The Interleukin-6/Signal Transducer and Activator of Transcription-3/Cystathionine γ-Lyase Axis Deciphers the Transformation Between the Sensitive and Resistant Phenotypes of Breast Cancer Cells

Zhaoyi Tan, Chun Ge, Dong Feng, Chen Xu, Bei Cao, Yuan Xie, Honghao Zhou, Guangji Wang, Jiye Aa

Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)

ABSTRACT

Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular ability to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotype in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells.

SIGNIFICANCE STATEMENT

Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.

Introduction

Metabolic reprogramming in cancer cells has been a hot topic in recent decades, as the rapid proliferation and survival of tumor cells are dependent upon these metabolic changes (Faubert et al., 2020). Rapidly proliferating cancer cells require reprogrammed pathways of energy metabolism and nutrient acquisition (DeBerardinis and Chandel, 2016; Hanahan and Weinberg, 2011) to meet three basic needs: adequate ATP generation and elevated biosynthesis of small molecules and macromolecules (Cairns et al., 2011). The Warburg effect of aerobic glycolysis of cancer cells is a widely studied metabolic switch that characterizes cancer metabolism (Warburg, 1956). This process redirects the metabolism of cancer cells away from the oxidative phosphorylation pathway that occurs in normal cells and towards the more rapid glycolysis and lactate production. Warburg's observations have been extensively studied and have led to the development of the Warburg hypothesis, which states that cancer cells are more efficient at producing ATP through anaerobic glycolysis than through oxidative phosphorylation. This increased production of lactate is thought to be a major contributor to the metabolic changes observed in cancer cells, which results in the Warburg effect. The Warburg effect has been proposed to play a role in cancer development and progression, and it has been suggested that targeting metabolic pathways involved in the Warburg effect may represent a potential therapeutic strategy for the treatment of cancer. Metabolic reprogramming in cancer cells has been extensively studied, and it is clear that the Warburg effect is a key feature of cancer metabolism. However, the underlying mechanisms that drive this metabolic switch are still not fully understood, and further research is needed to better elucidate the molecular basis of the Warburg effect and to identify potential targets for the development of new therapeutic strategies.
was first identified as the major metabolic characteristic occurring in tumors (Liberti and Locasale, 2016). In addition to the dysregulation of glucose metabolism, a broad range of metabolic alterations that distinguish cancer from normal cells has been documented, such as the pentose phosphate pathway, gluconolysis and lipid metabolism, and nucleic acid and amino acid turnover (Cormerais et al., 2019; Li and Zhang, 2016). Growing numbers of studies have reported that cancer cells exhibit an altered uptake and utilization of specific amino acids, such as the essential amino acids leucine (Otsuki et al., 2017), tryptophan (Optiz et al., 2020), and methionine (Sanderson et al., 2019), as well as some amino acids that are generally considered nonessential, including glucose (Hensley et al., 2013), serine (Mattaini et al., 2016), glycine (Jain et al., 2012), arginine (Patiul et al., 2016), asparagine (Knott et al., 2018), and cysteine/cystine (Lo et al., 2008). Knowledge of the metabolic properties of various cancer cells greatly benefits our understanding of the individual particularity and general universality of cancers, but the data are still not sufficient to determine a strategy to circumvent these adaptable cells.

Metabolic reprogramming of cancer cells not only contributes to the proliferation of tumor growth but is also involved in the acquired resistance of tumor cells to anticancer drugs (Rahman and Hasan, 2015). Our previous study demonstrated that the metabolic phenotype of wild-type sensitive MCF-7 cells (MCF-7S) is dramatically different from that of the other cell line of MCF-7 cells with resistance to adriamycin (MCF-7R) (Cao et al., 2013). Continuous exposure to low levels of doxorubicin can induce drug resistance and simultaneously reprogram the metabolic phenotype of MCF-7S cells. Doxorubicin can produce a large amount of reactive oxygen species (ROS) and reprogram metabolism, such as the pentose phosphate pathway, tricarboxylic acid cycle, metabolism of amino acids, purines, glycerol, and fatty acids, and synthesis of nucleic acids and glutathione (GSH) via the cystine/glutamate antiporter system xc^- and cystine. Either inhibition of GSH synthesis or ROS alone can efficiently upregulate the expression and activity of P-glycoprotein (P-gp) and hence induce multiple drug resistance, whereas scavenging ROS with N-acetylcysteine (NAC) efficiently reverses drug resistance induced by elevated ROS. Increasing evidence suggests not only that ROS triggers mutations and promote growth and metastasis, but also that high baseline levels of ROS are an important factor for inducing drug resistance in cancer cells. To cope with intensive oxidative stress, living cells normally upregulate antioxidant capabilities for their survival, such as by increasing the biosynthesis of the tripeptide antioxidant GSH (Balendran et al., 2004). MCF-7S cells can use cysteine to synthesize GSH through the cysteine/glutamate antiporter system xc^- of carrier family 7 member 11 (SLC7A11) transporter to maintain the intracellular oxidative balance. However, for MCF-7R cells, uptake and transport of cysteine are significantly inhibited, and GSH is rarely synthesized via cysteine. The dependence and utilization of methionine, as the other key source material for the synthesis of GSH, have not been evaluated in sensitive and resistant MCF-7 breast cancer cells, and the underlying mechanism of reprogrammed redox metabolism and a gain of drug resistance has not been well studied.

It is well known that the transsulfuration pathway is largely restricted to a few nonneoplastic tissues, such as the liver, pancreas, and kidneys (Stipanuk, 2004). Recently, we observed that, unlike normal breast and most nonneoplastic cells, breast cancer cells alter cellular metabolism and acquire a particular specialty to use Met to synthesize GSH through the transsulfuration pathway. In addition, the synthesis enzymes for GSH and the flux through the transsulfuration pathway differ in resistant MCF-7 breast cancer cells and wild-type sensitive MCF-7 cells. To investigate the mechanism of GSH synthesis by Met, here we employed a variety of cell lines to compare the gene and protein levels associated with the sulfur transfer pathway in normal breast cells, multiple breast cancer cells, and sensitive and drug-resistant MCF-7 cells. We focused on the key enzymes and genes involved in metabolic processes of the Met utilization pathway, evaluating the modulation effect on the drug resistance of MCF-7 cells. We aimed to elucidate the molecular regulatory mechanism of Met utilization and a way to reverse drug resistance in breast cancer cells.

Materials and Methods

Cell Culture. Human breast carcinoma cell lines MCF-7 (MCF-7S), MDA-MB-231, and BT474 and human mammary epithelial cell line MCF-10A were purchased from the American Type Culture Collection (Manassas, VA). MCF-7R were provided by the Institute of Hematology and Blood Diseases Hospital (Tianjin, China). Human mammary epithelial cell line HMEC was purchased from Cell Applications Inc. (San Diego, CA). MCF-7S, MCF-7R, and BT474 cells were cultured in RPMI 1640 medium (Gibco, Carlsbad, CA) supplemented with 10% (v/v) FBS (Gibco, Carlsbad, CA) and 100 U/ml penicillin and 1 μg/ml streptomycin at 37°C with 5% CO2. MCF-10A and HMEC cells were cultured in Dulbecco’s modified Eagle’s medium/F-12 medium (Gibco, Carlsbad, CA) supplemented with 10% (v/v) FBS reagent (Gibco) and 100 U/ml penicillin and 1 μg/ml streptomycin at 37°C with 5% CO2. MDA-MB-231 cells were cultured in Leibovitz’s L-15 medium containing 10% (v/v) FBS, 100 U/ml penicillin, and 1 μg/ml streptomycin at 37°C in 100% air. The medium was changed every other day.

Cell Viability Assays. The sensitivity of the nontransfected MCF-7 cells and transfected MCF-7 cells to paclitaxel (PTX) was determined. Cells were seeded into 96-well plates (5 x 10^3 cells/well) and incubated with the medium containing PTX in different concentrations for 24 hours (n = 6). A total of 10 μl of cell counting kit-8 reagent (Beyotime Institute of Biotechnology, China) was added to each well, and plates were incubated for 4 hours at 37°C. Then, the absorbance at 450 nm was measured using fluorescence.

Quantitative Real-Time Polymerase Chain Reaction. Total cells or tissues RNA was extracted from cells (or tissues) using TRIzol reagent (Gibco, Invitrogen, Thermo Fisher Scientific, Waltham, MA) according to the manufacturer’s recommendation and was quantified with UV spectrophotometry by the standard of optical density at 260 nm to optical density at 280 nm ratio of 1.6–2.0. Complementary DNA was synthesized with the PrimeScript RT Reagent Kit (Takara Bio, Japan) according to the manufacturer’s recommendation and was quantified with Fluorolog spectrophotometry by the standard of optical density at 260 nm to optical density at 280 nm ratio of 1.6–2.0. Complementary DNA was synthesized with the PrimerScript RT Reagent Kit (Takara Bio, Japan) and quantified with UV spectrophotometry by the standard of optical density at 260 nm to optical density at 280 nm ratio of 1.6–2.0. Complementary DNA was synthesized with the PrimeScript RT Reagent Kit (Takara Bio, Japan) and quantified with the manufacturer’s instructions. The primer sequences used in this study are listed in Supplemental Table 1. All of the samples were quantified using the comparative Ct method for the relative quantification of gene expression, normalized to the expression of the reference gene actin.

Western Blotting Analysis. Approximately 50–60 μg of total protein was separated by 10% SDS-PAGE and transferred to polyvinylidene fluoride membranes (Bio-Rad). After blocking with 5% nonfat milk, the membrane was incubated with rabbit monoclonal antibody [7E7] to signal transducer and activator of transcription-3 (STAT3) (1:1000; ab13352, Abcam), rabbit polyclonal antibody to STAT3 (phosphorylated at Ser727) (1:1000; ab86430, Abcam), rabbit monoclonal antibody [EP2144T] to STAT3 (phosphorylated at Tyr705) (1:1000; ab76315, Abcam), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) polyclonal antibody (1:5000; BioWorld Technology, Inc., AP0063) overnight at 4°C, followed by incubation with the horseradish peroxidase-conjugated secondary antibodies for 1 hour at 37°C. The signals were detected with an enhanced chemiluminescence kit (Thermo Fisher Scientific) and captured using a ChemiDoc XRS+ System (Bio-Rad). The intensity of bands was quantified by Image Laboratory statistical software (Bio-Rad).

Intracellular ROS and Glutathione Measurement. The intracellular ROS was determined with 2,7'-dichlorodihydrofluorescein diacetate (DCFH-DA, Beyotime Institute of Biotechnology). Cells were incubated with 10 μM DCFH-DA at 37°C for 45 minutes, then added to 100 μL of acidified ethanol (v/v = 1:1) solution and centrifuged at 6000 rpm for 5 minutes. The supernatant was collected for determination using a Synergy-H1 multimode microplate reader (BioTek Instruments, Winooski, VT) at wavelength of 488/535 nm. Intracellular GSH and glutathione disulfide (GSSG) were measured using commercially
available GSH and GSSG test kits (Beyooyne Institute of Biotechnology) according to the manufacturer’s instructions. The ROS, GSH, and GSSG values were normalized to the protein levels, which were measured by BCA protein assay kit (Beyooyne Institute of Biotechnology).

Nutrient Deprivation and Supplement. Cells were cultured in the identical medium (RPMI 1640) for at least three passages. After being washed twice with PBS, cells were received varying concentrations of methionine (Sigma-Aldrich, M8625) using Dulbecco’s modified Eagle’s medium (lacking glutamine, methione, and cystine but containing all other amino acids), with 63.0 mg/L L-cystine dihydrochloride (Sigma-Aldrich, G6727) and 584 mg/L t-glutamine (Sigma-Aldrich, G8540) added back in each experiment.

Metabolic Tracing. For serine labeling experiments, cells were cultured in the identical medium (RPMI 1640) for at least three passages. After being washed twice with PBS, cells were cultured in minimum essential medium (lacking glycine and serine but containing all other amino acids) supplemented with 30 mg/L glycine (Sigma-Aldrich, G7126) and 42 mg/L [U-13C]-serine (Shanghai ZZBIO, China) instead of unlabeled serine. The labeling medium was replaced 2 hours before cell harvest.

Liquid Chromatography–Quadrapole Time-of-Flight–Mass Spectrometry–Based Metabolic Analysis. Metabolites were analyzed using an LC-30A Shimadzu liquid chromatography system (Kyoto, Japan) coupled to a hybrid quadrupole time-of-flight tandem mass spectrometer (SCIEX TripleTOF 5600, Foster City, CA). An XBridge Amide HPLC column (3.5 μm; 4.6 × 100 mm; Waters, Milford, MA) was used for metabolite separation with a column temperature of 40 °C. The flow rate was 0.4 ml/min. Mass detection was operated in negative ion modes with the following optimized conditions: The masses were scanned over m/z 50–1000; ion source gas 1 (gas 1), 33 psi; ion source gas 2 (gas 2), 30 psi; curtain gas, 30 psi; source temperature, 500 °C; ion spray voltage, −4.5 kV; declustering potential, −93 eV; collision energy, −10 V. The mobile phase consisted of solvent A (5 mM ammonium acetate buffer, pH 9.5, 5% acetonitrile) and solvent B (acetonitrile). The gradient was set as follows: 0–3 minutes 85% B, 3–6 minutes 85–30% B, 6–15 minutes 30–2% B, 15–18 minutes 2% B, 18–19 minutes 2–85% B, 19–26 minutes 85% B. The accurate mass was calibrated by Calibration Delivery System (AB/SCIEX), and automatic calibration was performed every six peaks. Peak areas from the total ion current for each metabolite were integrated using MultiQuant version 2.0 software (AB/SCIEX). For 13C-labeled experiments, the percentage of total GSH pool can be obtained by dividing the peak area of each isotopologue by the summed intensities of all the detected isotopomers.

Transient CTH/STAT3 Small Interfering RNA Transfection. Cells were plated in six-well plates and transfected with human CTH small interfering RNA (siRNA) (sc-78973, Santa Cruz Biotechnology, Dallas, TX), human CTH/shRNA (siRNA) (sc-29493, Santa Cruz), and control siRNA (sc-37007, Santa Cruz Biotechnology) using Lipofectamine 2000 (Life Technologies, Thermo Fisher Scientific). Transient CTH/STAT3 Small Interfering RNA analyses were performed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA). P values less than 0.05 were considered statistically significant.

Statistical Analysis. All data are presented as means ± S.D. Statistical comparison between two groups was performed using Student’s t test. All statistical analyses were performed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA). P values less than 0.05 were considered statistically significant.

Results

MCF-7S Cells Highly Expressed CTH to Synthesize GSH via Methionine; MCF-7R Cells Poorly Expressed CTH and Use a Small Amount of Methionine to Synthesize GSH. Cystathionine–β-synthase (CBS) and CTH are the key enzymes in the transsulfuration pathway for GSH synthesis (Sbodio et al., 2019). RT-PCR assays revealed that the three tumorigenic breast cancer cell lines (MCF-7S, BT474, MDA-MB-231) expressed higher CBS and CTH than nontumorigenic cell lines (MCF-10A, HMVEC) (Fig. 1A; Supplemental Fig. 1A), with much higher expression of CTH in three tumor cells, which was confirmed by Western blotting (Fig. 1B). To determine the role of CTH, it was silenced in both breast cancer cells and MCF-10A (Supplemental Fig. 1B) cells. The data showed that CTH siRNA markedly increased intracellular ROS levels in MCF-7S cells, yet it showed little elevation of ROS in MCF-10A cells (Supplemental Fig. 1C). Met derivation and supplementation disturbed the redox balance in MCF-7S cells, but no obvious disturbance was observed in MCF-10A cells. Moreover, Met derivation significantly inhibited the growth of three breast cancer cell lines in a time-dependent manner and showed a marginal effect on MCF-10A cells (Supplemental Fig. 1D). These
results suggested that unlike nontumorigenic breast cells, tumorigenic breast cancer cells acquired a particular trait to synthesize GSH by utilizing Met via the transsulfuration pathway and highly expressed CTH.

Our previous study has shown that sensitive MCF-7S and resistant MCF-7R cells possess varied capacities to use cysteine to synthesize GSH (Ge et al., 2017). RT-PCR examination of CBS and CTH showed that the two cell lines had dramatically different expression levels of CTH, with approximately seven times higher levels in sensitive than resistant cells (Fig. 1C). However, the CBS levels were comparable in MCF-7S and MCF-7R cells both in vitro and in vivo (Fig. 1C). Metabolic analysis of the endogenous metabolites revealed a resistant phenotype of metabolism, with an increase in Met, cystathionine, glutamate, and homocysteine levels and a decrease in cysteine and cysteine in MCF-7R cells (Fig. 1D), indicating reduced utilization of Met and the transsulfuration pathway in MCF-7R cells. Metabolic flow analysis with [U-13C]-serine showed that serine carbon was incorporated into the GSH pool through transsulfuration-derived cysteine, where there was much higher [M+5] GSH in MCF-7S than in MCF-7R cells (Supplemental Fig. 1E). This result indicated that MCF-7S cells used more serine and Met in the synthesis of cystathionine and GSH than MCF-7R cells via the transsulfuration pathway (Supplemental Fig. 1F). The above results strongly suggested that MCF-7S cells tended to optimally use Met and highly expressed CTH, whereas the resistant MCF-7R cells reprogrammed redox stasis by downregulating CTH and use of Met.

Met Deprivation Induces a Change from Sensitive Phenotypes of MCF-7S Cells into Resistant MCF-7R Cells; Met Supplementation Reverses the Sensitive Phenotypes of Resistant MCF-7R Cells into Sensitive MCF-7S Cells In Vitro and In Vivo. In previous studies, it has been demonstrated that a high level of ROS generation in MCF-7 cells induces drug resistance, whereas scavenging ROS reverses resistance and enhances drug sensitivity (Ge et al., 2017). The regulatory effects of Met metabolism on drug sensitivity or resistance were examined. We showed that Met deprivation induced a resistant phenotype of MCF-7 cells, with a significant decrease in the GSH/GSSG ratio (Fig. 2A) and an increase in ROS production (Fig. 2B) and P-gp expression (Fig. 2C). Met supplementation showed the opposite effects and modified the resistant phenotype of MCF-7R cells into a sensitive phenotype. Western blotting showed that supplementary Met significantly downregulated P-gp protein expression in a dose-dependent manner (Fig. 2D). The addition of NAC, an efficient ROS scavenger, depressed the high ROS level (Supplemental Fig. 2A), reduced the expression of P-gp (Fig. 2E), and significantly enhanced the intracellular fluorescence intensity of Rho123 (Fig. 2G). In combination with Met supplementation, when MCF-7R cells were exposed to various concentrations of H2O2 ranging from 0.5 to 2.0 mM, ROS and P-gp levels correspondingly increased (Fig. 2F; Supplemental Fig. 2B) and the expression of P-gp in tumor tissues decreased (Supplemental Fig. 2D), simultaneously administration of Met evidently reconstructed the redox balance, reduced ROS and the expression of P-gp, and enhanced the antitumor activity of PTX in terms of reducing the tumor volume relative to that with only PTX (Supplemental Fig. 2G). These results confirmed that supplementary Met had potential effects on reversing drug resistance and enhancing PTX efficacy.

Fig. 1. The expression and activity of cystathionine-γ-lyase in MCF-7S and MCF-7R cells. Examination of CTH mRNA (A) and protein expression levels (B) in tumorigenic breast cancer cell lines (MCF-7S, BT474, MDA-MB-231) and the nontumorigenic cell line (MCF-10A, HMEC) (n = 4). GAPDH was used as an internal control. Heatmaps of the mRNA expression levels of metabolic enzymes (C) and metabolites (D) involved in methionine and cysteine metabolism. Dark red and dark blue indicate higher and lower abundances of the metabolite, and dark orange and dark green indicate higher and lower expression levels of the genes, respectively (n = 4).

All data are represented as means ± S.D. Statistical significance was determined by Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001 versus the control group. AHcy, adenosylhomocysteinase; BHMT, betaine homocysteine methyltransferase; GCLC, glutamate-cysteine ligase; GPX-1, glutathione peroxidase; GSR, glutathione reductase; GSS, glutathione synthetase; MAT2A, methionine adenosyltransferase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase.
CTH Silencing Alters the Sensitive Phenotype of MCF-7S Cells to the Resistant Phenotype of MCF-7R Cells; Overexpression of CTH Modifies the Resistant Phenotype of MCF-7R Cells to the Sensitive Phenotype of MCF-7S Cells. Both Effects Are Dependent on the ROS Level.

In addition to the varied sensitivity or resistance to antitumor drugs, MCF-7S and MCF-7R cells also showed dramatic variation in CTH at both the expression and functional levels. To check the dependence of drug sensitivity or resistance on CTH, CTH was modulated either by transfection with siRNA or lentiviral vector to down- or upregulate CTH expression in MCF-7S and MCF-7R cells (Supplemental Fig. 3, A and B). The results showed that CTH silencing transfection induced a resistant phenotype; that is, the GSH/GSSG ratio was decreased, the ROS level was increased compared with the control group (Fig. 3, A and B), and the expression of P-gp was remarkably upregulated at both the mRNA and protein levels (Fig. 3C). Scavenging of ROS with NAC efficiently lowered ROS and P-gp levels and function in CTH-silenced MCF-7S cells (Supplemental Fig. 3C; Fig. 3, D and I), strongly suggesting that ROS and P-gp were dependent on CTH modulation and that ROS played a key role in inducing P-gp expression and activity. Conversely, CTH overexpression showed the opposite effect to silencing, gradually turning the resistant phenotype into a sensitive phenotype; that is, CTH overexpression promoted the GSH/GSSG ratio (Fig. 3E), reduced ROS (Fig. 3F), and downregulated P-gp at both the mRNA and protein levels (Fig. 3G). However, in MCF-7R cells, the overexpression effect of CTH on P-gp expression could be offset by the addition of H2O2, an ROS generator, consistent with the functional examination with fluorescence microscopy analysis of the efflux of intracellular Rho123 (Fig. 3H and J; Supplemental Fig. 3D). Moreover, PTX cytotoxicity was significantly reduced in cells transfected with CTH-siRNA relative to nontransfected cells (Supplemental Fig. 3E), and CTH-overexpressing cells became more sensitive to PTX (Supplemental Fig. 3F). Overall, the results indicated that P-gp expression and drug sensitivity/resistance of MCF-7 cells were dependent on CTH, which regulated redox homeostasis.

Activation of the IL-6/STAT3 Axis Downregulates CTH and Induces a Resistant Phenotype of MCF-7R Cells; Silencing of STAT3 Upregulates CTH and Forms a Sensitive Phenotype of MCF-7S Cells. It has been documented that STAT3 is overexpressed and constitutively activated in breast cancer cells (Qin et al., 2019) and that abnormal activity of IL-6/STAT3 relates to stemness maintenance and drug resistance of breast cancer (Huang et al., 2016). The level of STAT3 was therefore assessed in nonresistant MCF-7S cells and resistant MCF-7R cells (Supplemental Fig. 3, A and B). The results showed that the total STAT3 protein and STAT3 phosphorylated at Tyr705 (pTyr705) protein expression was significantly higher in the MCF-7R group than the MCF-7S group. Examination of the upstream regulatory factors of STAT3 revealed that...
the mRNA expression of both IL-6 and IL-10 increased in MCF-7R cells, but only the secretion levels of the inflammatory factor IL-6 in MCF-7R cells were much higher than those in MCF-7S cells (Fig. 4C). After stimulation with IL-6 and IL-10, we showed that IL-6 fully promoted STAT3 activation through the phosphorylation site Tyr705 in a dose-dependent manner, whereas IL-10 failed to activate STAT3 (Fig. 4B). Moreover, treatment with increased concentrations of PTX in breast cancer cells enhanced IL-6 expression, and subsequently, Tyr705 phosphorylation of STAT3 was attenuated (Fig. 4A). We also observed that pTyr705 STAT3 was accompanied by decreased expression of CTH in a dose-dependent manner when treated with IL-6, which suggested that STAT3 was negatively related to CTH expression (Fig. 4B). This relationship of pTyr705 STAT3 and CTH was observed in MCF-7S and MCF-7R cells treated with different doses of PTX, indicating that IL-6/pTyr705 STAT3 and CTH conferred resistance to PTX treatment (Fig. 4A).

Moreover, we observed that IL-6 could reduce the GSH/GSSG ratio (Supplemental Fig. 4A), elevate the ROS level (Fig. 4D), significantly downregulate CTH expression and upregulate P-gp expression (Fig. 4E), and finally reduce the antitumor activity of PTX (Supplemental Fig. 4B). In contrast to the effect of IL-6/STAT3 activation, the presence of NAC inhibited the upregulation of P-gp, indicating that IL-6/STAT3-induced high P-gp expression was ROS-dependent. Consistently, the cytotoxic effect of PTX was significantly higher when treated with a combination of IL-6 and NAC than when treated with IL-6 alone (Fig. 4F). Conversely, STAT3 silencing in MCF-7R cells showed an effect completely opposite to that of STAT3 phosphorylation activation. In detail, efficient silencing of STAT3 induced a sensitive phenotype in MCF-7 cells, for example, a significantly increased GSH/GSSG ratio (Supplemental Fig. 4C) and CTH expression (Fig. 4G), but reduced ROS levels (Fig. 4F) and P-gp expression (Fig. 4G). H2O2 treatment effectively reversed the effects induced by STAT3 silencing, such as elevated P-gp expression and weakened antitumor potency (Fig. 4G; Supplemental Fig. 4D). It was suggested that the effect of STAT3 was dependent on ROS levels. Interestingly, we showed that the expression of pTyr705 STAT3 was enhanced by H2O2 (Fig. 4G), as treatment with NAC and H2O2 decreased and increased IL-6 expression (Supplemental Fig. 4E).

The Effect of the IL-6/STAT3 Axis on Both the Sensitivity and Resistance of MCF-7 Cells Is Dependent on CTH. The role of CTH was further probed to elucidate the mechanism bridging IL-6/STAT3 and intracellular redox homeostasis and P-gp levels. Strikingly, CTH overexpression substantially rescued the resistant phenotype of decreased GSH (Supplemental Fig. 4F) and increased ROS levels (Fig. 5A) and the expression of P-gp (Fig. 5B), as well as drug resistance, which was induced by STAT3 activation (Fig. 5C). Conversely, silence of CTH successfully deactivated these effects induced by STAT3
silencing (Supplemental Fig. 4G; Fig. 5, D–F). These data suggested that CTH was a key factor bridging IL-6/STAT3 and the sensitive or resistant phenotype of MCF-7 cells.

In Vivo Modulation of Met and CTH Alters the Drug Resistance of Breast Cancer Cells in Nude Mouse Xenografts. We further established nude mouse xenograft models using MCF-7S cells stably transduced with either nontargeting shRNA control or shRNA CTH. In MCF-7S-sh-Ctrl xenograft mouse tumor tissue samples, either supplementary NAC or Met combined with PTX increased GSH levels (Supplemental Fig. 5A), depressed ROS levels (Fig. 6A), downregulated P-gp expression (Fig. 6B), and inhibited tumor growth with lower tumor weights after 2 weeks of treatment compared with the PTX group (Fig. 6C), indicating that GSH promotion was responsible for the enhanced effect of PTX. Moreover, PTX clearly elevated pTyr705 STAT3 in both MCF-7S-sh-Ctrl and MCF-7S-sh-CTH xenografts, whereas NAC and Met had little effect on pTyr705 STAT3 (Fig. 6, B and E).

In CTH-silenced mouse tumor tissue samples, PTX treatment significantly reduced GSH (Supplemental Fig. 5B), increased ROS (Fig. 6D), upregulated the expression of P-gp (Fig. 6E), and showed a marginal effect on tumor growth. NAC supplementation efficiently reconstructed the redox balance perturbed by PTX (Fig. 6, D and E), downregulated the expression of P-gp (Fig. 6E), and reversed PTX resistance (Fig. 6F). Met supplementation did not show the same effect as NAC (Fig. 6, D–F), suggesting that silencing of CTH was responsible for the disappearance of the drug resistance reversal effect. Together with the effect of Met on sensitizing PTX in a nude mouse xenograft model of MCF-7R cells, the above data indicated that CTH played a key role in the resistant or sensitive phenotype of MCF-7 cells in vitro and in vivo. Consistent with the in vitro results, compared with MCF-7S-sh-Ctrl xenograft models, MCF-7S-sh-CTH xenograft models were less sensitive to PTX.

Discussion

Breast Cancer Cells Are Characterized by High Expression and Activity of CTH and Enhanced Utilization of Methionine for GSH Synthesis. The transsulfuration pathway plays a central role in the maintenance of intracellular redox homeostasis. It has been estimated that approximately 50% of cysteine in GSH is derived from methionine via transsulfuration in hepatic cells (McBean, 2012). However, transsulfuration is confined to the liver and is either absent or present at very low levels outside of the liver (Finkelstein, 1990; Stipanuk, 2004). Typically, the transsulfuration pathway is inactive, the expression of CBS and CTH is minimized, and hence little Met is required for normal breast cells, as well as breast tissues (Sen et al., 2015). Surprisingly, we observed that three breast cancer cells altered their metabolism and acquired the capacity to synthesize GSH via the transsulfuration pathway. Much higher expression of CTH was observed in the three breast cancer cell lines (MCF-7S, BT474, MDA-MB-231) than in normal MCF-10A cells. Indeed, cancer cells experience higher oxidative stress from ROS than their normal counterparts, and as a result, maintenance of the antioxidant GSH is essential for the survival and proliferation of cancer cells (Bansal and Simon, 2018).

Cystine and methionine are the two primary source materials for the synthesis of GSH. Our previous study showed that MCF-7S and MCF-
7R cells have a varied dependence on cystine and significantly different expression of SLC7A11, the transporter for the influx of cystine. Downregulated SLC7A11 greatly restricts cystine uptake and reduces GSH biosynthesis in MCF-7R cells (Ge et al., 2017). In the present study, our data showed that wild-type MCF-7 cells and BT474 and MDA-MB-231 cells were heavily dependent on Met. Met deprivation alone greatly inhibited the viability of breast cancer cell lines, indicating the dependence of cancer cells on Met, which contributed to the antioxidative ability. Consistently, unlike most normal, nonhepatic, nontumorigenic cells, the property of “methionine dependency” has also been documented for multiple malignant cell lines, such as breast, bladder, colon, glioma, kidney, melanoma, and prostate cancer (Halpem et al., 1974; Mecham et al., 1983). Additionally, we observed that without methionine, the viability of breast cancer cells became weak in the presence of cysteine, indicating that exogenous cysteine alone was far from sufficient for GSH synthesis and cell survival. This finding is also in agreement with a previous report showing that cancer cells of the prostate require the methionine and transsulfuration pathways to support proliferation (Zhu et al., 2019). Our results showed that breast cancer cells preferentially consumed Met as the source material to synthesize cystathionine and GSH via the transsulfuration pathway, which is consistent with findings by Borrego et al. (2016). The proliferation and survival of MCF-7 cells were heavily dependent on CTH and Met utilization.

The Interconversion Between the Sensitive and Resistant Phenotypes of Breast Cancer Cells Is Dependent on Met and CTH. Relative to normal breast cells, metabolic reprogramming takes place in three breast cancer cells, including wild-type MCF-7S cells, which are characterized by highly expressed CTH and becoming dependent on Met. Interestingly, relative to MCF-7S, metabolic reprogramming occurs again in resistant MCF-7R cells, and these cells express rather low CTH and are hardly dependent on Met. In fact, the baseline level of CTH in resistant MCF-7R cells was only one-seventh of that in sensitive MCF-7S cells, indicating lower antioxidative ability. Consistently, the basal level of intracellular Met was significantly higher in MCF-7R cells than in MCF-7S cells due to a reduced capacity to use Met in MCF-7R compared with MCF-7S cells, mediated by CTH (Hecht et al., 2016; Wang et al., 2004); hence, the ROS level was higher in MCF-7R.

To our surprise, deprivation or excessive supplementary Met had distinctly different effects on MCF-7 cells, and CTH modulated the interconversion between the sensitive phenotype of MCF-7S and the resistant phenotype of MCF-7R cells. In detail, although the sensitive phenotype of MCF-7S cells expressed much CTH, Met deprivation still modulated the sensitive phenotype of MCF-7S cells into a resistant phenotype of MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel. Conversely, the effect of supplementary methionine disappeared in CTH-silenced MCF-7 cells both in vitro and in vivo, suggesting the key importance of CTH. Moreover, CTH silencing or overexpression showed similar effects to Met deprivation or supplementation. Thus, CTH silencing turned the sensitive phenotype of MCF-7S cells into resistant MCF-7R cells, similar to the effect of the ROS scavenger NAC, and it significantly increased the cytotoxicity of paclitaxel.
receptor STAT3 signaling are involved in drug resistance, including breast cancer resistance (Conze et al., 2001; Sonnenblick et al., 2015; Yi et al., 2013). STAT3 could shift non–cancer stem cell dynamics toward cancer stem cells and regulate its downstream genes, leading to resistance in breast cancer cells (Cheng et al., 2018). A comparative study revealed that IL-6 levels and STAT3 phosphorylation at Tyr705 were significantly higher in MCF-7R than in MCF-7S cells. A further study showed that IL-6 was positively correlated with STAT3 phosphorylated at Tyr705 and negatively correlated with CTH in MCF-7 cells. IL-6 efficiently promoted phosphorylated STAT3, and activation of the IL-6/STAT3 axis markedly inhibited CTH, induced a resistant phenotype of MCF-7 cells, and finally offset the antitumor activity of PTX. In contrast, silencing of STAT3 markedly increased CTH, reversed the resistant phenotype of MCF-7R cells into a sensitive phenotype of MCF-7S cells, and enhanced the antitumor activity of PTX. The above changes could be reversed by inhibition or knockdown of CTH, suggesting that the effect of STAT3 was dependent on CTH function. It is suggested that the IL-6/STAT3 axis is the primary modulator responsible for the expression and activity of CTH as follows: PTX, IL-6, STAT3, CTH, GSH, ROS, P-gp, drug resistance.

Limitation. Methionine supplementation or deprivation can be easily controlled in vitro studies with various cell lines. However, methionine starvation is impossible in animal studies performed for weeks because methionine is contained in food and protein sources. Therefore, it is not possible to examine the effect of methionine deprivation on inducing sensitive MCF-7S cells into resistant MCF-7R cells in vivo. Alternatively, we fed the animals inoculated with resistant MCF-7R cells for 2 weeks with sufficient methionine, and the results showed that excessive methionine gradually reversed the resistant phenotype of MCF-7R into the sensitive MCF-7S cells. Moreover, precise genetic modification or CTH targeting inoculated tumors was rather difficult and hence not performed in xenograft animals. Alternatively, we showed that the above effects of the methionine supply on MCF-7R cells of the xenograft mice were not observed in the xenograft mice inoculated with silenced CTH cells of MCF-7S, confirming that CTH plays a key role in vivo.

As ROS is a key intermediate in the proposed mechanism modulated by methionine, rigorous measurements are needed. Unfortunately, the probe, DCFH-DA, does not fulfill the criteria. Many publications have previously pointed out the pitfalls and inadequacies of using the DCFH-DA probe. For example, this probe does not react with hydrogen peroxide, even though the objective has been to measure hydrogen peroxide. More attention needs to be paid to the nature of the ROS formed in cancer cells in response to methionine modulation (Chen et al., 2010).

Conclusions. Our findings suggest that breast cancer cells reprogram redox metabolism and acquire a particular specialty to synthesize GSH through the transsulfuration pathway. Both in vitro and in vivo studies suggested that CTH played a key role in redox homeostasis and defined the sensitive or resistant phenotype of MCF-7 cells. For the first time, we successfully made interconversion between sensitive MCF-7S and resistant MCF-7R cells either by alteration of CTH or supplementary amount of methionine. CTH upregulation and Met supplementation showed a similar effect to scavenging ROS and induced a sensitive phenotype of MCF-7 cells, whereas CTH downregulation and Met depletion had a similar effect to excessive ROS and induced a resistant phenotype. The results indicate that CTH activity and the methionine supply are responsible for the phenotypes and function to transform between resistant and sensitive phenotypes of MCF-7 cells. The IL-6/
STAT3 axis dominates the expression and activity of CTH, increases the sensitivity or resistance of MCF-7 cells, and cannot bypass CTH activity.

Authorship Contributions

Participated in research design: Xie, Zhou, Wang, Aa.
Conducted experiments: Tan, Ge, Xu.
Contributed new reagents or analytic tools: Feng, Cao.
Performed data analysis: Tan, Ge.
Wrote or contributed to the writing of the manuscript: Tan, Feng, Aa.

References

Address correspondence to: Hongzhou Zhou, Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, 410078, China. E-mail: hjzhzhou@public.cs.hn.cn; Guangli Wang, Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. E-mail: guangjiwang@cpu.edu.cn
Received from the author on September 26, 2023.