Comparative Hepatic and Intestinal Metabolism and Pharmacodynamics of Statins

Anne M. Filppula, Päivi Hirvensalo, Heli Parviainen, Vilma E. Ivaska, K. Ivar Lönnberg, Feng Deng, Jenni Viinamäki, Mika Kurkela, Mikko Neuvonen, and Mikko Niemi

Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)

Received Feb 4, 2021; Accepted May 5, 2021

ABSTRACT
This study aimed to comprehensively investigate the in vitro metabolism of statins. The metabolism of clinically relevant concentrations of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, and their metabolites were investigated using human liver microsomes (HLMs), human intestine microsomes (HIMs), liver cytosol, and recombinant cytochrome P450 enzymes. We also determined the inhibitory effects of statin acids on their pharmacological target, 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase. In HLMs, statin lactones were metabolized to a much higher extent than their acid forms. Atorvastatin lactone and simvastatin (lactone) showed extensive metabolism [intrinsic clearance (Clint) values of 3700 and 7400 μl/min per milligram], whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (Clint < 200 μl/min per milligram). The acids had Clint values in the range <0.1–80 μl/min per milligram. In HIMs, only atorvastatin lactone and simvastatin (lactone) exhibited notable metabolism, with Clint values corresponding to 20% of those observed in HLMs. CYP3A4 and CYP2C9 were the main statin-metabolizing enzymes. The majority of the acids inhibited HMG-CoA reductase, with 50% inhibitory concentrations of 4–20 nM. The present comparison of the metabolism and pharmacodynamics of the various statins using identical methods provides a strong basis for further application, e.g., comparative systems pharmacology modeling.

SIGNIFICANCE STATEMENT
The present comparison of the in vitro metabolic and pharmacodynamic properties of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites using unified methodology provides a strong basis for further application. Together with in vitro drug transporter and clinical data, the present findings are applicable for use in comparative systems pharmacology modeling to predict the pharmacokinetics and pharmacological effects of statins at different dosages.

Introduction
3-Hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used in the treatment of hypercholesterolemia. Although statin drugs are effective and safe in most patients, many users experience poor efficacy or adverse drug reactions (Pazzucconi et al., 1995; Yebyo et al., 2019). The muscle toxicity of statins is a dose- and concentration-dependent phenomenon (Bradford et al., 1991; Dujovne et al., 1991), and the risk of toxicity increases along with the plasma concentrations of statins. This may be caused by drug-drug interactions or inherited defects in proteins affecting statin disposition, such as CYP2C9 and 3A4, organic anion transporting polypeptide (OATP) 1B1, or breast cancer resistance protein (Thompson et al., 2003; Graham et al., 2004; Neuvonen et al., 2006; Pasanen et al., 2006; Keskitalo et al., 2009b; Hirvensalo et al., 2019). Both acid and lactone forms of statins can interact with proteins involved in drug disposition. Lovastatin and simvastatin are administered as lactone prodrugs, whereas other statins are given in the active acid form. In the body, however, significant amounts of many statins are converted to their corresponding acid/lactone form (Neuvonen et al., 2006). Cytochrome P450 enzymes metabolize the lipophilic statin lactones more rapidly than statin acids (Neuvonen et al., 2006). Cytochrome P450 enzymes metabolize the lipophilic statin lactones more rapidly than statin acids (Fujino et al., 2004). Indirectly, uridine diphosphate-glucuronosyltransferase (UGT) enzymes may participate in lactone formation by mediating glucuronidation of statin acids. The acyl glucuronides formed in this process may then undergo spontaneous cyclization to the statin lactone (Prueksaritanont et al., 2002). Cytochrome P450 enzymes metabolize the lipophilic statin lactones more rapidly than statin acids (Neuvonen et al., 2006). Cytochrome P450 enzymes metabolize the lipophilic statin lactones more rapidly than statin acids (Fujino et al., 2004). Indirectly, uridine diphosphate-glucuronosyltransferase (UDPGA, uridine 5’-diphospho-glucuronic acid; UGT, uridine diphosphate-glucuronosyltransferase.

ABBREVIATIONS: Clint, intrinsic clearance; Cmax,u, unbound peak concentration; fu,mic, unbound fraction in microsomes; HIM, human intestine microsome; HLM, human liver microsome; HMG-CoA, 3-hydroxy-3-methylglutaryl–coenzyme A; LC-MS/MS, liquid chromatography-tandem mass spectrometry; OATP, organic anion transporting polypeptide; PAPS, 3’-phosphoadenosine 5’-phosphosulfate; PBPK, physiologically based pharmacokinetic; PMSF, phenylmethanesulfonyl fluoride; SULT, sulfotransferase; UDPGA, uridine 5’-diphospho-glucuronic acid; UGT, uridine diphosphate-glucuronosyltransferase.
CYP2C9 (Fischer et al., 1999; Hirvensalo et al., 2019). Pitavastatin, pravastatin, and rosuvastatin are excreted mainly unchanged (Neuvonen et al., 2006). Hence, the available statins differ significantly in their pharmacokinetic characteristics and susceptibility to altered metabolizing enzyme function.

Interestingly, the pharmacological target of statins, HMG-CoA reductase, is expressed in the same location as the cytochrome P450 enzymes, the endoplasmic reticulum of hepatocytes (Corsini et al., 1995). Thus, this enzyme is also present in human liver microsomes (HLMs). Similar to cytochromes P450, the active site of HMG-CoA reductase faces the cytoplasm, and the enzyme uses NADPH for its catalytic activity (Corsini et al., 1995). Statin acids, which are structurally similar to its substrate HMG-CoA, competitively inhibit it in the nanomolar range, leading to a reduction of the HMG-CoA:mevalonate pathway. Also, several statin metabolites have been depicted to be inhibitors of this reaction, but in vitro data, e.g., the 2- and 4-hydroxy metabolites of atorvastatin do not seem to be publicly available.

Many published physiologically based pharmacokinetic (PBPK) models of statins can be found in the literature, primarily aiming to evaluate their drug-drug interaction and pharmacogenetic properties. During the past two decades, PBPK modeling has evolved as an important tool in drug development, regulatory review, and clinical study design (Sager et al., 2015). PBPK modeling also holds the potential to become a valuable tool to inform drug and dosing selection in clinical practice (Johnson and Rostami-Hodjegan, 2011; Jamei, 2016; Venkatakrishnan and Rostami-Hodjegan, 2019). For such purposes, it is crucial that the data used for model development of a set of drugs are comparable and high in quality. Although the metabolism of statins has been widely investigated in vitro, only a few substrate depletion studies comparing the microsomal metabolism of different statins have been published (Fujino et al., 2004; Gertz et al., 2010, 2011; Varma et al., 2014).

When appropriately applied, the substrate depletion approach results in intrinsic clearance (CL\text{int}) values, which include all microsomal metabolic pathways of the tested compound (Obach, 1999), and can be scaled to hepatic metabolic clearance for PBPK modeling. Hence, to obtain comparable estimates of the metabolism of the widely used statins atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites, we carried out an extensive in vitro study in subcellular hepatic and intestinal fractions as well as in recombinant cytochrome P450 enzymes using low, clinically relevant statin concentrations. Moreover, to simulate the pharmacological response of statins in PBPK models, unbound statin concentrations in hepatocytes can be linked to in vitro measurements of their pharmacodynamic potency. Therefore, we also compared the inhibitory effects of these statins on their pharmacological target HMG-CoA reductase.

Materials and Methods

Chemicals and Reagents. Atorvastatin (acid), atorvastatin lactone, 2-hydroxyatorvastatin (acid), 2-hydroxyatorvastatin lactone, 4-hydroxyatorvastatin (acid), 4-hydroxyatorvastatin lactone, mevalonate lactone, pravastatin (acid), rosuvastatin (acid), and all internal standards (Supplemental Table 1) were purchased from Toronto Research Chemicals (Toronto, Canada). 3R,5S-fluvastatin (acid), 3S,5R-fluvastatin (acid), pitavastatin (acid), and pitavastatin lactone were obtained from Santa Cruz Biotechnology (Dallas, Texas), and simvastatin acid and simvastatin (lactone) from SynTone Research (Ontario, Canada). Adenosine 3-phosphate 5'-phosphosulfate triethylammonium salt (PAPS), alamethicin, NADPH, uridine 5'-diphospho-glucuronic acid (UDPGA), and HMG-CoA reductase assay kits were obtained from Sigma-Aldrich (St. Louis, MO). HLMs (XTreme 200, a pool of 200 mixed-sex donors), human liver cytosol (HLC: XTreme 200, a pool of 200 mixed-sex donors), and human intestine microsomes (HIMs), both normal (a pool of 15 mixed-sex donors) and free from phenylmethylsulfonyl fluoride (PMSF; optimal in carboxylesterase activity; a pool of six mixed-sex donors), were purchased from Sekisui XenoTech (Tokai, Japan). The following recombinant EasyCYP Bactosomes were obtained from Cypex Ltd (Dundee, UK): CYP1A2, CYP2A6B, CYP2B6B, CYP2C8B, CYP2C9B, CYP2C19B, CYP2D6, CYP2E1B, CYP2J2B, CYP3A4B, and CYP3A5B. Other chemicals were from Merck (Darmstadt, Germany).

Metabolism in Human Liver Microsomal Incubations. The metabolic depletion of statins was first measured in HLMs. With the exception for buffer controls, all incubations contained substrate, microsomes (0.2 mg/ml) in sodium phosphate buffer (0.1 M, pH 7.4) with MgCl₂ (5 mM). For simvastatin, the protein concentration was reduced to 0.1 mg/ml after the initial experiment. The depletion of each parent statin and its corresponding acid/lactone was studied in four different conditions: 1) addition of NADPH (1 mM) to the reaction mixture to measure the cytochrome P450–mediated metabolism; 2) addition of NADPH (1 mM) and UDPGA (5 mM) to measure both cytochrome P450– and UGT-mediated metabolism; 3) no addition of cofactors (negative control); and 4) no addition of cofactors or microsomes (buffer control). In condition 2, alamethicin (11 μg/ml) was also included in the incubations to allow pore formation. The metabolism of the 2- and 4-hydroxy metabolites of atorvastatin were studied using conditions 1, 3, and 4. The initial incubation concentrations of each substrate are listed in Supplemental Table 2 and Table 1.

All incubations were carried out once in triplicate on 96-well plates. The mixtures of substrate and microsomes (or only substrate in buffer in condition 4) were first preincubated for 15 minutes at 37°C and 350 rpm. After preincubation, cofactors were added to initiate the reactions in conditions 1 and 2. Samples were taken at 0, 5, 10, 20, 40, and 60 minutes. For atorvastatin lactone and simvastatin, the sampling times were shorter (0.5, 1, 3, 5, 7, and 10 minutes). Reactions were stopped by diluting samples 1:3 with ice-cold acetonitrile containing internal standard (1:2 for rosuvastatin) (Supplemental Table 1) and further handled as described below in the section Sample Processing and Analysis of Metabolism Samples.

Metabolism in Human Intestine Microsomal Incubations. The metabolic depletion of parent statins and their corresponding acid/lactone was also measured in HIMs. With the exception of buffer controls, all incubations contained substrate, microsomes (0.2 mg/ml) in sodium phosphate buffer (0.1 M, pH 7.4) with MgCl₂ (5 mM). For each substrate (incubation concentrations listed in Supplemental Table 2 and Table 1), the depletion was studied in four different conditions: 1) addition of NADPH (1 mM) and UDPGA (5 mM) to measure both cytochrome P450– and UGT-mediated metabolism (alamethicin 11 μg/ml also included), 2) no addition of cofactors (negative control), and 3) no addition of cofactors or microsomes (buffer control). Furthermore, to screen for the potential effects of intestinal carboxylesterases on the metabolism of statins, each statin was also incubated with 4) 0.2 mg/ml PMSF-free HIMs (optimal in esterase activity). No cofactors were added to PMSF-free HIM incubations.

All incubations were carried out once in triplicate, preincubated, and stopped in a similar manner as described for the HLM incubations above. In conditions 1–3, samples were taken at 0, 5, 10, 20, and 45 minutes. In condition 4, only two samples were taken: 0 and 25 minutes.

Metabolism Screening in Human Cytosolic Incubations. To screen for statin metabolism mediated by cytosolic enzymes, each statin was incubated with HLC (0.2 mg/ml) in sodium phosphate buffer (0.1 M, pH 7.4) with MgCl₂ (5 mM) at 37°C and 350 rpm, either 1) without cofactors or 2) with the sulfotransferase (SULT) cofactor PAPS (100 μM). Two samples were taken: 0 and 25 minutes. These conditions were selected to match those of the HIM screening (test setting 4 above). All incubations were carried out once in triplicate, and reactions were stopped as above.

Metabolism Screening with Recombinant Cytochrome P450 Enzymes. The depletion of statins was also measured in recombinant cytochrome P450 incubations. In the screening, the substrates were incubated with each one of 11 cytochrome P450 isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, and CYP3A5) separately at a protein concentration of 0.2 mg/ml. The substrate concentrations were the same ones as in the HLM depletion experiment (Supplemental Table 2; Table 1).

Samples were collected at 0, 30, and 60 minutes. All incubations were carried out once in triplicate, and reactions were stopped as above.

Inhibition of Metabolism in Microsomal Incubations. To confirm the results from the recombinant cytochrome P450 screening, inhibition studies in HLMs and HIMs were carried out for selected statins (HLMs: atorvastatin and atorvastatin lactone, 3R,5S- and 3S,5R-fluvastatin, pitavastatin lactone, and 3R,5S-fluvastatin, pitavastatin lactone,
Calculated and measured in vivo plasma concentration data, and initial incubation concentrations (C_0) of the statins tested

<table>
<thead>
<tr>
<th>Compound</th>
<th>BP</th>
<th>f_{up}</th>
<th>C_{max}</th>
<th>$C_{max,u}$</th>
<th>C_{gut}</th>
<th>$C_{gut,u}$</th>
<th>$C_{max,portal}$</th>
<th>$C_{max,portal,u}$</th>
<th>C_0 in HLMs, HLC, rCYPs</th>
<th>C_0 in HLMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>0.667a</td>
<td>0.02</td>
<td>0.31 (40 mg)</td>
<td>0.00062</td>
<td>290</td>
<td>8.7</td>
<td>0.69</td>
<td>2.5</td>
<td>0.051</td>
<td>0.05</td>
</tr>
<tr>
<td>Atorvastatin lactone</td>
<td>0.716a</td>
<td>0.04a</td>
<td>0.0070 (40 mg)</td>
<td>0.00028</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>2-Hydroxyatorvastatin</td>
<td>0.673a</td>
<td>0.05a</td>
<td>0.017 (40 mg)</td>
<td>0.00085</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>2-Hydroxyatorvastatin lactone</td>
<td>0.725a</td>
<td>0.06a</td>
<td>0.026 (40 mg)</td>
<td>0.0013</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>4-Hydroxyatorvastatin</td>
<td>0.672a</td>
<td>0.05a</td>
<td>0.0003 (40 mg)</td>
<td>0.00016</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>4-Hydroxyatorvastatin lactone</td>
<td>0.721a</td>
<td>0.05a</td>
<td>0.0003 (40 mg)</td>
<td>0.00016</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
<tr>
<td>3R,5S-fluvastatin</td>
<td>0.676a</td>
<td>0.05</td>
<td>0.37 (40 mg)</td>
<td>0.0037</td>
<td>97</td>
<td>2.9</td>
<td>0.74</td>
<td>1.9</td>
<td>0.019</td>
<td>0.05</td>
</tr>
<tr>
<td>3S,5R-fluvastatin</td>
<td>0.676a</td>
<td>0.05</td>
<td>0.38 (40 mg)</td>
<td>0.0038</td>
<td>97</td>
<td>2.9</td>
<td>0.74</td>
<td>1.9</td>
<td>0.019</td>
<td>0.05</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>0.695a</td>
<td>0.04</td>
<td>0.16 (4 mg)</td>
<td>0.0064</td>
<td>19</td>
<td>0.57</td>
<td>0.53</td>
<td>0.30</td>
<td>0.012</td>
<td>0.04</td>
</tr>
<tr>
<td>Pitavastatin lactone</td>
<td>0.753a</td>
<td>0.05</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Pravastatin lactone</td>
<td>0.662a</td>
<td>0.52</td>
<td>0.079 (40 mg)</td>
<td>0.041</td>
<td>380</td>
<td>11</td>
<td>11</td>
<td>3.0</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>0.674a</td>
<td>0.12</td>
<td>0.036 (40 mg)</td>
<td>0.0043</td>
<td>660</td>
<td>20</td>
<td>19</td>
<td>5.1</td>
<td>0.62</td>
<td>0.01</td>
</tr>
<tr>
<td>Simvastatin (lactone)</td>
<td>0.766a</td>
<td>0.06</td>
<td>0.023 (40 mg)</td>
<td>0.0013</td>
<td>380</td>
<td>12</td>
<td>0.0023</td>
<td>2.6</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Simvastatin acid</td>
<td>0.658a</td>
<td>0.07</td>
<td>0.008 (40 mg lactone)</td>
<td>0.000056</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
</tr>
</tbody>
</table>

BP, blood-to-plasma concentration ratio; C_0, initial incubation concentration; C_{gut}, enteroocyte concentration; $C_{gut,u}$, concentration in gut lumen; C_{max}, peak concentration in plasma; $C_{max,u}$, peak concentration in portal vein; f_{up}, unbound fraction in plasma; n/a, not available; n/d, not determined; u, unbound.

aPredicted value.

bCgut calculated according to dose/250 ml.

cCent calculated according to dose/C2kabs/C2fa/Qent, where kabs is the absorption rate constant, f is the fraction absorbed into the gut wall, and Qent is the enteroocyte blood flow (Rostami-Hodjegan and Tucker, 2004). A complete absorption scenario was assumed, using f = 1, and standard values of kabs = 0.03 1/min and Qent = 0.248 L/min (Obach et al., 2007; Kenny et al., 2012). Unbound concentrations were obtained by multiplying Ccat with unbound fraction in enteroocytes (fu,ent). fu,ent values (not shown) were predicted in Simcyp Simulator v.19 (Certara UK Limited).

dCmax,portal calculated according to Cmax + dose × kabs × L/Qhep, where Qhep is the hepatic blood flow (Ito et al., 1998). A complete absorption scenario was assumed, using f = 1, and standard values of kabs = 0.03 1/min and Qhep = 20.7 ml/min/kg (Houston and Galetin, 2008). For the calculations, the Cmax in plasma was converted to its corresponding value in blood according to Cmax × BP. Subsequently, the obtained Cmax,portal in blood was converted to plasma concentration by dividing it by BP.
simvastatin, and simvastatin acid; HIMs: atorvastatin lactone and simvastatin). In HLMs, inhibition of CYP3A4 and cytochrome P450 isoforms causing ≥50% depletion at 60 minutes in the cytochrome P450 screening were tested. The substrate and NADPH concentrations used were identical to those used in the microsomal depletion experiments above (Supplemental Table 2; Table 1). The protein concentration was 0.2 mg/ml in atorvastatin and atorvastatin lactone experiments; 0.5 mg/ml in 38,5S-fluvastatin and 35S,R-fluvastatin, pitavastatin lactone, and simvastatin acid experiments; and 0.1 mg/ml in simvastatin experiments. Ketoconazole (1 μM), montelukast (5 μM), quinidine (10 μM), and sulfaphenazole (10 μM) were employed as competitive inhibitors of CYP3A4/5, CYP2C8, CYP2D6, and CYP2C9, respectively. Because of concerns regarding the selective inhibition of CYP450 and quinidine, the effects of the time-dependent inhibitors gemfibrozil glucuronide (60 μM; CYP2C8) and paroxetine (15 μM; CYP2D6) were also tested. Whereas inhibitor and substrate were coincubated in direct inhibition experiments, the experiment with paroxetine included a 15-minute preincubation of inhibitor and NADPH and HLMs before addition of substrate. The experiment with gemfibrozil glucuronide was initiated by preincubating inhibitor with NADPH (1 mM) in HLMs (2 mg/ml). After preincubation for 15 minutes, 10 μl of the preincubation mix was moved to another well containing 190 μl statin and NADPH (1 mM) in buffer, diluting the protein concentration 20-fold. Samples in the inhibition experiments were taken at the same time points as in the HLM depletion experiment described above or at 0.5, 2, 4, 6, 8, and 10 minutes (atorvastatin lactone). In HIM incubations, the protein concentration was 0.2 mg/ml, and only the effects of ketoconazole (1 μM) were tested. For atorvastatin lactone, samples were taken at 0, 5, 10, 20, and 45 minutes, and for simvastatin at 0, 3.5, 5, 7.5, and 10 minutes. All HLM and HIM incubations were carried out once in triplicate at 37°C and 350 rpm and stopped as described above.

Determination of Unbound Fraction in Microsomes. Unbound fraction in microsomes (fu,micro) values were measured using two-chambered rapid equilibrium dialysis devices (Thermo Scientific, Waltham, MA). HLMs (0.2 mg/ml; 0.1 mg/ml for simvastatin) or HIMs (0.2 mg/ml) in buffer (200 μl) containing statin were transferred to one chamber, and 400 μl buffer to the other, before incubation at 37°C for 4 hours on a shaker (300 rpm). At the end of the incubation, 25-μl samples from the microsomal and buffer chambers were transferred to a 96-well plate containing 100 μl internal standard in acetonitrile. Blank buffer or blank HLMs or HIMs (25 μl) were added to the samples from the microsomal or buffer chambers, respectively, to yield identical matrices. Samples were thereafter processed as described previously. The fu,micro was calculated by dividing the statin concentration in buffer by that in the microsomal incubation mixture. To minimize potential metabolism by enzymes not dependent on external cofactors for their activity, old microsomes with several freeze and thaw cycles were used. In addition, they were allowed to incubate in room temperature 8 hours prior to the experiment. Denaturation was not carried out because of concerns that it would lead to conformational changes of the microsomal structure.

Inhibition of HMG-CoA. To investigate the effects of the time-dependent inhibitors on their pharmacological target HMG-CoA reductase, we determined the enzyme kinetics of HMG-CoA to its metabolite mevalonate containing mevalonolactone-d3 as the internal standard. Based on the obtained data, the HMG-CoA reductase (0.9 μM ammonium formate (pH 3.9, adjusted with 98% formic acid) as mobile phase A and acetonitrile as mobile phase B at a flow rate of 0.2 ml/min. The following gradient conditions were applied: 1 minute at 20% B on hold and then a linear ramp from 20% B to 40% B over 3 minutes followed by a second linear ramp to 90% B over 2 minutes and then 1 minute at 90% B before a re-equilibration step back to the initial conditions (20% B). The characteristic multiple reaction monitoring transitions for each analyte and internal standard are presented in Supplemental Table 1.

Sample Processing and Analysis of Pharmacodynamic Samples. After sample collection, samples were kept on ice, and 10 μl HCl (5 M) was added to ensure the lactonization of mevalonic acid into mevalonolactone (Honda, et al., 2007). Samples were centrifuged at 2000g for 10 minutes before LC/MS/MS analysis. Analytes were separated on Kinetex C18, 2.6 μm, 100 × 2.1 mm with SecurityGuard ULTRA C18 2.6 × 2.1 mm column (Phenomenex, Torrance, CA) by liquid chromatography (Nexera X2, ultra high performance liquid chromatography system; Shimadzu, Kyoto, Japan) operated in positive electrospray ionization mode (ESI+), and the multiple reaction monitoring transitions [M + H]+ were m/z 130.9-43.0 for mevalonolactone and m/z 133.9-45.95 for the internal standard.

Data Analysis and In Vitro-In Vivo Extrapolation. The obtained data of the present in vitro experiments were analyzed using GraphPad Prism software (version 7.03; GraphPad Software, Inc., San Diego, CA). For depletion data, pseudo-first order depletion rate constants (kdep) were determined using nonlinear regression analysis (C = C0 ∗ e−kdep ∗ t, where C is the observed concentration, C0 the initial concentration, and t is the incubation time). Only data points in the log-linear portion of each depletion curve were included in the analyses. Statin depletions observed in incubations with cofactors were corrected for depletions in incubations lacking cofactors (negative controls) by kdep, corrected = kdep, incubation − kdep, negative control. Assuming that substrate concentrations were < Cmax for their metabolic pathways, their intrinsic clearance in depletion experiments was expressed as CLint = CLhu, corrected/[M], where [M] is the microsomal protein concentration or cytochrome P450 concentration in recombinant enzyme incubations (Obach, 1999). Percent inhibition of statin depletion was calculated by comparing CLint,values of incubations containing inhibitor to those lacking inhibitor. The mean of CLint in the presence of each inhibitor was compared with the control using the Student’s t test in IBM SPSS Statistics (version 27.0; IBM Corp., Armonk, NY). A P value < 0.05 was considered statistically significant. Unbound intrinsic clearance values, CLint, unp were calculated according to CLint, unp = CLint/ fu,micro. For pharmacodynamic data, statin IC50 values were determined using nonlinear regression in GraphPad Prism and related to their unbound peak concentrations in plasma (Cmax,u) and in the portal vein.

Results

Metabolism in Microsomal and Cytosolic Incubations. In HLM incubations, statin lactones were metabolized to a much higher extent than their corresponding acid forms (Figs. 1A and 2A; Supplemental Table 3). In incubations with NADPH, atorvastatin lactone and simvastatin showed extensive metabolism (CLint values of 3700 and 7400 ml/min per milligram), whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (CLint 20–840 μl/min per milligram). The statin acids had CLint values in the range of <0.1–80 μl/min per milligram. For most parent
The metabolism of both acid and lactone forms in NADPH + UDPGA incubations was of similar range or slightly slower than in NADPH incubations. No metabolism was observed in pitavastatin acid, pravastatin, and rosuvastatin incubations. In most HLM control incubations lacking cofactors (negative controls), the depletion of statins was <20% at 60 minutes (Fig. 2A). However, in control incubations containing simvastatin and 4-hydroxyatorvastatin lactone, there seemed to be some cytochrome P450- and UGT-independent depletion occurring; for simvastatin, the depletion was 29% at 60 minutes, and for 4-hydroxyatorvastatin lactone, it was 32%. Pitavastatin lactone exhibited large variation because of limited solubility, which was observed repeatedly across experiments. For most statins, the solubility seemed to be dependent on the presence of microsomal protein; the initial concentrations in buffer controls were often lower than in corresponding incubations containing microsomes, and the solubility seemed to increase with incubation time in buffer controls (data not shown). In the HLC screening, no clear statin metabolism was evident, either with or without PAPS (Fig. 2B).

In HIM incubations with NADPH and UDPGA, only atorvastatin lactone and simvastatin showed notable metabolism (Figs. 1B and 2C; Supplemental Table 4). The HIM CLint values of atorvastatin lactone and simvastatin corresponded to approximately 20% of those obtained in HLM incubations. After incubation for 20–25 minutes, no clear metabolism was observed in HIM incubations lacking cofactors, except for a slight 17% decrease in simvastatin acid concentration in PMSF-free HIM incubations (Fig. 2C). For atorvastatin, atorvastatin lactone, and pravastatin, the decrease was 10%–12%. For pitavastatin lactone, the concentration seemed to have increased with time. This is likely due to solubility issues, which were also observed in other incubations with pitavastatin lactone.

Metabolism Screening with Recombinant Cytochrome P450 Enzymes. In the recombinant cytochrome P450 screening, CYP3A4, CYP3A5, CYP2D6, CYP2C9, and CYP2C8 were the most active enzymes involved in statin metabolism (Fig. 2A). After incubation for 60 minutes, ≤50% of the initial substrate concentration remained in CYP3A4 incubations with atorvastatin lactone, 2-hydroxyatorvastatin lactone, 4-hydroxyatorvastatin lactone, pitavastatin lactone, simvastatin, and simvastatin acid. The same (<50% remaining of the initial statin concentration) was observed in CYP3A5 incubations for atorvastatin lactone, 2-hydroxyatorvastatin lactone, and simvastatin; in CYP2D6 incubations for atorvastatin lactone, 2-hydroxyatorvastatin lactone, and pitavastatin lactone; in CYP2C9 incubations for the fluvastatin enantiomers; in CYP2C8 incubations for 2-hydroxyatorvastatin lactone and simvastatin; and in CYP1A2 and CYP2A6 incubations for 2-hydroxyatorvastatin lactone. Of note, whereas the lactones of atorvastatin, 2-hydroxyatorvastatin and simvastatin, were completely metabolized by both CYP3A4 and CYP3A5, their acid forms were more prone to metabolism by CYP3A4 than by CYP3A5.

Inhibition of Metabolism in Microsomal Incubations. In HLMs, CYP3A4 inhibitor ketoconazole completely (>95%) inhibited the metabolism (CLint) of atorvastatin (P < 0.001) and atorvastatin lactone (P = 0.004) and that of simvastatin (P = 0.002) and simvastatin acid (P < 0.001) (Fig. 3). It had no effect (<10% inhibition) on the depletion of 35,5R-fluvastatin (P = 0.142), whereas it had a moderate effect on the CLint of 3R,5S-fluvastatin (35% inhibition, P = 0.027) and that of pitavastatin lactone (18%, P = 0.343). In turn, the CYP2C9 inhibitor sulfaphenazole inhibited the CLint of 3R,5S-fluvastatin and 35,5R-fluvastatin by 42% (P < 0.001) and 51% (P = 0.010). The CYP2D6 inhibitor quinidine inhibited the depletion of atorvastatin lactone by 18% (P = 0.093) and pitavastatin lactone by 18% (P = 0.241). Paroxetine inhibited the depletion of atorvastatin lactone by 16% (P = 0.106). The CYP2C8 inhibitor montelukast inhibited the depletion of simvastatin by 25% (P = 0.101), whereas gemfibrozil glucuronide had no effect on it (P = 0.840). In HLMs, ketoconazole inhibited the metabolism of atorvastatin lactone and simvastatin by >95% (P < 0.001 and P < 0.001).

Interconversion between Acid and Lactone Forms in Microsomal and Cytosolic Incubations. Some interconversion between statin acid and lactone forms could be detected for atorvastatin,
pitavastatin, and simvastatin. To examine the extent of interconversion in HIMs, we quantified the concentrations of the corresponding lactone in statin acid incubations and those of the corresponding acid in lactone incubations (Supplemental Fig. 1). For other incubations, the data described reflect qualitative data.

In HIMs supplemented with NADPH + UDPGA, lactone concentrations marginally increased in pitavastatin but not in atorvastatin incubations (Supplemental Fig. 1). In HLMs with NADPH and UDPGA, the lactone concentrations of both atorvastatin and pitavastatin slightly increased, but not in other incubations (NADPH, control). For simvastatin acid, there was no increase in lactone in HLMs and HIMs. In other incubations (PMSF-free HIMs, HLC ± PAPS) with these statin acids, no increase in lactone was observed.

For statin lactones, there seemed to be a trend toward increase of acid concentrations in negative control (no cofactor) HLM and HIM incubations, in PMSF-free HIMs (no cofactor added), and in HLC (±PAPS). More specifically, for atorvastatin lactone, acid concentrations increased up to 8% and 13% of the initial lactone concentration in NADPH + UDPGA and no cofactor HIM incubations, respectively (Supplemental Fig. 1). In NADPH incubations, no increase in acid concentrations was observed. In HLMs, acid concentrations increased in negative control incubations but not in those containing cofactors. In PMSF-free HIMs and HLC, the atorvastatin acid concentrations seemed to increase slightly.

For pitavastatin lactone, acid concentrations slightly increased in all incubations. For simvastatin, there seemed to be an increase in acid concentrations (up to 10% of the initial simvastatin concentration) in HIMs lacking cofactors but not in those containing cofactors (Supplemental Fig. 1). In HLMs, there was no increase in acid concentrations. In PMSF-free HIMs and HLC, the acid concentrations seemed to increase slightly.

Fig. 2. Metabolism screening in recombinant cytochrome P450 (A), HLC (B), and HIM (C) incubations. In the recombinant cytochrome P450 screening, the mean statin concentrations remaining after a 60-minute incubation with 11 recombinant cytochrome P450 recombinant enzymes (0.2 mg/ml) and NADPH are shown. For comparison, the corresponding HLM data, with and without NADPH, are also included. The relative hepatic expression (%) of each cytochrome P450 is shown in the panel to the left (calculated based on data available in Simcyp Simulator v.20; Certara UK Limited). In the HLC screening, no notable metabolism was observed after a 25-minute incubation of statins with HLC (0.2 mg/ml), with or without PAPS. In the HIM figure, the parent statin concentrations remaining after a 25-minute incubation with PMSF-free HIMs (0.2 mg/ml) are shown (no cofactors included). In addition, 20-minute data from the depletion experiment in normal HIMs both with and without NADPH and UDPGA are also shown. The data presented represent mean and S.D. values of triplicate incubations. ATOR, atorvastatin; FLU, fluvastatin; lac, lactone; OH, hydroxy; PITA, pitavastatin; PRA, pravastatin; ROSU, rosuvastatin; SIM, simvastatin.
Inhibition of HMG-CoA. In enzyme kinetic experiments, the kinetics of HMG-CoA was best described by a substrate inhibition model, with K_m, K_i, and V_{max} values corresponding to 13 μM, 105 μM, and 1,582 nmol/min per milligram (Supplemental Fig. 2). In pharmacodynamic experiments, the majority of the statins tested inhibited the HMG-CoA-mevalonate reaction with IC_{50} values in the range of 4–20 nM (Fig. 4; Table 2). The IC_{50} of 3R,5S-fluvastatin was 9 nM, whereas that of its 3S,5R enantiomer approximated to 100 nM. Similarly, the IC_{50} of 2-hydroxyatorvastatin acid was 12 nM, but that of 4-hydroxyatorvastatin acid corresponded to \sim100 nM. Although the IC_{50} values of most statins were relatively close to their typical unbound peak concentrations in plasma (Fig. 4), those of 3S,5R-fluvastatin and simvastatin acid exceeded clinically relevant concentrations of 3S,5R-fluvastatin and simvastatin acid by 26- to 35-fold.

Discussion
This study aimed to comprehensively investigate and compare the metabolism and pharmacodynamics of 14 statins or statin metabolites.
the majority of the statin acids inhibited HMG-CoA reductase with IC50 tin, pravastatin, and rosuvastatin. In the pharmacodynamic experiment, vastatin. No intestinal or hepatic metabolism was observed for pitavasta- HIMs, CYP3A4/5 extensively metabolized atorvastatin lactone and sim- acids. No or very little statin depletion occurred in the liver cytosol. In other, these compounds were metabolized to a much higher extent than their corresponding HLMs, only atorvastatin lactone and sim- vatin exhibited notable metabolism, with CLint values corresponding to 20% of those obtained in HLMs. As compared with incubations with NADPH as the single cofactor, UDPGA addition did not result in an increased depletion. This indicates that the role of UGTs in the overall statin metabolism is relatively small.

To verify the cytochromes P450 involved in statin metabolism and to evaluate the potential role of the poorly characterized CYP2J2, we carried out an extensive screening in a panel of 11 recombinant cyto- chromosomes P450. Here, CYP3A4, CYP3A5, CYP2D6, CYP2C9, and CYP2C8 were the most active enzymes. CYP2J2 exhibited some activity toward atorvastatin lactone, 2-hydroxyatorvastatin lactone, pitavasta- tin lactone, simvastatin, and simvastatin acid. On the other hand, these compounds were metabolized to various degrees by almost all cyto- chromosomes P450 tested. Our inhibition data in HLMs and HIMs dem-onstrated a major role for CYP3A4/5 in the metabolism of atorvastatin, atorvastatin lactone, simvastatin acid, and simvastatin, in line with clini- cal observations (Neuvonen et al., 2006). For fluvastatin, CYP2C9 was of greater importance than CYP3A4. Furthermore, CYP2C9 was more prominent in the metabolism of 3,5,5-trifluorovastatin than in that of its enantiomer, as described earlier (Hirvensoja et al., 2019). Pitavastatin lactone was markedly metabolized by CYP2D6 and CYP3A4 in the screening, but its depletion was inhibited only moderately by the corre- sponding inhibitors in HLMs. Overall, our data demonstrating key roles for CYP3A4 and CYP2C9 in statin metabolism are line with previous literature (Fujino et al., 2004; Neuvonen et al., 2006).

The interconversion between the acid and lactone forms of statins introduces an additional level of complexity into statin pharmaco- kinetics. The process can be enzyme-mediated, spontaneous, or pH-driven and occur in both the blood stream and hepatocytes (Jemal et al., 1999; Billecke et al., 2000; Prueksaritanont et al., 2002; Hoffmann and Nowo- sielski, 2008; Li et al., 2019). In line with previous studies (Prueksa- ritanont et al., 2002; Fujino et al., 2003; Yamada et al., 2003), we observed slight increase in lactone concentrations in some statin acid incubations with UDPGA. The underlying mechanism is likely UGT-mediated glu- curonidation, followed by spontaneous lactonization (Prueksaritanont et al., 2002). For statin lactones, there was a trend toward increase of acid concentrations in negative control microsomal incubations, suggesting a role for enzymes that do not require external cofactors for their activity, such as carboxylesterases (Liederer and Borchardt, 2006). In PMSF-free HIMs, however, less than 10% of the initial lactone concentrations had been depleted at 25 minutes. For comparison, in HIMs fortified with NADPH and UDPGA, only 32% and <1% of the initial atorvastatin lactone and simvastatin (lactone) remained at 20 minutes. Thus, the role of intestinal membrane-bound esterases in lactone depletion seems to be negligible. There are contradictory findings on the role of human car- boxylesterases in the conversion of simvastatin to its acid form; how- ever, these enzymes seem to catalyze this process in blood (Vickers et al., 1990; Wang et al., 2015; Li et al., 2019). Together with SULTs, car- boxylesterases are also present in smaller fractions in the cytosol (Boberg et al., 2017). In our HLC incubations (±PAPS), no statin showed a >10% reduction in their concentrations at 25 minutes. No depletion was observed for pravastatin, which has been reported to be a SULT substrate in rat liver (Kitazawa et al., 1993; Watanabe et al.,

![Fig. 4. Pharmacodynamic IC50 values of statin acids in comparison with their plasma concentrations. To test the inhibitory effects of the acid forms of the statins on their pharmacological target, eight different concentrations of the test compound were incubated with HMG-CoA (20 μM) and HMG-CoA reductase (0.3 μg/ml) for 3 minutes. The results shown describe mean values of triplicate incubations (duplicate incubations for pitavastatin). The Cmax,u values in plasma and in the portal vein (Cmax,u,portal) are from Table 1. As described therein, the Cmax,u,portal Concentrations were calculated assuming a complete absorption sce- nario. ATOR, atorvastatin; FLU, fluvastatin; OH, hydroxy; PITA, pitavastatin; PRA, pravastatin; ROSU, rosuvastatin; SIM, simvastatin.

using identical methods. Our collective data from HLM, HIM, HLC, and recombinant enzyme incubations underline the importance of cyto- chrome P450 enzymes in statin metabolism. According to our findings, CYP3A4/5 (simvastatin, atorvastatin) and CYP2C9 (fluvastatin) are the main statin-metabolizing enzymes in the liver. In HLMs, statin lactones were metabolized to a much higher extent than their corresponding acids. No or very little statin depletion occurred in the liver cytosol. In HIMs, CYP3A4/5 extensively metabolized atorvastatin lactone and sim- vastatin. No intestinal or hepatic metabolism was observed for pitavasta- tin, pravastatin, and rosuvastatin. In the pharmacodynamic experiment, the majority of the statins inhibited HMG-CoA reductase with IC50 values of 4–20 nM. Collectively, our findings are applicable for use in comparative systems pharmacology modeling of statins.

Although statin metabolism has been widely investigated in vitro, only a few depletion studies comparing the metabolism of statins have been published (Fujino et al., 2004; Gertz et al., 2010, 2011; Varma et al., 2014), and none with the present palette of statins. Our HLM and HIM CLint values were generally within 2-fold of the previous CLint values from depletion studies. In agreement with previous knowledge (Fujino et al., 2004), the lactones were metabolized more extensively than their acid forms. Atorvastatin lactone and simvastatin showed extensive metabolism, with HLM CLint values of 3700 and 740 μl/min per milligram, whereas those of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin were in the range of 20–840 μl/ min per milligram. The statin acids had CLint values below 80 μl/min per milligram, with pitavastatin acid, pravastatin, and rosuvastatin showing negligible metabolism. In HIMs, only atorvastatin lactone and sim- vastatin exhibited notable metabolism, with CLint values corresponding to 20% of those obtained in HLMs. As compared with incubations with NADPH as the single cofactor, UDPGA addition did not result in an increased depletion. This indicates that the role of UGTs in the overall statin metabolism is relatively small.

TABLE 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>13.1 ± 3.2</td>
</tr>
<tr>
<td>2-Hydroxyatorvastatin</td>
<td>12.1 ± 4.2</td>
</tr>
<tr>
<td>4-Hydroxyatorvastatin</td>
<td>∼100</td>
</tr>
<tr>
<td>3R,5S-Fluvastatin</td>
<td>8.58 ± 2.61</td>
</tr>
<tr>
<td>3S,5R-Fluvastatin</td>
<td>∼100</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>12.4 ± 1.8</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>12.6 ± 3.7</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>4.37 ± 1.13</td>
</tr>
<tr>
<td>Simvastatin acid</td>
<td>19.7 ± 2.0</td>
</tr>
</tbody>
</table>

The highest concentrations tested were 100 and 500 nM.
2009). As a longer incubation time might have shown some involvement of cytosolic enzymes in statin metabolism, our HLC data should be interpreted with caution.

We used substrate depletion to obtain comparable estimates of the microsomal metabolism of each statin. The depletion approach operates under the assumption that the initial substrate concentration is well below K_m ($C_0 \ll K_m$) (Obach, 1999). In our experiments, we attempted to use equal protein concentrations (0.2 mg/ml; 0.1 mg/ml for simvastatin) and low, clinically relevant statin concentrations. For most statins, an incubation concentration of 0.05 μM was used. For pravastatin acid and lactone and rosuvastatin the corresponding concentrations were slightly lower (0.01–0.04 μM), and for pravastatin it was higher (0.1 μM), based on initial estimations of typical unbound plasma concentrations. Regardless, in HLM incubations, the $C_0 \ll K_m$ criterion was fulfilled for all statins with K_m values reported in the literature (Supplemental Table 2). Assuming a “worst case” scenario with complete absorption of the statin into enteroocytes, our initial substrate concentrations in HMs were in general 20-fold higher than those in HLMs. For the fluvastatin enantiomers, the concentrations used did not fulfill the $C_0 \ll K_m$ criterion in HMs. However, no fluvastatin metabolism was observed in HIM incubations, and also the metabolism in HLMs was limited.

The present microsomal experiments included both buffer controls and negative controls. As most statins needed protein to dissolve in the incubations, it was not possible to distinguish between potential degradation of compound in buffer and depletion in incubations lacking cofactors. However, by correcting for depletion in negative control incubations, we were able to accurately measure the NADPH- and UDPGA-dependent microsomal metabolism. Use of microsomes instead of hepatocytes allowed us to measure metabolic $C_{1\text{int}}$ values in a system stripped from confounding factors, such as drug transporters. Interestingly, although rosuvastatin is not metabolized in microsomes, there are data showing (very slow) rosuvastatin metabolism in hepatocytes (McCormick et al., 2000). The statins are known substrates of drug transporters, in particular of OATP1B1 and breast cancer resistance protein (Pasanen et al., 2006; Keskitalo et al., 2009c; Giacomini et al., 2013). Consequently, the hepatic clearance of statins is a product of their metabolic $C_{1\text{int}}$ values in combination with their transporter C_{int} values. Together with in vitro drug transport and pharmacodynamic data in combination with clinical data, our $C_{1\text{int}}$ values can be applied in systems pharmacology modeling of statin pharmacokinetics and effects.

In the present study, we also tested the inhibitory effects of the statin acids on their pharmacological target in the liver, HMG-CoA reductase. Although previous studies have determined these effects using radiometric assays or spectrophotometry to measure NADPH consumption (Kathwala, 1991; Holdgate et al., 2003; Perchellet et al., 2009), we used LC-MS/MS to measure mevalonolactone concentrations. Overall, our findings are in good agreement with literature data (Supplemental Table 5). Our IC_{50} value obtained for pravastatin acid (13 nM), however, is 4- to 5-fold lower than previous measurements (McTaggart et al., 2001; Perchellet et al., 2009). The low value is supported by our preliminary results: 4- to 5-fold lower than previous measurements (McTaggart et al., 2001; Perchellet et al., 2009). Although previous studies have determined these effects using radiometric assays or spectrophotometry to measure NADPH consumption (Kathwala, 1991; Holdgate et al., 2003; Perchellet et al., 2009), we used LC-MS/MS to measure mevalonolactone concentrations. Overall, our findings are in good agreement with literature data (Supplemental Table 5). Our IC_{50} value obtained for pravastatin acid (13 nM), however, is 4- to 5-fold lower than previous measurements (McTaggart et al., 2001; Perchellet et al., 2009). The low value is supported by our preliminary results: 4- to 5-fold lower than previous measurements (McTaggart et al., 2001; Perchellet et al., 2009).

Acknowledgments

The authors would like to thank Jouko Lahtila for skilled technical assistance and help with the experiments.

Authorship Contributions

Participated in research design: Filppula, Hirvensalo, Parviainen, Niemi.
Wrote or contributed to the writing of the manuscript: Filppula, Hirvensalo, Parviainen, Ivaska, Lönberg, Deng, Vinnamäki, Kurkela, Neuvonen, Niemi.

References

Address correspondence to: Mikko Niemi, P.O. Box 20, 00014 University of Helsinki, Helsinki, Finland. E-mail: mikko.niemi@helsinki.fi