Molecular and Functional Characterization of N-Acetyltransferases in Common Marmosets and Pigs

Yasuhiro Uno, Shotaro Uehara, Moe Ijiri, Hiroaki Kawaguchi, Atsushi Asano, Mitsuya Shiraishi, Kaito Banju, Norie Murayama, and Hiroshi Yamazaki

Abstract

Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes that are essential for the metabolism of endogenous substrates and xenobiotics. The molecular characteristics of NATs have been extensively investigated in humans but remain to be investigated in common marmosets and pigs, animal species that are often used in drug metabolism studies. In this study, marmoset NAT1 and pig NAT1 cDNAs were isolated from liver samples and were characterized by molecular analyses and drug-metabolism assays. These NAT genes were intronless and formed gene clusters with one other NAT gene in the genome, just as human NAT genes do. Marmoset NAT1 and pig NAT1 amino acid sequences showed high sequence identities (94% and 85%, respectively) to human NAT1. Phylogenetic analysis indicated that marmoset NAT1 and pig NAT1 were more closely clustered with human NATs than with rat or mouse NATs. Marmoset NAT1 and pig NAT1 mRNAs were expressed in all the tissue types analyzed, with the expression levels being highest in the small intestine. Metabolic assays using recombinant proteins found that marmoset NAT1 and pig NAT1 metabolized human NAT substrates p-aminobenzoic acid, 2-aminoﬂuorene, sulfamethazine, and isoniazid. Marmoset NAT1 and pig NAT1 substantially acetylated p-aminobenzoic acid and 2-aminoﬂuorene relevant human NAT1, but their activities were lower toward sulfamethazine and isoniazid than those of the relevant human NAT2. Therefore, marmoset and pig NATs are functional enzymes with molecular similarities to human NAT1, but their substrate specificities, while similar to human NAT1, differ somewhat from human NAT2.

Signiﬁcance Statement

Marmoset N-acetyltransferase NAT1 and pig NAT1 were identiﬁed and showed high sequence identities to human NAT1. These NAT mRNAs were expressed in various tissues. Marmoset and pig NAT1s acetylated typical human NAT substrates, although their substrate specificities differed somewhat from human NAT2. Marmoset NAT1 and pig NAT1 have similarities with human NAT1 in terms of molecular and enzymatic characteristics.

Introduction

Species differences in the clearance of drug candidates represent an important issue during drug development. Consequently, it is essential to carefully select the animal species used for drug metabolism studies. To predict the human pharmacokinetic proﬁles of drug candidates, nonhuman primates (e.g., cynomolgus macaques), pigs, and dogs are often used in addition to rats. Pigs are used as animal models for various biomedical studies because of their similarities to humans in terms of size, physiology, and susceptibility to disease. Recent studies have shown the functional similarities of cytochrome P450 enzymes in humans and in the New World monkey Callithrix jacchus, or common marmoset, indicating the potential usefulness of this nonhuman primate species for preclinical testing (Uno et al., 2016).

Arylamine N-acetyltransferases (NATs) are enzymes that acetylate xenobiotics, including environmental carcinogens and drugs (Sim et al., 2008; Zhou et al., 2013; Sim et al., 2014). NAT1 and NAT2 have been identified in humans; NAT1 substrates include p-aminosalicylate, whereas NAT2 substrates include hydralazine, procainamide, and isoniazid (Sim et al., 2008; Sim et al., 2014). In contrast, 5-aminosalicylic acid, 4-bromoaniline, and 4-idoaniline are acetylated by both human NATs (Sim et al., 2008; Sim et al., 2014). Therefore, NAT1 and NAT2 show different, but overlapping, substrate specificities. In humans, expression of NAT2 mRNA is mainly detected in the liver and intestine, whereas expression of NAT1 mRNA is evident in various tissues, including the liver and intestine (Jennne, 1965; Hickman et al., 1998; Boukouvala and Fakis, 2005).

In humans, genetic variants affect the enzyme functionality of NAT1 and NAT2 (Walraven et al., 2008a; Walraven et al., 2008b; Hein, 2009). For example, R64W reduces the enzymatic activity of NAT1 and NAT2, and D122N inactivates NAT2 (Walraven et al., 2008b; Hein, 2009). Similarly, in cynomolgus macaques, D122N reduces NAT1 activity, and T98A reduces NAT2 activity (Uno et al., 2020). NATs represent an early example of pharmacogenetic variation and established the basis of understanding variability in drug metabolism among different populations (Sim et al., 2014). Therefore, genetic variants are also important for understanding the properties of NAT enzymes.

In marmosets and pigs, drug-metabolizing enzymes such as cytochromes P450 have been identified and analyzed; however, NATs have...
not yet been characterized in these species. In this study, therefore, we isolated marmoset NAT1 and pig NAT1 cDNAs from liver samples and characterized the new forms by sequence and phylogenetic analyses, tissue expression analyses, and enzymatic assays.

Materials and Methods

Materials. Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA), p-Aminobenzoic acid, 2-aminofluorene, sulfamethazine, isoniazid, and acetyl-coenzyme A were obtained from Fujifilm Wako Pure Chemicals (Osaka, Japan), N-acetyl p-aminobenzoic acid and 2-acetylamino- fluorene were from Sigma-Aldrich (St. Louis, MO), N-acetyl sulfamethazine from Santa Cruz Biotechnology (Dallas, TX), and N-acetyl isoniazid from Toronto Research Chemicals (North York, ON, Canada). All other reagents were purchased from Sigma-Aldrich or Fujifilm Wako Pure Chemicals, unless otherwise specified.

Tissues and Preparation of RNA and Cytosol. Tissue samples (adrenal gland, brain, heart, ileum, jejunum, kidney, liver, lung, ovary, and uterus) were collected from a pig (Microminipig, female, 10 years of age, weight 13 kg) at Kagoshima University. From these samples, total RNA was extracted using an RNaseasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocols and used for cDNA cloning and analysis of tissue expression patterns. Tissue RNA samples (brain, liver, lung, kidney, and small intestine) of marmosets (three males and three females) were obtained as previously described (Uehara et al., 2016b; Uehara et al., 2020). Liver cytosol samples were prepared as described previously (Uehara et al., 2017; Uehara et al., 2020). This study was reviewed and approved by the Institutional Animal Care and Use Committee at Kagoshima University.

Molecular Cloning. To isolate marmoset NAT1 and pig NAT1 cDNAs, reverse transcription (RT)-polymerase chain reaction (PCR) was performed using liver total RNA in a similar manner to that described in our previous study (Uno et al., 2006). Briefly, first-strand cDNA synthesis was carried out in a reaction mixture containing 1 μg of total RNA, oligo (dT), and ReverTra Ace (TOYOBO, Osaka, Japan) at 42°C for 1 hour according to the manufacturer’s protocols. PCR reactions were performed using the RT product as the template with Q5 Hot Start High-Fidelity DNA Polymerase (New England BioLabs, Ipswich, MA) and a T100 thermal cycler (Bio-Rad Laboratories, Hercules, CA) according to the manufacturers’ protocols. PCR conditions were an initial denaturation at 98°C for 30 seconds; followed by 35 cycles at 98°C for 20 seconds, 60°C for 20 seconds, and 72°C for 20 seconds; followed by a final extension at 72°C for 2 minutes (annealing was done at 65°C for marmoset NAT1). The primers used were cjNAT1 (5rt1) 5′-GGGATCATGAGGATTAGCAGTAC-3′ and cjNAT1 (3rt1) 5′-CAGTTGAAATCGGACATATACC-3′ for marmoset NAT1, and cjNAT2 (5rt1) 5′-CGGGAATCATGAACATTGAAGCATAC-3′ and cjNAT2 (3rt1) 5′-ATGAACATTGAAGCATAC-3′ for pig NAT1. The reverse primers contained a 5′- Glossary: fl, forward; fi, reverse; cDNA, complementary DNA; rRT, reverse transcriptase; PCR, polymerase chain reaction.

Statistical analysis. Two-way analysis of variance with Bonferroni’s post hoc test was carried out using Prism (GraphPad Software, La Jolla, CA) to compare the levels among the groups.

Results

Identification and Analysis of Marmoset and Pig NAT cDNAs. Analysis of marmoset and pig genome data found gene sequences highly homologous to human NAT genes; these sequences were designated NAT1 in both species. The marmoset and pig NAT1s formed gene clusters in the genome with one other NAT, similar to their human orthologs, but with some differences (Fig. 1). The direction of pig NAT1 was opposite to that of human NAT2, and marmoset NAT1 contained a partial sequence (Fig. 1). Based on these NAT sequences, gene-specific primers were designed, and marmoset NAT1 and pig NAT1 cDNAs were successfully isolated from liver by RT-PCR. However, pig NAT2 cDNA could not be isolated despite several trials using different primers. The coding regions of marmoset NAT1 and pig NAT1 were in- tronless, just as they are in human NATs. Marmoset NAT1 and pig NAT1 amino acid sequences of 290 residues were highly identical (94% and 85%) to human NAT1 but were less identical to human NAT2.
Marmoset and Pig NAT

Human chromosome 8

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Sequence Identity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>hNAT1</td>
<td>94</td>
</tr>
<tr>
<td>hNAT2</td>
<td>80</td>
</tr>
<tr>
<td>hNAT3</td>
<td>87</td>
</tr>
</tbody>
</table>

Marmoset chromosome 13

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Sequence Identity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>cjNAT1</td>
<td>85</td>
</tr>
<tr>
<td>cjNAT2</td>
<td>83</td>
</tr>
</tbody>
</table>

Pig chromosome 17

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Sequence Identity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNAT1</td>
<td>77</td>
</tr>
<tr>
<td>pNAT2</td>
<td>81</td>
</tr>
</tbody>
</table>

Fig. 1. Arrangement of NAT genes in the marmoset and pig genomes. The marmoset, pig, and human genomes were analyzed using BLAT. Two NAT genes formed a gene cluster in the marmoset and pig genomes, similar to that in the human genome, but one of the marmoset NAT genes was pseudogenized, and pig NAT1 ran in the opposite direction to human and marmoset NAT1. The indicated sizes of the genes and the distances between them are not proportional to actual measurements.

Fig. 2. Multiple alignment of marmoset, pig, and human NAT sequences. Marmoset NAT1 and pig NAT1 were aligned with human NAT1 and NAT2. The sequence identities of marmoset and pig NATs compared with human NATs. Marmoset and pig NAT amino acid and cDNA sequences (coding regions) were compared with human sequences using BLAST.

Discussion

In this study, marmoset and pig NAT cDNAs were identified and characterized by sequence and phylogenetic analyses, tissue expression pattern analysis, genome structure, and enzymatic assays. Marmoset NAT1 and pig NAT1 sequences were highly identical to human NAT1 (Table 1), contained characteristic motifs of NAT proteins (Fig. 2), and were clustered with human NATs more closely than with rodent NATs in a phylogenetic tree (Fig. 3). Moreover, clusters of two NAT genes
were located in the marmoset and pig genomes, similar to the arrangement in the human genome; however, one marmoset gene was pseudogenized, and one pig gene was located in the opposite direction (Fig. 1). Therefore, marmoset and pig NATs have molecular characteristics similar to those of human NATs.

Marmoset and pig NAT mRNAs were expressed in various tissues but were most abundantly expressed in the small intestine (Fig. 4). In humans, NAT1 mRNA is expressed in various tissues, whereas NAT2 mRNA is preferentially expressed in the liver and intestine (Boukouvala and Fakis, 2005; Husain et al., 2007b). These distinct expression patterns in humans might be accounted for by differences in upstream regulatory elements, including an active Sp1 box that is located in NAT1 (Husain et al., 2007a) but not in NAT2 (Husain et al., 2007b). The expression patterns of marmoset NAT1 and pig NAT1 mRNAs might reflect those of human NAT1. It would be of great interest to investigate the regulatory mechanisms of marmoset NAT1 and pig NAT1.

Marmoset and pig NAT proteins acetylated typical human NAT substrates, including p-aminobenzoic acid, 2-aminofluorene, sulfamethazine, and isoniazid (Fig. 5A), and thus were functional enzymes. Marmoset and pig NAT1 efficiently acetylated p-aminobenzoic acid, a selective substrate of human NAT1, but their acetylation activities were not as efficient with respect to sulfamethazine and isoniazid (Fig. 5B), which are selective substrates of human NAT2. The differences in acetylation activities observed in marmoset NAT1 and pig NAT2, respectively, similar to humans, but sulframethazine was acetylated by not only macaque NAT2 but also by NAT1 in consideration of a pattern of relative catalytic activities (Uno et al., 2018). These results indicate similarities and differences of substrate selectivity of NAT enzymes among the species tested.

Pig liver cytosolic fractions showed high acetylation levels of sulframethazine, although pig NAT1 did not efficiently acetylate the reactions (Fig. 5), indicating the possibility that other NAT(s) might be present and play these roles. Analysis of the pig genome found another NAT gene (NAT2) (Fig. 1) with its expressed sequence tags (ESTs) from bladder found in GenBank (unpublished data); therefore, pig NAT2 mRNA appears to be expressed. However, neither ESTs from liver nor cDNA with a complete reading frame have been reported or deposited to GenBank. Our attempts failed to isolate pig NAT2 cDNA by RT-PCR despite using several different primer pairs in liver, kidney, and small intestine. It would be of great interest to further investigate the presence of pig NAT2.

The differences in acetylation activities observed in marmoset NAT1 and pig NAT1 compared with human NATs might be accounted for by amino acid changes in regions important for NAT function. The residues N95, P97, D99, N103, and A104 in pig NAT1, and A214 in marmoset NAT1 and pig NAT1 are located in regions important for substrate binding (residues 93–106 and 212–222) (Zhang et al., 2006). Of these, residues 103 and 214, among others, form hydrogen bonds, and residue 214 is involved in van der Waals interactions with the substrate CoA (Wu et al., 2007). The residue I131 in marmoset NAT1 is

Fig. 3. Phylogenetic tree of NAT sequences. The phylogenetic tree was created by the neighbor-joining method using NAT amino acid sequences from humans (h), cynomolgus macaques (mf), marmosets (cj), pigs (p), rats (r), and mice (m). Chicken NAT (ckNAT) was used as the outgroup. The scale bar indicates 0.1 amino acid substitutions per site for distance measurement.

Fig. 4. Tissue expression patterns of marmoset and pig NAT mRNAs. Marmoset NAT1 and pig NAT1 mRNAs were measured by real-time RT-PCR in various tissues. Marmoset NAT1 mRNA levels were compared between males and females. The NAT mRNA levels were normalized to 18S rRNA levels and are shown as the average ± S.D. from three independent amplifications. The most abundant expression level was arbitrarily adjusted to 1, with which all other expression levels were compared. ***p < 0.001.

Fig. 5. Catalytic activities of marmoset and pig NATs. Acetylation activities were measured using human NAT substrates (p-aminobenzoic acid, open and closed bars; 2-aminofluorene, light and dark hatched bars; sulfamethazine, light and dark reversed hatched bars; and isoniazid, light and dark crossed bars) in marmoset, pig, and human liver cytosolic fractions (A) and marmoset (cj) and pig (p) NAT proteins (B) at substrate concentrations of 30 μM (light gray bars) and 300 μM (dark gray bars). Part of our data reported for human (h) NAT1/2 (Uno et al., 2018) is also illustrated in panel (C).
located in the flexible loop important for substrate specificity (residues 122–131) (Zhang et al., 2006). Pig NAT1 contained a different residue at position 185 from that in human NAT2, which itself shows reduced activity as a result of mutation at residue 185 (Summerscales and Joseph, 2004) (Fig. 2). E276 of marmoset NAT1 and pig NAT1 and K277 of pig NAT1 were different from the residues in human NATs and were located in the C-terminal region, which is essential for the enzyme activity and substrate specificity of NAT enzymes (Mushта et al., 2002). The C-terminal region of human NAT enzymes extends into the interior of the folded enzyme close to the buried catalytic triad and restricts its accessibility (Wu et al., 2007). Amino acid substitutions located in the C-terminal region might influence active site access and the substrate specificity of the enzyme.

Several amino acid changes in pig and marmoset NAT1 were found at the same locations as mutated residues present in functional polymorphisms of human NATs, including D167 in marmoset NAT1 and I149 and A214 in marmoset NAT1 and pig NAT1 (Walraven et al., 2008a; Walraven et al., 2008b). In humans, genetic variants are responsible for inter-individual variability of NAT activities toward such substrates as isoniazid, hydralazine, and sulfamethazine, which are acetylated by NAT2 (Sim et al., 2014). Similarly, for marmosets and pigs, genetic variants have been found in drug-metabolizing enzyme genes such as cytochromes P450 (Puccinelli et al., 2011; Uehara et al., 2016a), although information on such genetic variants is currently limited. Investigation of genetic variants might help us to understand the potential inter-animal variability of NAT activities in marmosets and pigs.

In conclusion, marmoset NAT1 and pig NAT1 were identified in this study and showed high sequence identities to human NAT1. These marmoset and pig NAT mRNAs were expressed in various tissues, with the most abundant expression in small intestine. Marmoset NAT1 and pig NAT1 acetylated typical human NAT substrates, including p-aminoazobenzoic acid, 2-aminofluorene, sulfaemethazine, and isoniazid, indicating that these NATs are functional enzymes, although substrate specificity differed somewhat from human NAT2. Therefore, marmoset NAT1 and pig NAT1 have similarities and differences in molecular and enzymatic characteristics compared with human NAT1.

Acknowledgments
The authors thank Drs. Erika Sasaki, Takashi Inoue, Takenori Seraizawa, Yutaro Noda, and Makiko Shimizu for their assistance. We are also grateful to David Smallbones for copystedd ing a draft of this article.

Authorship Contributions

Participated in research design: Uno, Uehara, Yamazaki.

Conducted experiments: Uno, Uehara, Banju, Murayama.

Contributed new reagents or analytic tools: Uno, Uehara, Iijiri, Kawaguchi.

Performed data analysis: Uno, Uehara, Asano, Shiraiishi, Yamazaki.

Wrote or contributed to the editing of the manuscript: Uno, Uehara, Yamazaki.

References

Address correspondence to: Dr. Yasuhiro Uno, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Kormoto, Kagoshima-city, Kagoshima 890-0065, Japan. E-mail: unox001@vet.kagoshima-u.ac.jp; or Dr. Hiroshi Yamazaki, Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan. E-mail: hyamazak@ac.shoyaku.ac.jp