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ABSTRACT

Intratumoral heterogeneity is a leading cause of treatment failure
resulting in tumor recurrence. For the antibody-drug conjugate
(ADC) ado-trastuzumab emtansine (T-DM1), two major types of
resistance include changes in human epidermal growth factor
receptor 2 (HER2) expression and reduced payload sensitivity,
which is often exacerbated by heterogenous HER2 expression and
ADC distribution during treatment. ADCs with bystander payloads,
such as trastuzumab-monomethyl auristatin E (T-MMAE), can
reach and kill adjacent cells with lower receptor expression that
cannot be targeted directly with the ADC. Additionally, coadminis-
tration of T-DM1 with its unconjugated antibody, trastuzumab, can
improve distribution and minimize heterogeneous delivery. However,
the effectiveness of trastuzumab coadministration and ADC by-
stander killing in heterogenous tumors in reducing the selection of
resistant cells is not well understood. Here, we use an agent-based
model to predict outcomes with these different regimens. The simula-
tions demonstrate that both T-DM1 and T-MMAE benefit from trastu-
zumab coadministration for tumors with high average receptor
expression (up to 70% and 40% decrease in average tumor volume,
respectively), with greater benefit for nonbystander payloads. How-

ever, the benefit decreases as receptor expression is reduced, revers-
ing at low concentrations (up to 360% and 430% increase in average
tumor volume for T-DM1 and T-MMAE, respectively) for this mecha-
nism that impacts both ADC distribution and efficacy. For tumors
with intrinsic payload resistance, coadministration uniformly exhibits
better efficacy than ADC monotherapy (50%-70% and 19%-36%
decrease in average tumor volume for T-DM1 and T-MMAE, respec-
tively). Finally, we demonstrate that several regimens select for resis-
tant cells at clinical tolerable doses, which highlights the need to
pursue other mechanisms of action for durable treatment responses.

SIGNIFICANCE STATEMENT

Experimental evidence demonstrates heterogeneity in the distri-
bution of both the antibody-drug conjugate and the target recep-
tor in the tumor microenvironment, which can promote the
selection of resistant cells and lead to recurrence. This study
quantifies the impact of increasing the antibody dose and utilizing
bystander payloads in heterogeneous tumors. Alternative cell-
killing mechanisms are needed to avoid enriching resistant cell
populations.

Introduction

One of the main causes of treatment failures for therapies that target
human epidermal growth factor receptor 2 (HER2) receptors is intratu-
moral heterogeneity, which typically leads to cancer relapse with a
worse prognosis (Rye et al., 2018). The combination of incomplete cell
killing and tumor heterogeneity is a widespread problem in chemother-
apy that can result in selection of resistant cell populations. Residual
tumor cells left from previous treatment are the major cause of tumor
recurrence (Allgayer and Aguirre-Ghiso, 2008; Li et al., 2015). Finding
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approaches to eliminate all tumor cells is a challenging task in the
development of effective treatments that avoid tumor relapse.
Antibody-drug conjugates (ADCs), such as ado-trastuzumab emtan-
sine (T-DM1), commercially known as Kadcyla, are a type of targeted
therapy approved by the US Food and Drug Administration for HER2-
overexpressing breast cancer relapsed from treatment with trastuzumab
(Herceptin) (Manthri et al., 2019). T-DM1 efficacy has been linked
closely to HER2 expression, and its efficacy decreases with a decrease
in HER?2 expression (Garcia-Alonso et al., 2020). Recently, Bon et al.
(2020) have shown that patients previously treated with pertuzumab
(also a HER2 monoclonal antibody—targeting agent) have reduced
HER? receptor availability, which makes T-DM1 less effective as a sec-
ond-line treatment for patients previously treated with trastuzumab/per-
tuzumab as a first-line regimen. Unfortunately, T-DM1 resistance is not
limited to HER2 expression, and other forms of resistance, such as lim-
ited tissue penetration (i.e., a “binding site barrier”), defective internali-
zation, drug efflux pumps, and reduced lysosomal proteolysis, make
both acquired and intrinsic resistance a major problem (Barok et al.,
2014; Hamblett et al., 2015; Rios-Luci et al., 2017; Staudacher and

ABBREVIATIONS: ABM, agent-based model; ADC, antibody-drug conjugate; DAR, drug-antibody ratio; DM1, emtansine; HER2, human epi-
dermal growth factor receptor 2; Kp,, Michaelis-Menten constant; MMAE, monomethyl auristatin E; Pax, maximum probability of cell killing;
SMCC, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate; T-DM1, ado-trastuzumab DM1; T-MMAE, trastuzumab-MMAE.
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Brown, 2017; Garcia-Alonso et al., 2020; Hunter et al., 2020). In this
study, we focus on two mechanisms of resistance: 1) reduced HER2
expression as a mechanism that impacts both tissue distribution and cel-
lular potency and 2) payload sensitivity, which impacts cell potency
without changing tumor ADC distribution.

New ADC mechanisms and administration regimens have been
shown to potentially overcome some of the barriers and resistance
mechanisms to treatment. Some ADCs, for example, contain linkers
and payloads that are more lipophilic than the emtansine (DM1)-lysine
conjugate released by T-DM1, such as DM1 (with a cleavable linker)
and monomethyl auristatin E (MMAE) (Kovtun et al., 2006; Erickson
et al., 2010). These payloads have the ability to enter adjacent cells by
crossing the cell membranes once they are released inside ADC-targeted
cells. This mechanism of uptake is known as the bystander effect. If the
payload reaches a sufficient concentration, adjacent cells that cannot be
directly targeted by the ADC may be killed. This has been one strategy
to kill cells that are resistant due to lower receptor expression.

In addition to targeting expression heterogeneity, antibodies distribute
heterogeneously because of their fast binding rates relative to diffusion
(Graff and Wittrup, 2003). This effect, first observed early after the
advent of monoclonal antibodies (Oldham et al., 1984) and described as
a “binding site barrier” by Fujimori et al. (1989), has been seen in mul-
tiple solid tumors in the clinic (Eary et al., 1989; Scott et al., 2005; Lu
et al., 2020a,b). An approach to improve heterogenous drug distribution
during T-DM1 administration is coadministration with its unconjugated
antibody trastuzumab. ADC monotherapy with T-DM1 at a clinical
dose (3.6 mg/kg) shows that the drug is localized around blood vessels
in solid tumors, and most of the tumor does not receive the treatment
(Rhoden and Wittrup, 2012). As shown both in mice and in simulations,
coadministration of trastuzumab and T-DM1 can improve penetration
and efficacy of these therapeutics in solid tumors (Cilliers et al., 2018;
Menezes et al., 2020). At the same time, this coadministration reduces
the number of payloads in targeted cells [which is important for cell
killing (Li et al., 2016)], thereby making these cells theoretically more
susceptible to continued growth and division. However, it is not known
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how antibody coadministration and ADCs with bystander effects might
influence the selection of more resistant cells, which can potentially
alter the risk of tumor relapse.

Here, we use a validated agent-based model described previously
(Menezes et al., 2020) to quantify how ADCs with bystander payloads
modulate efficacy in heterogeneous solid tumors with and without coadmi-
nistered antibody, specifically focusing on overall efficacy and selection of
resistant cells. In particular, we ask three questions: 1) How do carrier
doses and bystander effects [MMAE vs. lysine-N(epsilon)-N-succinimidyl
4-(N-maleimidomethyl)cyclohexane-1-carboxylate  (Lys-SMCC)-DM1]
impact the distribution, uptake, and efficacy of ADC treatment in tumors
with heterogeneous HER2 expression? 2) Do carrier doses and bystander
effects show the same influence on efficacy in heterogeneous tumors
when cell sensitivity to the payload does not impact tumor distribution?
And 3) how do different coadministration regimens affect the selection of
resistant cells, which could lead to resistant tumor relapse?

Materials and Methods

We extended our hybrid agent-based model (ABM) framework introduced
previously (Menezes et al., 2020) to incorporate additional physical and biologi-
cal phenomena. Briefly, the model is comprised of cells and blood vessels that
behave based on probabilistic rules and their microenvironment. The previous
model described plasma dynamics (clearance and payload deconjugation), drug
dynamics (intracellular processing for nonbystander payloads), and cell dynamics
(e.g., cell division and cell death) that impact the tumor volume in our simula-
tions. Cells change their state from alive to dead based on the concentration of
payload bound to microtubules inside of the cell. A description of our model for
the plasma dynamics, drug dynamics, and agent dynamics (cancer cell and blood
vessel dynamics) can be found in the Supplemental eqs. (1-15) and accompany-
ing text.

Here, the model is extended to include: 1) angiogenesis, allowing us to look
at treatment over longer periods of time; 2) heterogeneous receptor expression
and sensitivity of cancer cells to payloads; and 3) bystander payloads capable of
diffusing to nearby cells. These additional features allow us to compare coadmi-
nistration of T-DM1 and trastuzumab-MMAE (T-MMAE) with trastuzumab in
different tumor environments (Fig. 1).

Bystander

Fig. 1. Model Schematic. (A) The ABM environment is composed of cancer cells with different characteristics (e.g., different number of receptors or sensitivity to
treatment) and blood vessels through which therapeutics are delivered. (B) The model tests different regimens: 1) single-agent administration (top) vs. coadministration
of antibody with ADC (bottom) and 2) nonbystander payloads (left) vs. bystander payloads (right). The model can be used to examine these regimens for cell popula-

tions containing resistant cells.

¥20z ‘9T |udy uo sfeulnor 134SY e Blo's jeuuno fiadse pwip wio.y papeojumod


http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/

10 Menezes et al.

Simulation Environment and Framework. The model was constructed in
C++ with Boost (Boost Software License, www.boost.org). The graphical user
interface was built using the Qt framework (General Public License, qt.io). Effi-
cient linking and solution of our hybrid multiscale ABM followed the principles
described in Cilfone et al. (2015) with more details in Menezes et al. (2020).

The model is a two-dimensional representation of a tumor section that con-
tains blood vessels and several thousand cells. The cells and blood vessels have
different states (i.e., alive or dead for cells and functional or nonfunctional for
vessels), and they occupy specific positions on the simulation grid. Each cell
occupies a volume of 2 x 107121 (12.6 pm on a side), and the initial tumor,
which has about 1940 cells, is assumed to represent an initial tumor volume
range of 200-300 mm?>. ADCs enter the tumor through active blood vessels, and
the functional vessel density changes based on the tumor size. Cells were
assigned either 1 million (similar to sensitive cell lines like human-derived gas-
tric carcinoma NCI-N87) or 50,000 receptors/cell (similar to resistant cell lines
like human-derived breast carcinoma JIMT-1) (Le Joncour et al., 2019), and the
fraction of cells in each category could be varied. Placement of cells with either

receptor number was random on the grid.
ADC Dynamics with Bystander Effects. For distribution studies, drugs are

administered as a single administration on day 0, and their dynamics inside the
host are described with ordinary and partial differential equations. We previously
described drug dynamics with bystander effects within a Krogh cylinder model,
which assumes all cells have identical properties (Khera et al., 2018), and we used
these same equations (with a more sophisticated geometry) in our ABM model
here. Briefly, as shown in Supplemental Fig. 1, T-DM1, T-MMAE, and trastuzu-
mab are cleared from the plasma biexponentially, while they can at the same time
extravasate into the tumor, diffuse through the interstitial tissue, bind to HER2
receptors, and internalize. After ADCs are degraded in lysosomes, the payloads
Lys-SMCC-DM1 from T-DM1 and MMAE from T-MMAE enter the cytoplasm
and either bind to microtubules or leave the cell. Both payloads in the interstitial
tumor tissue also have the ability to enter cancer cells directly but at different rates
determined by their individual properties.

Vessel Dynamics. Although tumors form new blood vessels to sustain tumor
growth (angiogenesis), the functional or active vessel density is also known to
decrease with increasing tumor size (Hilmas and Gillette, 1974; Williams et al.,
1988). In our model, grid locations for blood vessels (functional and nonfunc-
tional) were identified before the start of simulations. The initial densities of total
and active blood vessels were calibrated as described in Menezes et al. (2020).
At each agent time step, new blood vessels can become functional as tumor size
increases, but the overall vessel density (vessels per tumor volume) decreases
(i.e., the tumor volume grows faster than vessel density). This is done by calcu-
lating the fraction of active blood vessels at each agent time step and comparing
it with the tumor volume at that time and with its initial fraction of active blood
vessels set at the beginning of the simulation as shown in eq. 1:

fri =fro (%)7 @

where fr; is the active fraction of blood vessels at the agent time step,
fr, is the active fraction of blood vessels assigned at the beginning of
the simulation, V is tumor volume at the agent time step (mm?), and V,
is the initial tumor volume (mm?). The parameter a was fit to experi-
mental data and has a value of 0.28 (Supplemental Fig. 2) (Hilmas and
Gillette, 1974). With this method, the overall decrease in active vessel
density that occurs at the same time that new blood vessels are formed
during the increase in tumor volume is captured.

Cell Dynamics and Model Calibration. Cells proliferate and die as the
simulation progresses. All cells in the tumor in a particular simulation proliferate
with the same doubling time, with doubling times chosen from 5-17 days based
on calibration to experimental data (Cilliers et al., 2018). Cancer cells change
their states from alive to dead based on the concentration of payloads bound to
microtubules inside the cell. The probability of cell killing per agent time step is:

Pmax [Pb]

P =
kill Km ¥ [Pb]

(2)
where P, is the maximum probability of cell killing, [Py] is the con-
centration of payload bound to microtubules in nanomolar, and K, is
the Michaelis-Menten constant in nanomolar.

In Vivo Efficacy in a Xenograft Model. All animal studies were con-
ducted according to University of Michigan Institutional Animal Care and Use
Committee. For fractionated dosing, NCI-N87 cells were purchased from Ameri-
can Type Culture Collection (Manassas, VA) and grown at 37°C with 5% CO in
RPMI 1640 growth medium supplemented with 10% (v/v) FBS, 50 U/ml peni-
cillin, and 50 pg/ml streptomycin. Mycoplasma testing was performed annually
using the MycoAlert Testing Kit (NC971983; Thermo Fisher Scientific, Wal-
tham, MA). For the xenograft studies, 5 x 10° NCI-N87 cells were inoculated in
the rear flank of 4-8-week-old female nude (Foxnl nu/nu) mice from The Jack-
son Laboratory. Tumors were measured with calipers every other day, and the
tumor volume was calculated as length x width%/2. When tumors reached
approximately 250 mm®, three doses of T-DMI1 at 2.4 mg/kg were given at days
0, 7, and 14. Tumors were monitored until the tumor reached 2000 mm® or
ulcerated.

Results

Model Calibration and Validation. This model used pharmacoki-
netic parameters estimated based on physicochemical properties and a previ-
ous publication by Khera et al. (2018) (see Supplemental Tables 1 and 2).
Cell doubling time was calibrated to published data (Cilliers et al., 2018) as
previously shown in Menezes et al. (2020), giving a range of 5-17 days.
The cell-killing parameters P, and K, were herein calibrated and validated
for Lys-SMCC-DM1 (T-DM1) and MMAE (T-MMAE) using experimental
data from Cilliers et al. (2018) and Singh et al. (2020a,b) along with CaliPro,
our calibration protocol for parameter estimation (Joslyn et al., 2020). For
Lys-SMCC-DM1, cell-killing calibration is shown in Supplemental Fig. 3A
with P, and K, 0.0014 and 800, respectively, and validated in
Supplemental Fig. 3, B-D. For MMAE, P, and K;;, were 0.006 and 600,
respectively, for calibration as shown in Supplemental Fig. 4A and validated
in Supplemental Fig. 4, B-D.

Once the model was calibrated and validated to the pharmacodynamic
data, the results were compared with in vivo efficacy data collected after
fractionated dosing with three doses of 2.4 mg/kg of T-DM1 (3 x 24
mg/kg) as illustrated in Supplemental Fig. 5. As shown in Supplemental
Fig. 5B, the addition of angiogenesis better fits the experimental data
with fractionated doses compared with our previous version of the model

(Supplemental Fig. 5A) with static vessel distribution.
Bystander Payload Reaches More Cells Albeit at Lower Con-

centrations per Cell. To compare delivery of bystander and nonby-
stander payloads to tumor cells, the payload concentrations of MMAE
and Lys-SMCC-DM1 were quantified by simulating the distribution
and uptake of ADCs and their respective payloads for 3.6 mg/kg of T-
DM1 with drug-to-antibody ratio (DAR) 3.5 (clinical dose) and 1.8 mg/
kg of T-MMAE with DAR 4. The results shown in Fig. 2 reflect the
maximum peak that occurs at day 1 (24 hours) for ADCs bound to the
cell surface and at day 4 for microtubule-bound payload. T-DM1 at 3.6
mg/kg reaches more cells at day 1 than T-MMAE at 1.8 mg/kg does,
which is consistent with increased penetration of a higher antibody
dose. However, the MMAE payload reaches more cells at day 4 than
Lys-SMCC-DML1 does (Fig. 2, C and D), which is consistent with pre-
vious results from our Krogh cylinder model and as expected given the
bystander effects for MMAE (Ilovich et al., 2018; Khera et al., 2018).
The single-cell analysis capabilities of our ABM were used to quan-
tify the penetration of MMAE in comparison with Lys-SMCC-DM1 as
measured by the percentage of cells with high (=150 nM), moderate
(150 nM > x = 1 nM), and low payload concentrations (<1 nM) (Li
et al., 2016) (Fig. 2E). We also examined two additional scenarios (3
mg/kg and DAR 3 for both T-DM1 and T-MMAE to match the dose
and DAR for a more direct comparison of the ADCs), as shown in
Supplemental Fig. 6. For T-MMAE administration, all cells are reached
by MMAE, and the majority of cells receive concentrations between
150 and 1 nM. In contrast, Lys-SMCC-DM1 reaches fewer cells, and

%20z ‘9T |11d uo speuinor 134S Y e Bio'sfeuuno fidse’pwip woJy pepeojumoq


http://www.boost.org
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/lookup/suppl/doi:10.1124/dmd.121.000503/-/DC1
http://dmd.aspetjournals.org/

Selection of Resistant Cells with Antibody-Drug Conjugates 11

>

No Bystander Effects B
T-DM1 (3.6 mg/kg, DAR 3.5)

Bystander Effects
T-MMAE (1.8 mg/kg, DAR 4)

ADC Bound
Day 1

o

Payload Bound
Day 4

Fig. 2. Similar ADC penetration but greater payload distribution of T-MMAE. (A
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| anta (1) 3.6mg/kg T-DM1, DAR 3.5
(2) 3mg/kg T-DM1, DAR 3
(3) 1.8mg/kg T-MMAE, DAR 4
(4) 3mg/kg T-MMAE, DAR 3

and B) Distribution of T-DM1 (3.6 mg/kg with DAR 3.5) and T-MMAE (1.8 mg/

kg, DAR 4) bound on the surface of the cancer cells. (C and D) Distribution of Lys-SMCC-DM1 and MMAE bound to microtubules inside the cells. (E) Percentage
of cells with high- (=150 nM), moderate- (150 nM > x = 1 nM), and low-payload concentrations (<1 nM) at day 4, the time of maximum payload uptake. n = 10 simula-
tions, with mean and S.E.M. shown. T-MMAE has no cells with payload concentration <1 nM (shown by the gray arrows). Supplemental Fig. 6 shows the comparison
between these two ADCs for the same dose and DAR; both ADCs reach the same number of cells at day 1, but the MMAE payload again reaches more cells at day 4.

the majority of targeted cells receive concentrations higher than 150
nM. Many cells in T-DM1 administration receive very little
Lys-SMCC-DM1, demonstrating a more heterogeneous distribution
(Fig. 2E). These data capture the bystander effect of payloads, such as
MMAE, that reach more cells but have lower concentrations than a non-
bystander payload, which is a consequence of the payload’s lipophilicity
and ability to diffuse into adjacent cells.

Antibody Coadministration Reduces Efficacy in Tumors with
Low Receptor Expression. To compare how coadministration of tras-
tuzumab with T-DM1 or T-MMAE impacts the efficacy in tumors with
cell populations with heterogeneous receptor expression (vs. a base case
of uniform high expression), we simulated tumors with varying fractions
of cells with 1 million or 50,000 receptors/cell and treated them with tras-
tuzumab to ADC dose ratios of 0:1, 3:1, and 8:1, dosing every 21 days

T-DM1
Simulation for 50 days

>
w

1500

Q\U dle e\° °\° e\° 0\° 0\° 0\0 0\° °\° o\°
& S P 3

Tumor Volume (mm?)
Tumor Volume (mm?®)

K
% of Cells with 1M Receptors

= 2 (50K)

(days 0, 21, and 42). The average tumor volumes at 50 days for adminis-
tration of T-DM1 at 3.6 mg/kg (DAR 3.5) and T-MMAE at 1.8 mg/kg
(DAR 4) are shown in Fig. 3. In tumors with 60%—100% of cells
expressing 1 million receptors, adding a carrier dose improves the effi-
cacy for T-DM1 and T-MMAE (up to 70% and 40% decrease in average
tumor volume, respectively). In tumors with a majority of cells having
lower receptor numbers (0%—20% with 1 million receptors), coadminis-
tration reduces efficacy (up to 360% and 430% increase in average tumor
volume for T-DM1 and for T-MMAE, respectively), and administration
of ADC alone is more efficacious. The poor efficacy of coadministration
with heterogeneous expression is similar to that for tumors with uni-
formly low receptor expression. When most cells express only a low
number of receptors, ADCs distribute more evenly in the tumor than they
do for high receptor expression, which increases efficacy. Adding

T-MMAE
Simulation for 50 days . 0
1500 . 31
= 8:1
1000
500
0
oo oo oo oo oo oo e do oo oo e
SESSESEEF S

% of Cells with 1M Receptors

o (50K)

Fig. 3. Treatment efficacy at 50 days for tumors with heterogeneous receptor expression. (A) T-DMI1 regimens (3.6 mg/kg and DAR 3.5) and (B) T-MMAE regimens
(1.8 mg/kg and DAR 4) for tumors with changing percentage of 1 million (1M) or 50,000 (50K) receptors/cell for administration every 21 days (at days 0, 21, and
42). Data (mean and S.E.M.) are shown for n = 100 simulations. As the number of receptors decreases, coadministration of 8:1 antibody reduces efficacy. These data
also show the larger benefit of coadministration for ADCs with nonbystander payloads that cannot diffuse deeper into the tissue to partially compensate for heteroge-
neous distribution. For tumors with uniformly high expression, the addition of 3:1 and 8:1 carrier doses to T-DM1 reduces tumor growth by a larger amount than those

for T-MMAE.
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unconjugated antibody to the regimen (coadministration) puts the uncon-
jugated antibody in competition with ADCs, and cells with fewer recep-
tors do not internalize sufficient ADC for cell killing, which lowers
efficacy.

The trade-off between improved tissue distribution (pharmacokinet-
ics) and targeted cell killing (pharmacodynamics) is highlighted in the
shift of cell populations with high, moderate, and low levels of payload
uptake. Supplemental Fig. 7 quantifies the percentages of cells with dif-
ferent payload concentrations. These simulations show an increase in
the fraction of cells with high payload delivery for the 0:1 regimen,
since the average receptor expression drops and tissue penetration

increases, versus a decrease in payload delivery for the 8:1 regimen.
Bystander Effects Mitigate Loss in Efficacy from Coadminis-

tration at Low Receptor Expression. To better understand the role
of MMAE bystander effects on T-MMAE efficacy, we simulated the
distribution and efficacy of T-MMAE while artificially removing the
payload’s ability to enter adjacent cells. We performed simulations with
varying receptor expression, similar to Fig. 3, and we set the internaliza-
tion rate constant of MMAE to enter adjacent cells to zero as shown on
Fig. 4. Comparing the distribution of Fig. 4E with control (Fig. 4B), the
elimination of payload entering adjacent cells reduces the MMAE
uptake in bystander cells as expected. The tumor growth curves show
modestly improved responses when bystander effects are included, with
significant improvement for high coadministered doses with low recep-
tor expression, in which bystander effects help retain payload concentra-

tions at an effective level.
Coadministration Improves Efficacy in Tumors with Intrinsi-

cally Resistant Cells. Not all mechanisms of drug sensitivity impact
distribution. We simulated tumors with cell populations that are natu-
rally more resistant to treatment (using a higher value of K,;;; eq. 2) and

A

MMAE bound
Single dose (Day 4)

predicted how coadministration affects tumor response. For these cells,
K., was doubled (K,,, = 2x) or quadrupled (K,,, = 4x), and simulations
with varying percentages of more sensitive cell populations with and
without coadministration are shown in Fig. 5. For T-DM1, 3:1 or 8:1
antibody coadministration improves efficacy compared with ADC
alone; increasing the percentage of resistant cells uniformly reduces effi-
cacy (Fig. 5, A and B). For T-MMAE, coadministration for tumors with
a high fraction of sensitive cells also shows the benefit of the carrier
dose. However, as the percentage of cells with intrinsic resistance
increases, the benefit of the carrier dose is less evident. This is because
of the high “dilution” of T-MMAE with trastuzumab, which affects the
ability to kill those more resistant cells that require a higher concentra-

tion of the payload despite better tissue penetration reaching more cells.
Regimens with Greater Efficacy Can Select for More Resis-

tant Cells. Next, we questioned whether bystander or nonbystander
payloads and different coadministrations could select for a small num-
ber of less-sensitive cells that might then repopulate the tumor. Simula-
tions were performed in which the initial tumor was composed of 1%
cells with lower receptor expression (Fig. 6, A-F) or intrinsic resistance
(value of K, 2x) (Fig. 6, G-L). Simulations were conducted for 100
days with dosing every 3 weeks to provide time for the resistant cells to
overtake the tumor, which resulted in larger tumor sizes. In general, as
the ratio of trastuzumab to ADC increases, efficacy is increased for both
T-DM1 and T-MMAE administration in heterogenous receptor—express-
ing tumors. However, resistant cells become a larger percentage of the
tumor in several scenarios, showing the selection of resistant cells. The
selection is highest for a nonbystander payload (T-DM1) at the highest
coadministration dose (8:1). Notably, this is also the most effective
treatment. T-MMAE improved efficacy with higher coadministration
for tumors with differences in receptor expression, but it also showed
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MMAE exhibiting the expected bystander killing. (D-F) Distribution and efficacy for regimens of T-MMAE when setting the internalization rate of free MMAE (kjp,)
to zero with different coadministration regimens. Simulations show mean and S.E.M. for n = 100 simulations. For MMAE payload, the elimination of bystander
effects with high coadministrations leads to lower efficacy. Regimens tested are as in Fig. 3. 1M, I million; 50K, 50,000; kq4e.g, ADC degradation rate constant; k.,
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Fig. 5. Efficacy of T-DM1 and T-MMAE coadministration regimens when a fraction of cells have less sensitivity to drug. Regimens with T-DM1 (A and B) or T-

MMAE (C and D) with coadministration were simulated. Tumors contained varying fractions of cells with intrinsic resistance (K,

= 2x, or K, = 4x the value in

Supplemental Table 2). Lower cell payload sensitivity impacts most regimens in a similar fashion, reducing the overall efficacy regardless of the carrier dose or
bystander effects. Simulations show mean and S.E.M. for n = 100 simulations. Regimens tested are as in Fig. 3.

selection of resistant cells with coadministration. These simulations indi-
cate that bystander killing alone may not be sufficient to prevent the
outgrowth of resistant cells at clinical doses with or without a carrier
dose.

MMAE exhibits bystander effects that allow the drug to diffuse more
homogeneously through the tumor, but it also decreases the single-cell
uptake. For intrinsic resistance that requires a higher concentration of
the payload, T-MMAE here at 1.8-mg/kg dose was not effective. Since
bystander effects result in lower concentrations in cells than directly tar-
geted cells, many of the intrinsically resistant cells distant from vessels
do not receive a lethal dose.

Another important observation in these data is that a large number of
simulations (e.g., 100) were needed to discern trends in the results.
When only 10 simulations were used, the trends seen in Fig. 6 were
masked by tumor variability (unpublished data). This suggests that
many samples must be taken to identify the most effective treatment,
which may not be feasible with animal experiments alone. These results
highlight the need for computational approaches to complement experi-
mental results to better predict clinical outcomes.

Discussion

The clinical success of ADCs has improved in the past few years,
including the increased reliance on bystander payloads and higher anti-
body doses. The main goal of next-generation ADCs is to improve the
therapeutic index of these drugs by increasing efficacy while maintain-
ing relative safety (Coats et al., 2019). This could be achieved by 1)
increasing the delivery to more cells within the tumor, 2) utilizing
bystander payloads with balanced physicochemical properties to reach

nearby cells at sufficient concentrations while avoiding extensive tumor
washout, and 3) driving immune responses to leverage additional mech-
anisms of cell killing. In this work, we concentrated on the first two
approaches with a particular focus on heterogeneous tumors. Overcom-
ing ADC delivery challenges, such as the binding site “barrier” and het-
erogeneous receptor expression, requires strategies, including the use of
bystander payloads and higher antibody doses (e.g., coadministration
regimens) to reach cells that may not be directly targeted by ADCs like
T-DM1 (Yardley et al., 2015; Garcia-Alonso et al., 2020; Ocana et al.,
2020). These approaches have the potential to significantly impact
responses and may explain the efficacy of trastuzumab deruxtecan in
gastric cancer versus T-DM1. Although both are approved for use in
breast cancer, the former drug is given at higher antibody doses (6.4 vs.
3.6 mg/kg), which increases tissue penetration, and contains a bystander
payload to reach low-expressing cells given the higher heterogeneity of
HER?2 expression in gastric cancer (Thuss-Patience et al., 2017).

Here, we used our updated hybrid agent-based model to predict the
efficacy of various dosing strategies of ADCs with bystander or nonby-
stander payloads in heterogeneous tumors (specifically heterogeneous
receptor expression and intrinsic cellular resistance). Our model presents
an advantage over previous models because it includes single-cell het-
erogeneity, drug responses, high-resolution tuning of cancer cell and
blood vessel dynamics, and heterogeneous ADC and payload delivery
that are not achievable with commonly used compartmental or Krogh
cylinder models.

Bystander payloads vary in lipophilicity and potency, which affects
both the ADC’s pharmacokinetics and pharmacodynamics. For exam-
ple, MMAE has increased lipophilicity compared with that of Lys-
SMCC-DM1, with a calculated partition coefficient clogD of 2.01
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Fig. 6. Tumor growth with initial composition of 1% of resistant cells vs. sensitive cells for different regimens with T-DM1 or T-MMAE. (A-F) Coadministration of

trastuzumab 0:1, 3:1, and 8:1 with T-DM1 (A-C) and T-MMAE (D-F) every 3 wi
tors/cell vs. 99% of 1 million receptors/cell. (G-L) Coadministration of trastuzuma

eeks (marked by arrows) initially containing 1% of tumor cells with 50,000 recep-
b 0:1, 3:1, and 8:1 with T-DM1 (G-I) and T-MMAE (J-L) every 3 weeks initially

containing 1% of cells with higher intrinsic resistance (K,, = 2x) vs. 99% of cells with K, = 1x. K, = 800 nM for T-DMI1, and K;,, = 600 nM for T-MMAE. Simu-
lations show mean and S.E.M. for n = 100 simulations. In most cases, more effective treatments result in a larger fraction of resistant cells.

versus 1.21, respectively (Khera et al., 2018). This changes how easily
payloads cross cell membranes, how much they nonspecifically adhere
to proteins and membranes inside and outside the tumor cells, and how
effectively they diffuse through the tumor tissue. As seen in Fig. 2, C
and D (and Supplemental Fig. 6, C and D), this helps MMAE penetrate
deeper and more homogeneously into the tissue, whereas Lys-
SMCC-DMI1 has a more heterogeneous distribution influenced exclu-
sively by the penetration depth of the intact ADC. MMAE, on the other
hand, does not accumulate to sufficient levels for complete cell killing
inside cells reached via the bystander effect at the doses given here (1.8
mg/kg), but for higher doses like 3.6 mg/kg, the payload reaches cells
with concentrations shown to be effective (Singh et al., 2016, 2020a).
Other payloads, such as deruxtecan, have shown significant bystander
killing at clinically tolerable doses (Ogitani et al., 2016). These agents
may be able to better target antigen-negative cells than the payloads
used here, which is important for clinically heterogeneous tumors (Seol
et al., 2012). Singh et al. (2020b) emphasized the importance of a paral-
lel decline in antigen-positive and antigen-negative cells within a hetero-
geneous tumor in order to maintain bystander killing. The higher
efficiency of direct cell killing relative to bystander killing may make
this difficult to achieve in practice (Khera et al., 2018).

Because of MMAE's relatively high potency, reduced efficacy from
the bystander escape of the payload and loss in concentration (washout)
are only evident in high trastuzumab ratios and tumors with low total
receptor expression (e.g., <30% 1M; Fig. 4F). Other very potent
bystander payloads, such as pyrrolobenzodiazepine and indolinobenzo-
diazepine dimers (DNA alkylators), are also very lipophilic and have
demonstrated optimal bystander efficiency by balancing the difference
between retention and diffusion through cells, which can minimize
washout of the drug from the tumor (Khera et al., 2018, 2021). How-
ever, these potent payloads must be administered at lower doses than
microtubule inhibitors because of their toxicity.

In general, T-DM1 and T-MMAE efficacy benefit from coadministra-
tion with trastuzumab for tumors with high receptor expression, but the
benefit of coadministration is reduced and eventually lost for tumors
with lower receptor expression as shown in Fig. 3. Consistent with pre-
vious work, coadministration offers advantages for T-MMAE in high-
expression tumors, since the efficiency of direct cell targeting is greater
than bystander killing (Khera et al., 2018; Singh et al., 2020a). Figures
3 and 4 highlight the need for a balance between fast escape of the pay-
load versus accumulation in cells to mediate cell death. Approaches that
enable fast endosomal/lysosomal escape but prevent cellular escape/
washout (similar to the dolaflexin payload) could increase potency by
locking the toxic payload inside of the cytosol (Clardy et al., 2018). The
higher efficacy of T-DM1 and T-MMAE with increasing numbers of
low-expressing cells may seem counterintuitive. However, this result, in
which lower receptor expression improves efficacy because of better tis-
sue penetration, has been observed experimentally (Nessler et al., 2020;
Ponte et al., 2021).

Other diverse mechanisms of resistance can lead to intrinsic cellular
resistance wherein cells require a higher concentration of drug for cell
killing (Barok et al., 2014). We performed simulations to understand
how coadministration of antibody with ADCs carrying bystander and
nonbystander payload in the presence of these resistant cells modulates
efficacy. In general, the results in Fig. 5 show that coadministration is
better for the vast majority of tumor compositions when the resistance
mechanism does not influence tumor distribution. A few tumor compo-
sitions with a very high concentration of resistant cells (right side of
Fig. 5, C and D) show similar efficacy regardless of carrier dosing, but
these regimens are ineffective overall. Strategies, such as interchanging
payloads (van Geel et al., 2015), may be needed to restore cellular sen-
sitivity in these cases. The benefit of the carrier dose is greater for T-
DMI than T-MMAE because of the ability of bystander payloads to
partially compensate for heterogeneous tissue penetration. When the
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resistance mechanism does not influence distribution, the carrier dose is
more consistently beneficial with fewer trade-offs.

In these simulations, we also saw that the regimens that led to better
efficacy also led to selection of more resistant cells (Fig. 6C). These
dynamics highlight fundamental limitations in improving efficacy by
only taking into consideration changes in dosing regimens of ADCs.
Although these approaches are beneficial for a period of time, tumor
reoccurrence could result in a short duration of response (Banerjee
et al., 2018) and potentially lead to an even more resistant tumor com-
position. This work highlights the need to use other mechanisms of
action and treatments, similar to combination therapy used with current
chemotherapeutics. This could include efforts to mitigate specific mech-
anisms of resistance, such as selecting payloads that are less susceptible
to drug exporters, or more broadly effective approaches, including the
stimulation of an immune response.

This model, like other preclinical models, encounters some limita-
tions in the translation to the clinical setting. For example, many clinical
tumor parameters are infeasible to measure, although progress is being
made (Lu et al., 2020a,b), and the translation to the clinic requires esti-
mation of these parameters with adjustment for species (Shah et al.,
2012; Singh and Shah, 2017). Additional features beyond scaling clear-
ance rates are needed to capture human plasma pharmacokinetics of
drugs like T-DM1, such as ADC deconjugation, TMDD, and HER2
shedding (Betts et al., 2020). Finally, stromal cells (including immune
cells) can play a major role in response (Rios-Doria et al., 2017; Iwata
et al., 2018; D’Amico et al., 2019). Although these features are not
important in this mouse model and therefore were not included here,
they are important for plasma clearance and tumor response in humans.

This last result and the ability of cells to escape payload killing high-
light how more effort should be spent on understanding and developing
agents capable of immune stimulation, and for this reason, future work
with hybrid ABMs should include immune cells and other molecules.
In particular, many ADCs have demonstrated immunostimulatory
effects, including benefits from combination therapy with checkpoint
inhibitors and immune cell agonists. For example, antibody mechanisms
of action, such as antibody-dependent cellular cytotoxicity, could also
help eradicate cells with lower HER2 expression that have lost sensitiv-
ity to receptor signaling blockade (Barok et al., 2007). By including
these additional dynamics in the tumor microenvironment, these simula-
tions could help guide the overall development of ADC therapies.

Computational approaches provide a powerful tool to aid ADC devel-
opment when combined with experimental work (Vasalou et al., 2015;
Maass et al., 2016; Khera et al., 2018; Byun and Jung, 2019; Singh
et al., 2020b). For example, in vitro experiments alone lack the tissue
penetration issue that animal results and computational methods can
capture for better clinical predictions (e.g., Cilliers et al., 2016, 2018).
Animal experiments also have significant limitations, such as high toler-
ability and faster pharmacokinetics than humans, which results in over-
dosing many animal experiments relative to the clinical and obscuring
delivery challenges in vivo. Nonhuman primate toxicity studies are
needed for crossreactivity to ADCs, but these animals lack tumors, so
the interplay of toxicity and efficacy cannot be determined (Ponte et al.,
2021). The limitations of experiments can be addressed by calibrated
and validated computational approaches that capture the in vitro and
in vivo efficacy, toxicity, and scaling challenges in a single system. In
addition, computational approaches provide the power to discern trends
that may be lost in the noise during animal studies with small cohort
sizes. These trends may not appear until later during development when
larger studies and clinical trials are conducted. In contrast, a large num-
ber of simulations (e.g., » = 100) can more efficiently identify trends in
the outcomes. This supports the use of computer simulations, especially

with ABMs, as an approach to help streamline the development of
ADCs.
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