 0.50 mMAlexa 488-T70C-b5 and
0.50 mM P450 3A4 (Fig. 5), similar to but somewhat slower than the rate
measured for the binding of b5 and P450 17A1 (Kim et al., 2021).
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Fig. 3. Changes in fluorescence of Alexa 488-T70C-b5 with added concentrations
of P450 3A4. Inset: plot of F480/513 data. See Table 1 for parameters.

TABLE 1

Binding affinities of human P450 enzymes to Alexa 488-T70C-b5 and reported effects of b5 on catalysis

Alexa 488-T70C-b5 Titration

P450 Kd DAmplitudemax Effect of b5 on Activityb Evidence for b5 Electron Transfer to P450

mM %
1A2 0.013 ± 0.003 �67 0 to �36% –

b

2A6 NDa �11 150 to 1100% –
b

2B6 0.061 ± 0.015 �53 125 to 175% –
b

2C8 0.15 ± 0.03 �55 134 to 155% ±b

2C9 0.015 ± 0.004 �53 0 to 150% –
b

2D6 NDa NDa �11 to 12% –
b

2E1 0.015 ± 0.008 �32 1153 to 1160% 1b

2S1 0.014 ± 0.003 �80 0c

4A11 0.043 ± 0.011 �51 1100%d 1d

3A4 0.013 ± 0.002 �61 125 to 180% –
b, e

17A1 0.0025 ± 0.0006 �70 $ 11000% (lyase) f
–
g

aNot determined. See Supplemental Fig. 1.
b(Yamazaki et al., 2002).
c(Fekry et al., 2019).
d(Kim et al., 2014).
e(Yamazaki et al., 1996a; Yamazaki et al., 2001; Yamazaki et al., 2002).
f(Gonzalez and Guengerich, 2017). Reported for lyase reaction with 17a-OH progesterone or 17a-OH pregnenolone. The 17-hydroxylation reactions show only slight stimulation (Kim et al.,
2021).
g(Auchus et al., 1998; Lee-Robichaud et al., 1998; Guengerich et al., 2019).

904 Kim et al.
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Interaction of POR with a P450 3A4:b5 Complex. Neither unla-
beled b5 nor POR (up to 2.65 mM) attenuated the fluorescence of Alexa
488-T70C-b5 (50 nM), arguing against any inner filter effects. The attenu-
ated fluorescence of Alexa 488-T70C-b5 after binding of P450 3A4 (1:1
molar ratio) was partially restored by titration with POR (Fig. 6), as in
the case of P450 17A1 (Kim et al., 2021). The P450 interaction with
POR appeared to be competitive with Alexa 488-T70C-b5, but the origi-
nal fluorescence values were never reached, which is inconsistent with
complete displacement. The calculated Kd value of POR for the P450
3A4:b5 complex was 0.089 mM, suggesting lower affinity than b5 for

P450 3A4 (0.013 mM) (Fig. 3, Table 1). The lack of a complete increase
to the starting amplitude is not due to an inner filter effect, in that some
P450s (e.g., 2A6, Supplemental Fig. 2A) did not attenuate the fluores-
cence despite having more absorbance.
Demonstration of a P450 3A4-b5-POR Ternary Complex

Using Gel Filtration. The fluorescence titration results (Fig. 6) sug-
gested that P450 3A4, POR, and b5 form a ternary complex. Accord-
ingly, we tested this hypothesis further using a different approach, i.e.,
gel filtration (Fig. 7). Most of the P450 3A4 eluted as a single oligomeric
peak on a Superose 12 column. b5 eluted later, as might be expected, and
POR eluted as a multimer near the void volume of the column (Fig. 7)
(the identity of the second A280 peak in the POR sample is unknown and
is presumed to be a small molecule, in that no proteins were visualized
upon SDS-gel electrophoresis and Coomassie Blue staining, Fig. 7).
A complex of P450 3A4 and b5 yielded peaks in the regions for

P450 3A4 and b5 plus a larger complex eluting earlier, as verified with
gel electrophoresis (Fig. 7). A mixture of POR, P450 3A4, and b5 had
most of the 280 nm-absorbing material (protein) in a large peak eluting
later than free POR, but earlier than the P450 3A4-b5 complex, as vali-
dated by gel electrophoresis (Fig. 7, C and D, fraction 9). The presence
of all three proteins in the ternary complex peak fractions (Fig. 7D) is
documented in the gel shown in Fig. 7C. Based on calibration with Mr

standard proteins, the approximate Mr of the P450 3A4-b5 complex is
480 kDa, and the approximate Mr of the P450 3A4-b5-POR ternary
complex is 690 kDa, indicating the presence of multimeric complexes
(although the stoichiometry is unknown).

Discussion

A fluorescent derivative of b5, Alexa 488-T70C-b5, was used to char-
acterize the binding of b5 to a number of human liver microsomal
P450s involved in drug metabolism. We found that several of these
have high affinity for b5, although none was apparently as strong as
what we reported for (adrenal) P450 17A1 (Kd 2.5 nM) (Kim et al.,
2021). Some studies with P450 3A4, historically known to be enhanced
by b5 (at least for some activities), showed that ligands did not strongly
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affect b5 affinity (Supplemental Fig. 3). Also, the binding of P450 3A4
to b5 and the dissociation of the complex occurred on a time scale of
�1 second (Fig. 5), similar to P450 17A1 (Kim et al., 2021). POR can
interact with the complex and, as with P450 17A1 and b5 (Kim et al.,
2021), our evidence supports the existence of a ternary complex of
P450 3A4, b5, and POR (Figs. 6 and 7).
The complexity of b5 interactions with P450s can be traced back to

the 1970s and 1980s (Peterson and Prough, 1986). As an example, the
Yamano laboratory used a b5-affinity column to isolate a rabbit liver
P450 termed B1 (Miki et al., 1980), now recognized as CYP3A6 (Koop
et al., 1981; Schwab and Johnson, 1987; Nelson et al., 1993). The puri-
fied protein showed an absolute requirement for b5 in the O-demethyla-
tion of p-nitroanisole (Sugiyama et al., 1980), but not in reactions with
the substrates benzphetamine, aminopyrine, and aniline (Miki et al.,
1980). Koop et al. (1981) also reported catalytic activity toward benz-
phetamine, aminopyrine, p-nitroanisole, p-nitrophenetole, testosterone,
and androstenedione in the absence of b5. It is of interest to note that
this is another P450 Subfamily 3A member that was shown to bind
tightly with b5 (Miki et al., 1980), as was human P450 3A4 in our own
work (Fig. 4, Table 1). The variability of b5 dependence for rabbit P450
2B4 was studied by Gorsky and Coon, (1986) and shown to be highly
sensitive to reconstitution conditions.
As in the case of our fluorescence studies done with P450 17A1

(Kim et al., 2021), all experiments with b5 were done in the absence of
added phospholipids or detergents, so the forces involved in interaction
of b5 with the P450s are presumed to be ionic. P450 3A4-b5 binding
was not affected very much by the presence of a substrate (or inhibitor)
(Supplemental Fig. 3). We did not evaluate the effects of substrates
with other P450s.
Our results can be compared with earlier efforts to study complexes,

mainly with SPR measurements (Shimada et al., 2005; Yablokov et al.,
2017). The Kd values for the complexes were generally much higher for
the SPR analyses, and no binding was detected for P450 1A2 (Shimada
et al., 2005) or 2C9 (Yablokov et al., 2017). Because one component of
an SPR system must be immobilized, SPR measurements are hampered
by mass transfer artifacts (Johnson, 2019). Moreover, the sites of attach-
ment of labels to the proteins are generally unknown.
In general, there is some correlation between b5 affinity and stimula-

tion of catalytic activity (Table 1). However, there are some anomalies.

For instance, P450 1A2 showed strong binding of b5 (Kd 13 nM) but
had not been shown to stimulate either phenacetin O-deethylation or 7-
ethoxyresorufin O-deethylation activity by human P450 1A2 in reconsti-
tuted systems (Shimada et al., 2005). Kotrbov�a et al. (2011) reported
that rabbit b5 changed the balance of the products of ellipticine oxida-
tion by rabbit P450 1A2. Je�r�abek et al. (2016) modeled the interactions.
However, in other work, b5 had no effect on rabbit P450 1A2-catalyzed
aminopyrine N-demethylation and inhibited aniline 4-hydroxylation
(Gorsky and Coon, 1986).
P450 2D6 showed weak binding here and we are unaware of any

reports of stimulation of P450 2D6 activity by b5 in our own laboratory
or others (Yamazaki et al., 2002), with the exception of in vivo work in
mice by Henderson et al., (2015). However, Bart and Scott, (2017) did
find interaction of b5 and P450 2D6 using NMR spectroscopy, but this
might be the result of the high concentrations of proteins used
(>100 mM).
P450 2S1 is an interesting case in that b5 bound tightly, but we did

not observe an effect of b5 on catalytic activity in previous assays
(Fekry et al., 2019). However, in those oxidative reactions (fatty acid
x-1 hydroxylations) the rates were very low (with or without b5). In
our experience, P450 2S1 has shown better catalytic activities in reduc-
tive reactions (Xiao et al., 2011; Wang and Guengerich, 2012; Wang
and Guengerich, 2013), but we have not examined the effect of b5 on
any of those.
P450 2A6 is also an anomaly. No interaction with b5 was detected in

our titrations (Fig. 2A). Bart and Scott (2017) detected interactions with
NMR spectroscopy and identified the b5 residues Thr-60, Asp-65, His-
58, Ser-69, Thr-70, and Arg-73 as being involved. It is conceivable that
the presence of the fluorophore (Alexa 488) on residue 70 (originally
Thr-70, changed to Cys-70) blocked b5 binding, and that the fluores-
cence was not attenuated (but see Fig. 1). However, in that NMR study
(Bart and Scott, 2017), the same b5 residues were implicated in the
binding of P450 2E1 to b5, and we did observe quenching of the fluo-
rescence with P450 2E1 (Fig. 4B). The role of b5 in catalytic activity of
P450 2A6 also seems spurious. Both we (Yamazaki et al., 2002; Yun et
al., 2005) and others (Soucek, 1999) have observed �2-fold stimulation
of coumarin 7-hydroxylation by b5, but Bart and Scott (2017) did not.
In our own work (Yun et al., 2005), coumarin 7-hydroxylation was
stimulated by b5, but neither the 3- or 7-hydroxylation of 7-
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methoxycoumarin or 7-ethoxycoumarin was. Bart and Scott (2017) did
observe b5 stimulation of chlorzoxazone 6-hydroxylation (3.5-fold) and
4-nitrophenol 2-hydroxylation (1.5-fold) [using specificity constants
(kcat/Km) for comparisons]. Another anomaly is that some electron trans-
fer from reduced b5 to the P450 2A6 Fe21O2 complex could be shown,
but this electron transfer was not very efficient in coumarin 7-hydroxyl-
ation (Yun et al., 2005), and apo-b5 was almost as effective as (holo) b5
in supporting steady-state coumarin 7-hydroxylation (Yamazaki et al.,
2002). At this time, we can conclude that the interaction of P450 2A6
with Alexa 488-T70C-b5 is weak (Fig. 4A), which may be a particular
feature of our system, and that the general evidence is that the b5 stimu-
lation of P450 2A6 catalytic activities is not a strong one, at least com-
pared with P450s 17A1, 3A4, and 2E1 (Soucek, 1999; Yamazaki et al.,
2002; Yun et al., 2005; Bart and Scott, 2017).

Fluorescent derivatives of b5 have been made previously, to examine
the interactions of P450 17A1 and b5 in cells (Storbeck et al., 2012;
Simonov et al., 2015) and of b5 with bacterial P450cam and other hemo-
proteins (myoglobin, cytochrome c) (Stayton et al., 1988; Stayton et al.,
1989). We have not characterized the biophysical nature of the interac-
tions of our derivative, Alexa 488-T70C-b5, with P450s. Inner filter arti-
facts can be ruled out, and F€orster resource energy transfer interactions
with the P450 heme are probably not relevant, in that a 12-mer peptide
derived from P450 17A1 (putative binding region) could also attenuate
the fluorescence (Kim et al., 2021), as could several small molecules. It
is very possible that other b5 mutants and fluorophores may prove to be
more useful probes, and we are evaluating some. However, the results
with Alexa 488-T70C-b5 to date are useful in estimating the affinity of
b5 for individual P450s (Fig. 4) and P450 variants (Kim et al., 2021).
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Some caveats need to be considered. The modification of any residue
of a protein, whether by mutagenesis or chemical modification, can alter
the properties in ways that are unexpected and may not be indicative of
the role(s) of that residue in normal function (Means and Feeney,
1971). In principle, the changes at Thr-70 of b5 (mutagenesis or conju-
gation) might alter its affinity for one or more P450s, and the order of
affinities (Table 1) may not be completely accurate. Our previous work
with P450 17A1 showed that Alexa 488-T70C-b5 could be rapidly dis-
placed, however, by excess unmodified b5 (Kim et al., 2021). The struc-
ture of human b5 (Fig. 1) indicates that the dye should not be in a
position to directly interact with the P450 (Glu-48, Glu-49), at least
P450 17A1 and probably others. We conclude that, at the least, this
work demonstrates the high affinity of b5 (or its derivative) for multiple
human P450s.
In summary, we used a fluorescent derivative of b5 to show that it

binds tightly to many human P450 enzymes, most of which have been
shown to have b5-stimulated catalytic activity, with some exceptions.
An important conclusion with P450 3A4 is that, as in the case of P450
17A1 (Kim et al., 2021), a ternary complex of P450, POR, and b5 is
formed and is hypothesized to be important in catalysis, in contrast to a
mechanism in which POR and b5 shuttle at a common site. A ternary
complex rationalizes interactions of reactive oxidized forms of P450
with individual proteins (POR and b5), which would have to sequen-
tially bind to and then vacate the P450 Fe21, Fe21O2, and Fe31-O2

–

entities. At this point, we cannot extend the ternary complex evidence
to P450s other than 17A1 (Kim et al., 2021) and 3A4 (Figs. 6 and 7),
however.
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