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ABSTRACT

We report here a novel in vitro experimental system, the metabolism-
dependent cytotoxicity assay (MDCA), for the definition of the roles of
hepatic drug metabolism in toxicity. MDCA employs permeabilized
cofactor-supplemented cryopreserved human hepatocytes (MetMax
Human Hepatocytes, MMHH), as an exogenous metabolic activating
system, and human embryonic kidney 293 (HEK293) cells, a cell line
devoid of drug-metabolizing enzyme activity, as target cells for the
quantification of drug toxicity. The assay was performed in the pres-
ence and absence of cofactors for key drug metabolism pathways
known to play key roles in drug toxicity: NADPH/NAD+ for phase 1
oxidation, uridine 50-diphosphoglucuronic acid (UDPGA) for uridine
50-diphospho-glucuronosyltransferase (UGT) mediated glucuronida-
tion, 30-phosphoadenosine-50-phosphosulfate (PAPS) for cytosolic
sulfotransferase (SULT) mediated sulfation, and glutathione (GSH)
for glutathione S-transferase (GST) mediated GSH conjugation. Six
drugs with clinically significant hepatoxicity, resulting in liver failure
or a need for liver transplantation: acetaminophen, amiodarone,
cyclophosphamide, ketoconazole, nefazodone, and troglitazone were
evaluated. All six drugs exhibited cytotoxicity enhancement by
NADPH/NAD+, suggestingmetabolic activation via phase 1 oxidation.

Attenuation of cytotoxicity by UDPGA was observed for acetamino-
phen, ketoconazole, and troglitazone, by PAPS for acetaminophen,
ketoconazole, and troglitazone, and by GSH for all six drugs. Our
results suggest that MDCA can be applied toward the elucidation of
metabolic activation anddetoxificationpathways, providing information
that can be applied in drug development to guide structure optimization
to reduce toxicity and to aid the assessment of metabolism-based risk
factors for drug toxicity. GSH detoxification represents an endpoint for
the identification of drugs forming cytotoxic reactive metabolites, a key
property of drugswith idiosyncratic hepatotoxicity.

SIGNIFICANCE STATEMENT

Application of the metabolism-dependent cytotoxicity assay (MDCA)
for the elucidation of the roles of metabolic activation and detoxifica-
tion pathways in drug toxicity may provide information to guide
structure optimization in drug development to reduce hepatotoxic
potential and to aid the assessment ofmetabolism-based risk factors.
Glutathione (GSH) detoxification represents an endpoint for the iden-
tification of drugs forming cytotoxic reactive metabolites that may be
applied toward the evaluation of idiosyncratic hepatotoxicity.

Introduction

Metabolic activation, metabolism of a relatively nontoxic parent mol-
ecule to toxic metabolites, and detoxification, biotransformation of the
toxic parent and metabolite molecules to nontoxic metabolites, are key
determinants of drug toxicity (Hinson et al., 1994). Definition of meta-
bolic activation and detoxification pathways of drug candidates is an

important aspect of drug development, providing information that can
be applied toward structural design and drug candidate selection to min-
imize toxicological liability, identification of animal species for preclini-
cal evaluation to improve the accuracy of assessment of human toxicity,
identification of at-risk patient populations based on metabolic activa-
tion and detoxification capacity, and identification of environmental fac-
tors that may exacerbate drug toxicity via their induction of metabolic
activating pathways and inhibition of detoxification pathways (Spiel-
berg, 1984; Nebert et al., 1996; Li, 2002; Tuschl et al., 2008; Baillie
and Rettie, 2011).
We report here a novel in vitro experimental system for the evalua-

tion of the roles of drug metabolizing enzymes in drug toxicity, the
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metabolism-dependent cytotoxicity assay (MDCA). MDCA utilizes a
novel in vitro model for the evaluation of hepatic drug metabolism
developed in our laboratory, the cofactor-supplemented permeabilized
human hepatocytes (MetMax Human Hepatocytes, MMHH) (Li et al.,
2018), as an exogenous hepatic metabolic system, with human embry-
onic kidney 293 (HEK293) cells, a cell line deficient in drug-metaboliz-
ing enzyme (DME) activities (Westlind et al., 2001; Koga et al., 2011),
as target cells for the quantification of cytotoxicity (Fig. 1). MMHH
was originally developed to enhance the ease of use of human hepato-
cytes for drug metabolism studies with features that can overcome sev-
eral limitations of intact human hepatocytes: (1) The DME activities of
MMHH are not affected by drug toxicity, a major limitation of intact
hepatocytes in the evaluation of toxic drugs. (2) Due to permeabiliza-
tion, plasma membranes no longer serve as a barrier for drug entry and
metabolite exit, thereby allowing the evaluation of the metabolic fate of
drugs with low permeability (Keefer et al., 2020). (3) As permeabiliza-
tion drastically reduced endogenous cofactor concentrations due to leak-
age, drug metabolism by MMHH requires cofactor supplementation and
thereby can be directed via cofactor specification, for instance, reduced
nicotinamide adenine dinucleotide phosphate (NADPH) for phase 1 oxi-
dation, uridine 50-diphosphoglucuronic acid (UDPGA) for uridine 50-
diphospho-glucuronosyltransferase (UGT) mediated glucuronidation, 30-
phosphoadenosine 50-phosphosulfate (PAPS) for cytosolic sulfotransfer-
ase (SULT)-mediated sulfate conjugation, and reduced glutathione
(GSH) for glutathione S-transferase (GST)-mediated GSH conjugation).
These features suggest that MMHH may also be applicable as an exoge-
nous activating system for protoxicant activation for a cocultured target
cells, akin to the application of induced rat liver S9 in the evaluation of
promutagens in genotoxicity assays (McCann et al., 1975; Li, 1984;
Mitchell et al., 1997). Furthermore, the contribution of specific drug
metabolism pathways toward drug toxicity may be defined via supple-
mentation of MMHH with selected cofactors.
We report here MDCA results with six drugs associated with drug-

induced liver injuries (DILI): acetaminophen, amiodarone, cyclophospha-
mide, ketoconazole, nefazodone, and troglitazone (Fig. 2). Acetamino-
phen is a widely used over-the-counter analgesic and antipyretic drug that
is known to cause severe liver injury, mainly due to overdose (Clark and
Taubman, 2016; Bouvet et al., 2020). Amiodarone is an antiarrhythmic
that was withdrawn from the market due to adverse toxicity in multiple
tissues, including fatalities due to hepatotoxicity (Agozzino et al., 2002;
Kang et al., 2007; Babatin et al., 2008; Wu et al., 2021). Cyclophospha-
mide is a widely used alkylating anticancer agent with toxic consequen-
ces including hepatotoxicity (Subramaniam et al., 2013), cardiotoxicity

(Liu et al., 2018), hemorrhagic cystitis (Kolb et al., 1994), hepatic
venoocclusive disease (Ortega et al., 1997), immunosuppression (Hauser
et al., 1983), and genotoxicity/carcinogenicity (Hansel et al., 1997). Keto-
conazole is an orally administered azole antifungal known to cause severe
hepatotoxicity, resulting in liver failure (Findor et al., 1998; Z€ollner et al.,
2001; Li et al., 2021). Nefazodone, an antagonist for the 5-hydroxytrypta-
nine receptor for the treatment of depression, was withdrawn from the
market due to its association with severe hepatoxicity, resulting in liver
failure (Stewart, 2002). Troglitazone, the first oral peroxisome prolifera-
tor-associated receptor gamma agonist for the treatment of type 2 diabe-
tes, was marketed in March 1997 and was removed from the U.S. market
36 months later after 90 cases of liver failure. Troglitazone is often
regarded as a prototypical drug for research to further the mechanistic
understanding of idiosyncratic drug toxicity as well as the development
of predictive approaches for the identification of structures with idiosyn-
cratic hepatotoxic potential in drug development (Goda et al., 2016;
Takemura et al., 2016; Kim et al., 2017a; Mak et al., 2018).

Materials and Methods

Chemicals. The hepatotoxic drugs acetaminophen, amiodarone, cyclophospha-
mide, ketoconazole, nefazodone, troglitazone, and the cofactors NAD1, NADPH,
UDPGA, PAPS, and GSH were obtained from Sigma Aldrich (St. Louis, MO).

Cell Culture Reagents and Plates. Hepatocyte Induction Medium (HIM),
Hepatocyte Incubation Medium, and Universal Cryopreservation Plating Medium
(UCPM) were obtained from In Vitro ADMET Laboratories Inc. (Columbia,
MD). A total of 384-well white plates (Falcon 384-Well Tissue Culture Treated
Microplates, us.vwr.com) and 75 cm2 tissue culture flasks (Falcon Tissue Culture
Flasks) were obtained from VWR Inc. (www.usvwr.com). Trypsin (0.25% trypsin
solution from bovine pancreas) was obtained from Sigma Aldrich (St. Louis, MO).

MMHH. MMHH (lot number: PHHX8012) was prepared from cryopre-
served human hepatocytes pooled from 10 donors as previously described (Li
et al., 2018). The demographics of the 10 donors are shown in Table 1. For the
MDCA, MMHH was supplemented with and without the following pathway-
specific cofactors for the evaluation of the roles of specific DME pathways on
drug toxicity: NADPH/NAD1 (2 mM) for phase 1 oxidative metabolism,
UDPGA (1 mM) for UDP-glucuronosyltransferase (UGT)-dependent glucuroni-
dation, PAPS (0.1 mM) for sulfotransferases (SULT)-dependent sulfate conjuga-
tion, and GSH (1 mM) for GST-dependent GSH conjugation.

HEK293 Cells. HEK293 cells (human embryo kidney cells) were a gift from
the US Environmental Protection Agency. The cells were routinely maintained at
approximately 50% confluency in UCPM in 75 cm2 tissue culture flasks in a cell cul-
ture incubator at 37�C in a highly humidified atmosphere of 5% CO2 and 95% air.

Evaluation of Cofactor-Directed Acetaminophen Metabolism by
MMHH. Incubation of MMHH with acetaminophen for the quantification of
metabolite formation was performed as previously reported (Li et al., 2018).

Metabolic
Ac�va�on

Nontoxic 
Metabolites

Cytotoxic Interac�ons

Parent 
Drug

Target Cell (HEK293) Viability Evalua�onCytotoxic Interac�ons

Toxic 
Metabolites

Metabolic
Detoxifica�on

Drug Metabolizing 
Enzymes/cofactors

MMHH 
(Exogenous Metabolic System)

Fig. 1. A schematic representation of
MDCA. MDCA employs permeabi-
lized human hepatocytes (MetMax
Human Hepatocytes, MMHH) as an
exogenous metabolic system, and
HEK293 cells as the target of cyto-
toxicity. Upon drug treatment, the
final cytotoxicity will be a result of
metabolic clearance of the parent
drug, metabolic activation of the par-
ent drug to cytotoxic metabolites,
and the detoxification of the parent
drug and its cytotoxic metabolites.
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Briefly, acetaminophen was dissolved in Hepatocyte Incubation Medium at 2
mM (2X of the final concentration of 1 mM), added at a volume of 50 lL per
well in triplicate (metabolism wells) of a 96-well cell culture plate (metabolism
plate), and prewarmed to 37�C for approximately 15 minutes in a cell culture
incubator. Cofactor-supplemented MMHH (Li et al., 2018) was thawed from
cryopreservation and placed in a cell culture incubator to prewarm the reagent to
approximately 37�C. Metabolism of acetaminophen was initiated by adding 50
lL of MMHH at a cell density of 2 × 106 cells/mL (2X of the final cell density
of 1 × 106 cells/mL) into the metabolism wells (containing 50 lL of 2 mM acet-
aminophen) and returned to the cell culture incubator without shaking for 30
minutes. At the end of the incubation, 200 mL of acetonitrile was added into
each well for the termination of the metabolism. The 96-well plate was stored in
a -80�C freezer for later LC/MS-MS quantification of metabolite formation.

Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)
Quantification of Metabolite Formation. Upon thawing of the contents of
the reaction plate, 100 mL aliquots of acetonitrile solution containing 250 nM of
tolbutamide (internal standard) were added to each of the metabolism wells fol-
lowed by centrifugation at 3500 rpm for 5 minutes to remove the cellular debris.
An aliquot of 100 mL of supernatant from each well was transferred to a 96-well
plate and was diluted with 200 mL of deionized water for the quantification of
metabolites using an API 4000 QTRAP mass spectrometer with an electrospray
ionization source (AB SCIEX, Framingham, MA) connected to Agilent 1200
series HPLC (Agilent Technologies, Santa Clara, CA) using LC/MS/MS multiple
reaction monitoring (MRM) mode, monitoring the mass transitions (parent to daugh-
ter ion) (Table 2). An Agilent Zorbax Eclipse Plus C18 column (4.6 × 75 mm i.d.,
3.5 lm; Agilent Technologies, Santa Clara, CA) at a flow rate of 1 mL/min was
used for the chromatography separation. The mobile phase consisted of 0.1% formic
acid in acetonitrile (A) and 0.1% formic acid in water (B). The gradient for the posi-
tive ion mode operation was programmed as: 0 to 2.5 minutes, increase B from 5%
to 95%; 2.5 to 3.5 minutes, 95% B; 3.5 to 3.6 minutes, decrease B to 5%; run-time
5 minutes. The gradient program for the negative ion mode was: 0 to 3 minutes,
increase B from 5% to 95%; 3 to 4 minutes, 95% B; 4 to 4.2 minutes, decrease B

to 5%; run-time 6 minutes. Data acquisition and data processing were performed
with the software Analyst 1.6.2 (AB SCIEX, Framingham, MA).

MDCA. The principle of the assay is to evaluate cytotoxicity of the various
drugs in HEK293 in the presence of MMHH as an exogenous metabolic system
and in the presence and absence of cofactors for specific metabolic pathways:
NADPH/NAD1 for oxidative metabolism, UDPGA for UGT-mediated glucuroni-
dation, PAPS for SULT-mediated sulfation, and GSH for GST-mediated GSH
conjugation. For the assay, HEK293 cells were trypsinized from the stock cultures
and suspended in UCPM. Cell density was quantified using a hemocytometer and
adjusted with UCPM to approximately 520,000 cells per mL. A volume of 10 lL
(containing approximately 5200 cells) was delivered into each of the wells in the
384-well white plates (treatment plates) and placed in the cell culture incubator for
approximately 4 hours to allow cell attachment. The drugs to be evaluated were
prepared in culture medium at 3 times of the final desired concentrations (3X treat-
ment media). Acetaminophen and cyclophosphamide were dissolved directly in
HIM. Amiodarone, ketoconazole, nefazodone, and troglitazone were first dissolved
in DMSO as 3000X stock solutions followed by 1:1000 (v/v) dilution in HIM to
constitute the 3X treatment media. Treatment was initiated by the addition of 10
lL of MMHH supplemented with the designated cofactors into each of the treat-
ment wells containing HEK293 cells in 10 lL of culture medium, followed by 10
lL of the 3X treatment media. HIM was used as the negative control for acetamin-
ophen and cyclophosphamide. HIM with 0.1% DMSO was used as the negative
control (solvent control) for amiodarone, ketoconazole, nefazodone, and troglita-
zone. The treatment plates were then returned to the cell culture incubator for a
treatment duration of 24 hours followed by viability determination.

Quantification of Cell Viability. Viability of the HEK293 cells after treatment
was determined via quantification of cellular adenosine 5'-triphosphate (ATP) contents
using a luminescence-based reagent (Perkin Elmer ATPLite Luminescence Assay Sys-
tem, www.perkinelmer.com). Luminescence was quantified using a Victor3V Multi-
well plate reader (Perkin Elmer, Waltham, MA). Results are expressed as relative
viability using the following equation:

Relative viability (%) 5 (Luminescence (treatment))/Luminescence (solvent
control)) × 100

Data Analysis. Statistical analysis: Statistical analysis was performed using
student’s t test with the Microsoft Excel 6.0 software with the probability of P <

0.05 to be considered statistically significant.
Determination of cytotoxic concentration for 50% relative viability (IC50):

Graphpad Prism 9.0.2 software was used for the determination of IC50 values
from nonlinear regression analysis of plots of relative viability versus log drug
concentrations.

Acetaminophen Cyclophosphamide

Ketoconazole Nefazodone Troglitazone

Amiodarone
Fig. 2. Chemical structures of the six DILI drugs evalu-
ated in MDCA. Acetaminophen, amiodarone, cyclophos-
phamide, ketoconazole, nefazodone, and troglitazone are
drugs known to be associated with severe clinically sig-
nificant liver toxicity, resulting in deaths or a need for
liver transplantation.

TABLE 1

Donor demographics of the human hepatocytes used in the preparation of the per-
meabilized human hepatocytes (Lot PHHX8012) used in the study

PHHX8012 was prepared by combining hepatocytes from 10 individual donors
followed by permeabilization and cryopreservation.

Lot Number Ethnicity Gender Age (Years) Body Mass Index

HH1004 Caucasian Male 30 26.9
HH1006 Hispanic Male 65 37.0
HH1009 Caucasian Female 47 27.3
HH1012 Caucasian Male 22 25.2
HH1014 Caucasian Male 15 20.0
HH1016 Hispanic Female 64 24.7
HH1019 Caucasian Male 17 23.0
HH1034 Caucasian Male 49 29.9
HH1035 Caucasian Female 46 22.0
HH1039 Caucasian Male 67 21.7

TABLE 2

LC/MS-MS parameters for the quantification of acetaminophen metabolites

Marker Metabolite
Analyzed Ion Mode Application

Mass Transitions
Monitoring

Acetaminophen glucuronide Negative m/z 326.0 to 150.0
Acetaminophen sulfate Negative m/z 229.8 to 150.0
Acetaminophen glutathione Negative m/z 455.0 to 271.8
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MDCI calculation: MDCI values were calculated as a ratio of the IC50 values
in the absence and presence of a cofactor for a specific pathway of drug metabo-
lism using the following equation,

MDCI 5 IC50 (without cofactor)/IC50 (with cofactor)
Metabolic activation is indicated by MDCI values > 1 (lower IC50 values in

the presence of cofactor than that without cofactor), and metabolic detoxification
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is indicated by MDCI values < 1 (higher IC50 values in the presence of cofactor
than that without cofactor).

Results

Cofactor-Specification of Acetaminophen Metabolism. Acetaminophen
metabolism was evaluated in MMHH supplemented with NADPH/NAD1 in
the presence and absence of each of the phase 2 conjugating cofactors. Signifi-
cantly higher rates of formation of glucuronide, sulfate, and GSH conjugate
were observed in the presence of UDPGA, PAPS, and GSH, respectively, than
that in the absence the cofactors (Fig. 3). The relative rates of metabolite forma-
tion expressed as percentages of that in the absence of each of the cofactors
were 5721% ± 437% for UDPGA-mediated glucuronidation, 1411% ± 83% for
PAPS-mediated sulfation, and 2907% ± 466% for GST-mediated GSH conjuga-
tion. The results demonstrate the specification of drug metabolism pathways by
cofactor selection.

Cofactor-Specification of Drug Toxicity in MDCA. The cytotoxicity of
acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and
troglitazone in the presence and absence of NADPH/NAD1 and in the presence
of NADPH/NAD1 with either UDPGA, PAPS, or GSH is as follows:

NADPH/NAD±. Statistically significant enhancement of cytotoxicity by
NADPH/NAD1 was observed for all six drugs (Fig. 4) as demonstrated by
decreases in IC50 values (Table 3). The MDCI values ranged from 2.16 (amio-
darone) to 5.48 (ketoconazole) (Table 4). The MDCI for nefazodone was deter-
mined to be >4.95 due to the lack of cytotoxicity in the absence of NADPH,
thereby not allowing an accurate calculation of MDCI value for oxidative
metabolism.

UDPGA. Statistically significant attenuation of cytotoxicity by UDGPA was
observed for acetaminophen, ketoconazole, nefazodone, and troglitazone at one
or more of the drug concentrations evaluated (Fig. 5), resulting in increases in
IC50 values (Table 3). No attenuation was observed for amiodarone and cyclo-
phosphamide. The MDCI values ranged from 0.32 (acetaminophen) to >1
(amiodarone and cyclophosphamide) (Table 4).

PAPS. Statistically significant attenuation of cytotoxicity by PAPS was only
observed for acetaminophen at the concentrations evaluated (Fig. 6), resulting in
an increase in IC50 value (Table 3). Although none of the other treatments
yielded statistically significant attenuation by PAPS, increases in IC50 values
were also observed for ketoconazole and troglitazone (Table 3). The MDCI val-
ues ranged from 0.19 (acetaminophen) to 1.06 (cyclophosphamide) (Table 4).

GSH. Statistically significant attenuation of cytotoxicity by GSH was
observed at multiple concentrations for all drugs except amiodarone where atten-
uation was observed at only one concentration (Fig. 7), resulting in increases in
IC50 values (Table 3). The MDCI values ranged from <0.15 (troglitazone) to
0.75 (amiodarone) (Table 4).

MDCI ranking. Ranking of the MDCI values of the six drugs for each of
the cofactor-dependent metabolic pathways is shown in Table 5, demonstrating
the drug-dependent effects of each cofactor on cytotoxicity. Ranking of the
MDCI values for each detoxification pathway for each of the drugs is shown in
Table 6, demonstrating that GSH was the most effective cofactor for all six
drugs in the attenuation of drug toxicity.

Discussion

The major objective of our study was to investigate the utility of
MDCA, a novel assay with HEK293 as target cells and MMHH sup-
plemented by specific cofactors as an exogenous metabolic system, as
an experimental tool to define key metabolic activating and detoxifying
pathways of drug toxicity. The effectiveness of pathway specification
by cofactor selection was clearly demonstrated by results with acet-
aminophen metabolism where each of the cofactors NADPH/NAD1,
UDPGA, PAPS, and GSH was found to enable glucuronidation, sulfa-
tion, and GSH conjugation, respectively, at levels substantially higher
than that observed in the absence of the factors.
The higher cytotoxicity of acetaminophen in the presence of NADPH/

NAD1 in MDCA is consistent with the known metabolic activation of
acetaminophen to the “ultimate” toxic metabolite, N-acetyl-p-benzoquinone
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imine (NAPQI), by P450 isoforms CYP1A2 (Laine et al., 2009), CYP2D6
(Dong et al., 2000), CYP2E1 (Laine et al., 2009), and CYP3A4 (Thummel
et al., 1993; Laine et al., 2009). UDPGA and PAPS attenuation of acetamin-
ophen cytotoxicity observed in MDCA is consistent with the established
protective roles of UGT and SULT conjugation via removal of the parent
molecule from metabolic activation (Price et al., 1986; Ziemniak et al.,
1987; Kane et al., 1990; Dalhoff and Poulsen, 1993; Court and Greenblatt,
1997; Mutlib et al., 2006; McGill and Jaeschke, 2013). Attenuation of acet-
aminophen cytotoxicity by GSH is consistent with the known detoxification
of NAPQI via GSH conjugation (Mitchell et al., 1973; Hoffmann and

Baillie, 1988; Henderson et al., 2000; Zhao et al., 2002). An interesting
observation is that GSH supplementation resulted in an IC50 value of 13.98
mM, which is 2.47 times that in the absence of NADPH. A plausible expla-
nation of the observation is that by detoxifying NAPQI via GSH conjuga-
tion, P450 metabolism serves as a detoxifying rather than activating
pathway by reducing the concentration and the accompanying cytotoxic
effects of the parent chemical.
NADPH/NAD1 enhancement of amiodarone cytotoxicity is consis-

tent with previous findings that CYP3A4 induction by rifampin resulted
in its higher cytotoxicity in cultured human hepatocytes and that cyto-
toxicity in HepG2 cells was enhanced via supplementation with exoge-
nous CYP3A4 supersomes (Zahno et al., 2011). GSH attenuation of
amiodarone cytotoxicity is consistent with the detection of its reactive
metabolites in rat bile (Parmar et al., 2016) and upon incubation with
human and rat liver homogenates (Ramesh Varkhede et al., 2014). The
lack of effects of UDPGA and PAPS on amiodarone in MDCA sug-
gests that the cytotoxic metabolites of amiodarone are not significantly
detoxified by glucuronidation and sulfation. As of this writing, there are
no reports on the detoxification of amiodarone by glucuronidation and
sulfation.
Our observation of metabolic activation of cyclophosphamide by oxi-

dative metabolism and detoxification by GSH-conjugation is consistent
with previous findings of its metabolism by various P450 isoforms to
the toxic metabolites 4-hydroxycyclophosphamide, phosphoramide
mustard, and acroleins (Rodriguez-Antona and Ingelman-Sundberg,
2006; Doloff et al., 2010; Bachanova et al., 2015; Nishikawa et al.,
2015), and detoxification by GSH-conjugation and antioxidants (Dirven
et al., 1994; DeLeve, 1996; Terakura et al., 2020). Cyclophosphamide
cytotoxicity was not attenuated by UDPGA and PAPS in MDCA, sug-
gesting that glucuronidation and sulfation are not detoxifying pathways.

TABLE 4

MDCI values for NADPH/NAD1-dependent oxidative metabolism (oxidative
metabolism), UGT-dependent glucuronidation (UGT), PAPS-dependent sulfation
(SULT) and GST-dependent GSH conjugation (GST) for acetaminophen, amio-

darone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone
MDCI is calculated as the ratio of IC50 values in the absence and presence of
the cofactors (in the absence and presence of NADPH for oxidative metabolism;

with NADPH and absence and presence of each of the phase 2 conjugating
cofactors for UGT, SULT, and GST). MDCI values greater than 1 indicates met-
abolic activation, less than 1 indicates detoxification. (The IC50 value of nefazo-

done in the absence of NADPH was >100 lM, thereby yielding MDCE of
oxidative metabolism (cytotoxicity in the presence of NADPH) of >4.95. The

IC50 of troglitazone in the presence of GSH was found to be >400 lM, thereby
yielding MDCI of < 0.15).

Drug

Metabolism Dependent Cytotoxicity Index (MDCI)

Oxidative Metabolism UGT SULT GST

Acetaminophen 4.41 0.32 0.19 0.09
Amiodarone 2.16 1.08 0.95 0.75
Cyclophosphamide 3.76 1.02 1.06 0.40
Ketoconazole 5.48 0.66 0.74 0.42
Nefazodone >4.95 0.67 1.05 0.38
Troglitazone 3.28 0.48 0.65 <0.15
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Fig. 5. Drug toxicity in the presence of NADPH/NAD1 with (squares) and without (circles) UDPGA, the cofactor for UGT-mediated glucuronidation. Data represent
mean ±S.D. (n 5 3). (*: statistically significant (P < 0.05) difference in cytotoxicity between treatment with and without UDPGA).
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Ketoconazole is now known to undergo complex metabolic schemes,
resulting in myriads of metabolites. CYP1A1 (Korashy et al., 2007),
CYP3A4 (Fitch et al., 2009), and flavin-containing monooxygenase

(Rodriguez and Acosta, 1997; Rodriguez and Buckholz, 2003) have
been reported to be involved in ketoconazole metabolism. Our results
with MDCA suggest that ketoconazole was metabolically activated by
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Fig. 6. Drug toxicity in the presence of NADPH/NAD1 with (squares) and without (circles) PAPS, the cofactor for SULT-mediated sulfation. Data represent mean
±S.D. (n 5 3). (*: statistically significant (P < 0.05) difference in cytotoxicity between treatment with and without PAPS).
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Fig. 7. Drug toxicity in the presence of NADPH/NAD1 with (squares) and without (circles) GSH, the cofactor for GSH-conjugation. Data represent mean ±S.D.
(n 5 3). (*: statistically significant (P < 0.05) difference in cytotoxicity between treatment with and without GSH).
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oxidative metabolism and detoxified by glucuronidation, sulfation, and
GSH conjugation. Our results are consistent with a recent report show-
ing that ketoconazole is metabolized to 28 metabolites, including 3 reac-
tive metabolites based on cyanide trapping (Kim et al., 2017b). It is to
be noted that ketoconazole-GSH conjugates have not yet been identi-
fied. Further research will be performed in our laboratory to evaluate if
ketoconazole-GSH conjugates can be detected in MDCA.
Nefazodone cytotoxicity was enhanced by NADPH/NAD1 and

attenuated by UDPGA and GSH, suggesting that it is metabolically acti-
vated by oxidative metabolism and detoxified by glucuronidation and
GSH-conjugation. The results are consistent with previous reports that it
is metabolized by CYP3A4 to quinone-imine, a reactive metabolite that
is detoxified by GSH conjugation (Kalgutkar et al., 2005; Bauman
et al., 2008), but is different from that reported by Kostrubsky et al.
(Kostrubsky et al., 2006) that in cultured human hepatocytes, inhibition
of P450 metabolism by 1-aminobenzotriazole increased its cytotoxicity.
The difference between our results with MDCA and that reported for
human hepatocytes will be further evaluated in our laboratory.
Troglitazone cytotoxicity was enhanced by NADPH and attenuated

by UDPGA, PAPS, and GSH, with GSH being the most protective.
NADPH/NAD1 enhancement of cytotoxicity and detoxification by
GSH provides clear evidence that troglitazone can be metabolized by
oxidative metabolism to cytotoxic reactive metabolites, consistent with
previous findings of its metabolic activation to reactive metabolites
involving the sulfur moiety of thiazolidinedione nucleus first reported
by Kassahun et al. (Kassahun et al., 2001) and subsequently confirmed
by others (Prabhu et al., 2002; Saha et al., 2010; Okada et al., 2011).
That troglitazone metabolism to reactive metabolites and detoxification
by GSH conjugation are critical to the manifestation of liver injuries is
also suggested by clinical data demonstrating increased hepatotoxicity
in glutathione-S-transferase (GST) deficient patients (Watanabe et al.,
2003) and in an in vitro study in which liver microsomes generated
from GST-deficient donors had increased covalent binding levels com-
pared with that from normal livers (Usui et al., 2011). Although inhibi-
tion of the bile salt export pump by troglitazone sulfate resulting in

accumulation of bile salt to hepatotoxic levels has been postulated to be
a mechanism of troglitazone hepatotoxicity (Yang and Brouwer, 2014),
our results with MDCA suggest that cytotoxic reactive metabolites may
also be involved in the clinically manifested liver injuries upon troglita-
zone administration.
A large majority of DILI drugs are known to be metabolized to

highly reactive metabolites, which, as a result of covalent binding to
key biologic molecules, may lead to a cascade of events ultimately
resulting in severe liver toxicity (Gibaldi, 1992; Boelsterli, 2002; Li,
2002; Cho and Uetrecht, 2017). Evaluation of reactive metabolite for-
mation to minimize the risks of developing drugs with drug-induced
liver injuries (DILI potential) was first applied in Merck Research Labo-
ratories (Evans et al., 2004) and is now widely adopted in drug develop-
ment. Commonly used approaches include incubation of the chemicals
in question with human liver microsomes in the presence of a trapping
agent such as glutathione, followed by LC-MS/MS identification of the
reactive metabolite-GSH conjugate (Ma and Chowdhury, 2012; Huang
et al., 2015; Hosaka et al., 2018; Paludetto et al., 2019) as well as quan-
tification of covalent binding to human liver microsomal proteins
(Mitrea et al., 2010; Kakutani et al., 2021). However, there are concerns
with the inadvertent removal of drug candidates without toxicological
consequences with this approach (Obach et al., 2008; Kalgutkar and
Didiuk, 2009). Our results suggest that GSH attenuation of cytotoxicity
in MDCA represents an experimental approach to identify reactive
metabolites with toxicological consequences, therefore allowing a more
accurate identification of structures with toxic liability.
We also introduce in this report a novel parameter, MDCI, calculated

as a ratio of the IC50 values in the absence to that in the presence of
each of the cofactors, as a quantitative measure of the effects of each
drug metabolism pathway on toxicity. MDCI values of less than 1 indi-
cate metabolic detoxification (higher IC50 values in the presence of the
cofactor) and higher than 1 represent metabolic activation (lower IC50

values in the presence of the cofactor). MDCI may be useful as a quan-
titative parameter for the comparison of multiple drugs in the effects of
a specific drug metabolism pathway on toxicity (Table 5) as well as a
comparison of the effects of various pathways on the toxicity of a spe-
cific drug (Table 6).
Definition of the role of specific drug metabolizing enzyme pathways

in drug toxicity, as described in this report with MDCA, is an important
aspect of drug development. The information may aid structural optimi-
zation approaches to minimize toxicity (e.g., identification and removal
of chemical moieties required for cytotoxic reactive metabolite forma-
tion), identification of potential environmental factors that may exacer-
bate drug toxicity (e.g., CYP3A4 induction resulting in enhanced
metabolic activation), and compromising metabolic detoxification (e.g.,
GSH depletion). In our laboratory, we will further apply MDCA to
evaluate additional biologic molecules such as antioxidants as well as
inflammatory cytokines to further our understanding of the key

TABLE 5

Rank order of the MCDI values of acetaminophen (APAP), amiodarone (AMD), cyclophosphamide (CPA), ketoconazole (KTZ), nefazodone (NFZ), and troglitazone
(TGZ) for the various metabolic activation and detoxification pathways

Metabolic Activation/Detoxification Pathways Rank Order MDCI Ranking Description

Metabolic activation by oxidative metabolism NFZ > KTZ > APAP > CPA > TGZ > AMD Highest to lowest MDCI, representing highest to
lowest levels of metabolic activation

UGT detoxification APAP > TGZ > KTZ 5 NFZ > CPA, > AMD Lowest to highest MDCI, representing highest to
lowest levels of detoxification

SULT detoxification APAP > TGZ > KTZ (No apparent SULT
detoxification was observed for AMD, NFZ,

CPA, NFZ)

Lowest to highest MDCI, representing highest to
lowest levels of detoxification

GST detoxification TGZ > APAP > CPA 5 KTZ 5 NFZ > AMD Lowest to highest MDCI, representing highest to
lowest levels of detoxification

TABLE 6

Rank order of the MCDI values of the phase 2 detoxification pathways (UGT,
SULT, and GST) for acetaminophen (APAP), amiodarone (AMD), cyclophospha-
mide (CPA), ketoconazole (KTZ), nefazodone (NFZ), and troglitazone (TGZ)

DILI Drugs Rank Order
MDCI Ranking
Description

Acetaminophen GST>SULT>UGT Lowest to highest
MDCI, representing
highest to lowest
levels of
detoxification

Amiodarone GST>SULT>UGT
Cyclophosphamide GST>UGT>SULT
Ketoconazole GST>UGT>SULT
Nefazodone GST>UGT>SULT
Troglitazone GST>UGT>SULT
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determinants of drug toxicity. Lastly, our results suggest that MMHH
may be applicable as an exogenous hepatic metabolic system for
in vitro toxicity assays involving nonhepatic organ target cells to allow
a more accurate assessment of in vivo drug toxicity.
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