Special Section on Bile Acids, Drug Metabolism, and Toxicity—Minireview

The Complicated Role of Nuclear Factor Erythroid-Derived 2-Like 2 in Allergy and Asthma

Cheryl E. Rockwell, Yining Jin, Allison P. Boss, Luca M. Kaiser, and Saamera Awali

Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan

Received February 10, 2021; accepted December 2, 2021

ABSTRACT

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-activated transcription factor that is highly responsive to oxidative stress and electrophilic stimuli. Upon activation, Nrf2 upregulates a battery of cytoprotective genes meant to prevent cell death or damage. In many models of inflammation, Nrf2 protects against the immune response and decreases injury, including in the context of asthma and allergy. However, in some models of asthma and allergy, Nrf2 either does not play a role or can even exacerbate inflammation. In general, the reasons behind these discrepancies are not clear and the mechanisms by which Nrf2 modulates immune response are largely uncharacterized. The aim of this review is to highlight current literature assessing the role of Nrf2 in allergy and asthma to understand Nrf2 as a potential therapeutic target.

SIGNIFICANCE STATEMENT

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune mediator that modulates numerous immune cell types in various inflammatory diseases, including allergy and asthma. There is considerable interest in Nrf2 as a drug target in inflammation, which is complicated by the complex nature of Nrf2 in the immune system. This review focuses on the role of Nrf2 in asthma and allergy, including in regulating immune cell function and in detoxifying xenobiotics that exacerbate these diseases.

Introduction

Nuclear factor, erythroid-derived 2-, like 2 (Nrf2: encoded by Nfe2l2) was identified as a member of the Cap “n” Collar basic leucine zipper transcription factor family in 1994 (Mo et al., 1994). It was first isolated from K562 cells (a human chronic myelogenous leukemia cell line) where it was found binding to the β-globin locus control region. The name Nrf2 was adopted from the nomenclature for the transcription factor known as nuclear factor erythroid-derived 2-like 1 (Nrf1), which was named because of its similarities with nuclear factor erythroid 2 (NF-E2) (Chan et al., 1993). However, unlike NF-E2, which is essential for erythropoiesis and is neonatally lethal in mice when knocked out, Nrf2 gene function is not necessary for blood cell differentiation, and homozygous Nrf2-null offspring are fertile and produce normal litter sizes (Shivdasani and Orkin, 1995; Chan et al., 1996; Williams et al., 2016). Subsequent research has demonstrated that Nrf2 forms a heterodimer with small musculoaponeurotic fibrosarcoma (Maf) proteins and regulates the expression of Nrf2-target genes involved in oxidative stress response and drug detoxification such as NAD(P)H quinone-oxidoreductase-1 (NQO1), γ-glutamyl cysteiny1 synthetase, and heme-oxygenase-1 (HO-1) by binding to the antioxidant response elements (AREs) in the promoter regions of these genes (Itoh et al., 1997; Thimmulappa et al., 2002; Nguyen et al., 2003; Tong et al., 2006). In addition to its antioxidant and detoxification roles, Nrf2 plays a protective anti-inflammatory role in many different animal models of inflammation. Although much is known about the mechanism by which Nrf2 protects against reactive toxins and oxidative stress, the mechanism by which Nrf2 modulates immune cell function is not nearly as well understood. We recently published a review focused on the role of Nrf2 in autoimmunity and infectious disease (Freeborn and Rockwell, 2021). In addition, others have reviewed the role of Nrf2 in inflammation and in crosstalk with nuclear factor kappa B (NF-κB) (Li et al., 2008a; Wardyn et al., 2015; Ahmed

This work was supported by National Institutes of Health National Institute of Environmental Health Sciences [Grant ES024966] and [Grant ES030766].

The authors declare that they have no actual or perceived conflicts of interest with the contents of this article.

dx.doi.org/10.1124/dmd.121.000414.

ABBREVIATIONS: ACD, allergic contact dermatitis; AD, atopic dermatitis; AhR, aryl hydrocarbon receptor; ARE, antioxidant response element; BALF, bronchoalveolar lavage fluid; BMDC, bone marrow-derived dendritic cells; CYP2E1, cytochrome P450 family 2 subfamily E member 1; DC, dendritic cells; DEP, diesel exhaust particles; DMF, dimethyl fumarate; DNBC, 2,4-dinitrochlorobenzene; ECH, enoyl-CoA hydratase; H O-1, heme oxygenase 1; Keap1, Kelch ECH-associating protein 1; KO, knockout; Maf, musculoaponeurotic fibrosarcoma; miR, microRNA; Neh, Nrf2-ECH homology; NF-E2, nuclear factor,erythroid 2; NQO1, NAD(P)H quinone-oxidoreductase-1; Nrf2, nuclear factor,erythroid-derived 2,-like 2; OVA, ovalbumin; PM, particulate matter; PMN, polymorphonuclear neutrophil; UFP, ultrafine particle; WT, wild-type.
The redox-insensitive Neh6 degron is essential for the degradation of Nrf5 domains contribute to Nrf2 transactivation (Satta et al., 2017). The Neh6 degron is essential for the degradation of Nrf2 in stressed cells (McMahon et al., 2004). In contrast, in homeostatic cells, the Glu39-Thr40-Gly41-Glu42 (ETGE) tetrapeptide motif and Asp29-Leu30-Gly31 (DLG) motif within the redox-sensitive Neh2 domain interact with Kelch ECH-associating protein 1 (Keap1). Keap1 represses Nrf2 by associating with a ubiquitin E3 ligase that polyubiquitinates the Nrf2 protein, resulting in its subsequent degradation by the 26S proteasome (Canning et al., 2015). However, under conditions of oxidative stress, or in the presence of electrophilic xenobiotics, the conformation of Keap1 is changed, which disrupts the polyubiquitination and degradation of Nrf2. Subsequently, Nrf2 translocates and accumulates in the nucleus, where it activates Nrf2-target genes to induce expression of antioxidant proteins, detoxification enzymes, and other protective genes (Itoh et al., 2003; Kensler et al., 2007; Ma, 2013; Ahmed et al., 2017; Yamamoto et al., 2018).

The regulation of the Nrf2 signaling pathway is complex. Nrf2 stability can be enhanced through inhibition of Keap1 or disruption of the Nrf2-Keap1 interaction (Kansanen et al., 2013). Nrf2 activators, such as electrophilic compounds, can hinder the degradation of Nrf2 by modifying key cysteines of Keap1 and thereby changing the conformation of Keap1. Proteins that interact or compete with Keap1 can disrupt the Nrf2-Keap1 association, resulting in the accumulation of newly synthesized Nrf2. Nrf2 can also be regulated at transcription level. The promoter region of Nfe2l2 (the gene that encodes Nrf2) contains xenobiotic response element-like (XRE) sequences, which are the binding sites of the aryl hydrocarbon receptor (AhR) (Miao et al., 2005). AhR is a basic helix-loop-helix transcription factor regulating xenobiotic metabolism and works in close concert with the transcription factor Nrf2 (Miao et al., 2005; Yeager et al., 2009). Published studies indicate that the Nfe2l2 gene is directly upregulated by AhR activation, and conversely, Nrf2 induces AhR expression and thus triggers several downstream events of the AhR signaling cascade (Li et al., 2019). Thus, these two xenobiotic sensors induce one another. In contrast to AhR, the NF-kB p65 subunit represses the Nrf2-ARE pathway at the transcriptional level (Liu et al., 2008). Thus, Nrf2 expression and activity are modulated by multiple other mediators in a complex network.

Beyond the classic Nrf2/Keap1-mediated activation and degradation and transcriptional regulation of Nrf2, Nrf2 can also be regulated at the post-transcriptional level. Numerous microRNA (miR) molecules can repress Nrf2 expression by sequence-specific binding, particularly in the context of cancer (Tonelli et al., 2018), miR-29-b1 and miR-144 downregulate Nrf2 expression directly within the cytoplasm (Ayer demonstrated elevated type 2 cytokines such et al., 2015). In contrast, microRNA targeting Keap1, such as miR-200a and miR7, represses Keap1 expression corresponding with Nrf2 nuclear translocation and activation (Eades et al., 2011; Kabaria et al., 2015).

Evidence that Nrf2 Modulates the Immune System: The Development of Autoimmunity in Nrf2-Knockout Mice. Considerable evidence points to an important role for Nrf2 in regulating the immune system. Some of the strongest and earliest indications that Nrf2 regulates immunity were in the area of autoimmunity. Between 2004 and 2006, two different groups described the spontaneous development of an autoimmune disease in Nrf2-knockout (KO) mice that resembled systemic lupus erythematosus. The disease was female-predominant and characterized by autoantibody production (anti-dsDNA), formation of antibody complexes in kidney, and development of glomerulonephritis that resulted in kidney injury, among other pathologies in these animals (Li et al., 2004a; Ma et al., 2006). In addition to the spontaneous development of autoimmunity, many animal models of autoimmune disease were found to be more severe in Nrf2-KO mice. Antibody-induced rheumatoid arthritis (RA) is exacerbated in Nrf2-null mice, with an increase in joint damage and a decrease in the expression of antioxidant genes, such as HO-1, γ-glutamyl cysteiny1 synthetase, and thioreredoxin (Wruck et al., 2011). In experimental autoimmune encephalomyelitis (EAE), Nrf2-null mice develop symptoms earlier and have increased severity of clinical outcomes when compared with wild-type (WT) controls (Johnson et al., 2010; Larabee et al., 2016). Consistent with these animal studies, the Nrf2 activator dimethyl fumarate (DMF) is used clinically to treat multiple sclerosis (Tecfidera) and psoriasis (Skilarence) in humans (Bomprezzi, 2015). Furthermore, recent studies using patient samples and animal models indicate that DMF may be beneficial for the treatment of systemic sclerosis patients as well (Toyama et al., 2018; Kourakis et al., 2020). There is evidence to show that several other Nrf2 activators, such as 3H-1,2-dithiole-3-thione, sulforaphane, dimethyl fumarate, and A-1396076, can also ameliorate autoimmune-mediated inflammation in rodents under experimental conditions (Geisel et al., 2014; Kuo et al., 2016, 2020; Goess et al., 2020). The therapeutic potential of Nrf2 activators in the treatment of autoimmune disease remains an active area of research that has yielded many developments over the years. We have recently written a comprehensive review of research in this area (Freeborn and Rockwell, 2021). Taken together, these studies provide strong evidence that the Nrf2 signaling pathway modulates immune cell function and paved the way for an explosion of research into the role of Nrf2 in the immune system, including in atopic diseases. The present manuscript reviews the role of Nrf2 in asthma and allergy. In an effort to keep the review focused, we have largely restricted the studies with animal models to those where a causative role for Nrf2 has been established (with a few exceptions for disease models with fewer studies published).

Key Recent Advantages

The Role of Nrf2 in Asthma and Airway Allergic Inflammation. Atopic diseases, such as asthma, allergic rhinitis, skin allergy, and food allergy, are the sixth leading cause of chronic illness in the United States (https://acaai.org/news/allergy-facts). Asthma is a condition in which airways are hyperresponsive to irritants and allergens, leading to uncontrolled airway constriction that can result in hypoxia and death (Barnes, 2018). Allergic lung inflammation and asthma are lower respiratory tract disorders characterized by reversible airflow obstruction, as well as wheezing, coughing, and chest tightness upon exposure to allergens, such as dust mites, cockroaches, mold, pollen, and animal dander (Bousquet et al., 2000). Allergic rhinitis is an upper airway disorder characterized by nasal itching, sneezing, and nasal obstruction caused by inflammation of the nose upon contact of the nasal mucosa with certain allergens, such as pollen, mold, diesel fumes, and air pollutants (Pawankar et al., 2011; Varshney and Varshney, 2015; https://acaai.org/allergies/allergic-conditions/hay-fever).
Extensive studies, listed in Table 1, have been conducted on the role of Nrf2 in allergic airway disorders. Both genetic activation of Nrf2 via deletion of its suppressor protein leads to the therapeutic effect of Nrf2 activation in acute allergic asthma models. Other studies have directly shown the protective role of Nrf2 in asthma. Chlorine gas-induced airway inflammation and asthma experienced exacerbated bronchoconstriction, suggesting that sulforaphane was not protective in all subsets (Brown et al., 2015).

Similarly, a protective role of Nrf2 has been implied in chemical-induced asthma. Chlorine gas-induced airway inflammation and asthma were significantly greater at 48 hours postexposure in Nrf2-deficient mice compared with WT (Ano et al., 2017). Other studies have directly shown the therapeutic effect of Nrf2 activation in acute allergic asthma models. Both genetic activation of Nrf2 via deletion of its suppressor protein Keap1 and pharmacological activation of Nrf2 via 2-trifluoromethyl-2'-methoxychalcone improved the cytoprotective function of the airway epithelium in an OVA-induced asthmatic mouse model (Sussan et al., 2015).

To prevent asthma-induced bronchoconstriction, long-acting beta agonists and inhaled steroids are chiefly used. Steroids, such as dexamethasone, act as a local anti-inflammatory agent and preserve the integrity of the airway epithelium, preventing the airway irritation that leads to constriction. However, steroids can lose their effectiveness over time. Activation of Nrf2 restores steroid sensitivity in a mouse model of asthma (Sakurai et al., 2018). The protective effects of Nrf2 in these models are likely mediated by Nrf2 target genes rather than Nrf2 itself. Aldehyde oxidase is a well described target gene of Nrf2 and is instrumental in the formation of tight junctions and adherent junctions in airway epithelium (Shintani et al., 2015). Genetic ablation of Nrf2 in cell lines led to decreased signaling via the aldehyde oxidase pathway (Shintani et al., 2015). Overall, the evidence points to a protective role for Nrf2 in this model of asthma, which is likely mediated at least in part by maintaining the integrity of the airway epithelial barrier.

House dust mites (HDMs) are some of the most common perennial sources of allergens that induce asthma and allergic airway inflammation. Investigators have shown that exposure to house dust mites decreases Nrf2 levels, suggesting that antioxidant and anti-inflammatory pathways are inhibited, which may contribute to the dysregulation of sinonasal epithelial cell barrier function and the development of asthma (London et al., 2017). Nrf2 deficiency has also been shown to exacerbate the response of lung dendritic cells to ragweed extract. Specifically, Nrf2-deficient lung dendritic cells cultured in vitro showed greater induction of TNF-α and IL-6 in response to ragweed extract (Rangasamy et al., 2010). OVA is another major allergen that induces allergic reactions, particularly in experimental animal models of allergy and asthma. Several studies have shown that OVA induces several hallmarks of allergic reactions, including sinonasal inflammation and most prominently, asthma (Rangasamy et al., 2005; Sussan et al., 2015).

Table 1

<table>
<thead>
<tr>
<th>Disease Model</th>
<th>Environmental Factors/Activators</th>
<th>Genetic Model</th>
<th>Effect of Knockout/Knockdown (Nrf2 or Keap1)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA-induced allergic airway</td>
<td>CD1: ICRWT & Nrf2(−/−)</td>
<td>↑ AHR, ↑ inflammatory cell infiltrate in lung, ↑ lipid peroxidation, ↑ IL-4, IL-13, ↑ mucus cell metaplasia</td>
<td>(Rangasamy et al., 2005)</td>
<td></td>
</tr>
<tr>
<td>flammation/asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>C57BL6WT & Nrf2(−/−)</td>
<td>↑ AHR, ↑ inflammatory cell infiltrate in lung, ↑ IL-5, ↑ mucus cell hyperplasia</td>
<td>(Li et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>ambient UFP (<0.18 μm)</td>
<td>BALB/c WT & Nrf2(−/−), DC from WT & Nrf2(−/−)</td>
<td>↑ Adjuvant effect of intranasally instilled UFP, ↑ eosinophil count and IL-13 in BAL, V serum IgG1</td>
<td>(Li et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Ragweed Extract-induced asthma</td>
<td>BMDC and lung DC from WT Nrf2(−/−)</td>
<td>↑ CD80, CD86, and MHCII on DC, ↑ IL-6 and TNF-α</td>
<td>(Rangasamy et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Cl2-induced inflammation and</td>
<td>BALB/c WT & Nrf2(−/−)</td>
<td>↑ mRNA for antioxidant genes (NQO1 and GPX2)</td>
<td>(Ano et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>hyperresponsiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-13-induced allergic lung</td>
<td>C57BL6WT & Nrf2(−/−)</td>
<td>Transient ↑ in IL-33, ↑ ILC2 proliferation</td>
<td>(Nagashima et al., 2019)</td>
<td></td>
</tr>
<tr>
<td>inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5-induced airway</td>
<td>C57BL6WT & Nrf2(−/−)</td>
<td>↑ Inflammatory infiltrate, ↑ oxidative stress, ↑ lung injury, ↑ CYP2E1</td>
<td>(Ding et al., 2021)</td>
<td></td>
</tr>
<tr>
<td>inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDDO-Im, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oxy] imidazole; GPX2, glutathione peroxidase 2; ILC2, type 2 innate lymphoid cells; 15d-PGJ2, 15-deoxy-prostaglandin J2.
Nrf2 deficiency is associated with mucous cell hyperplasia and eosinophilic lung infiltration in a murine OVA-induced asthma model. In these studies, bronchoalveolar lavage fluid (BALF) and splenocytes of Nrf2-deficient mice showed increased expression of IL-4 and IL-13 after OVA exposure (Rangasamy et al., 2005). Other studies have examined the role of Nrf2 in the airway epithelium after sensitization to OVA, in which they demonstrated that genetic and pharmacological Nrf2 activation suppressed asthma (Susan et al., 2015). The suppression of OVA-induced asthma by Nrf2 was associated with increased expression of the Nrf2 target gene NQO1 and a significant decrease in infiltrating neutrophils and lymphocytes. The secretion of cytokines like IL-4 and IL-13 in BALF was also decreased (Susan et al., 2015). In contrast to these studies, a study by Seumois et al. (2014) in asthmatic and non-asthmatic humans suggests that Nrf2 is a strong positive determinant of Th2 differentiation of isolated murine CD4 T cells (Rockwell et al., 2012).

Epidemiologic data have shown that there is a link between certain genetic polymorphisms in the N-acetyltransferase 2 (NAT2), glutathione S-transferase Pi 1 (GSTP1), and Nfe2l2 genes and the occurrence of asthma in children if they are exposed to acetaminophen. They also reported an increase in serum eosinophils when children with a specific Nrf2 polymorphism were taking acetaminophen (Kang et al., 2013). However, it is not clear whether the impact of the Nrf2 polymorphism in this study is due to effects on immune cell function, detoxification of acetaminophen, or some combination of these.

There has been interest in Nrf2 as a therapeutic target for chronic respiratory illnesses, including asthma (Wang et al., 2018). For example, targeted activation of Nrf2 in female mice suppresses allergic lung inflammation and alleviates OVA-induced asthma (Nagashima et al., 2019). Nrf2 activation decreases type 2 innate lymphoid cells (ILC2s), which release the major allergic airway mediator IL-13 and other cytokines and chemokines involved in Th2 differentiation (Rockwell et al., 2012). Epidemiologic data have shown that there is a link between certain genetic polymorphisms in the N-acetyltransferase 2 (NAT2), glutathione S-transferase Pi 1 (GSTP1), and Nfe2l2 genes and the occurrence of asthma in children if they are exposed to acetaminophen. They also reported an increase in serum eosinophils when children with a specific Nrf2 polymorphism were taking acetaminophen (Kang et al., 2013). However, it is not clear whether the impact of the Nrf2 polymorphism in this study is due to effects on immune cell function, detoxification of acetaminophen, or some combination of these.

There has been interest in Nrf2 as a therapeutic target for chronic respiratory illnesses, including asthma (Wang et al., 2018). For example, targeted activation of Nrf2 in female mice suppresses allergic lung inflammation and alleviates OVA-induced asthma (Nagashima et al., 2019). Nrf2 activation decreases type 2 innate lymphoid cells (ILC2s), which release the major allergic airway inflammation-inducing cytokines IL-4 and IL-13 (Nagashima et al., 2019). Recently, it has been shown that Nrf2 activation by alpha lipoic acid also suppressed cytokines TNF-α and IL-6, which are associated with non-Th2-mediated airway inflammation (Van Nguyen et al., 2020).

Nrf2, Air Pollution, and Asthma/Allergy. Air pollutants and diesel fumes are among the common causes of allergic rhinitis (Li et al., 2020; Jung et al., 2021). Air pollutants, such as carbon monoxide, nitrogen dioxide, lead, ozone, and other particulate matter (PM), contribute to oxidative stress and inflammation in rhinitis (Lodovici and Bigagli, 2011; Pardo et al., 2020). Diesel fumes are one of the major contributors to air pollution, consisting of particulate matter composed of metals and polycyclic aromatic hydrocarbons. These diesel-derived particles have an aerodynamic diameter of 2.5 μm or smaller (PM2.5), allowing them to effortlessly penetrate the lungs. Studies have shown that exposure to PM2.5 induces oxidative stress by increasing cellular reactive oxygen species and inflammation, as marked by increased IL-8 expression (Buttrick et al., 2018). Studies have also indicated that exposure to PM2.5 from biodiesel results in increased inflammation marked by an increase in macrophase-derived TNF-α expression, as well as increased expression of Nrf2 and HO-1 proteins, suggesting that PM2.5 from biodiesel may stimulate the activation of Nrf2/HO-1 pathways (Cattani-Cavalieri et al., 2019). Exposure to PM2.5 from biodiesel increased expression of p-NF-κB, which stimulates proinflammatory cytokines, such as TNF-α (Cattani-Cavalieri et al., 2019). Similarly, diesel exhaust particles (DEP) have also been shown to activate Nrf2 in macrophage and bronchial epithelial cell lines (Li et al., 2004b). Furthermore, exposure to DEP or exposure to DEP in combination with OVA sensitization resulted in increased airway hyperresponsiveness and greater immune cell counts and cytokine levels in bronchial alveolar lavage fluid from Nrf2-KO mice compared with WT mice (Li et al., 2008b, 2010). Studies with ultrafine particles (UFP) indicate that adaptive transfer of Nrf2-deficient dendritic cells treated with UFP and OVA into WT mice resulted in greater immune cell infiltrate, OVA-IgG1, and IL-13 in the BALF after in vivo OVA sensitization compared with mice receiving similarly treated WT dendritic cells (Li et al., 2013). Taken together, these studies indicate that particulate matter can activate Nrf2 in the lung, which can have a protective effect in these models.

Although most studies indicate that Nrf2 deficiency results in worsened oxidative stress, other studies show that Nrf2 may also contribute to injury or have no effect under certain conditions (Fig. 1). A recent study using a real-ambient air exposure system demonstrated that chronic exposure to real ambient air containing high levels of PM2.5 caused an increase in inflammatory infiltrate, oxidative stress, and lung injury in WT, but not Nrf2-null, mice (Ding et al., 2021). The authors hypothesize that the diminished inflammation and damage observed in the Nrf2-KO mice may be due to decreased expression of CYP2E1.
Nrf2 and Atopic Dermatitis. Atopic dermatitis (AD), also known as atopic eczema, is the most common inflammatory skin disease that is characterized as persistent eczematous lesions, itch, and discomfort. The pathophysiology of AD involves both genetics and environmental factors that can cause epidermal barrier abnormalities and inflammation of the skin from T cells (Weidinger et al., 2018).

Many studies have identified compounds with anti-inflammatory properties in both in vitro and in vivo models of AD with evidence for activation of Nrf2; however, it is important to note that a causative role for Nrf2 has not yet been established in most of these studies (Table 2). Specifically, studies have shown that sulforaphane, saponins derived from *Platycodon grandiflorum*, quercetin, macakurzin-C derivative, and a chrysin derivative all have protective effects in animal models of atopic dermatitis, with data suggesting that these effects correlate with the expression of Nrf2 downstream targets. However, activation of Nrf2 is not protective against every contact sensitizer. Topical application of 1-

dimethoxychalcone, and 6-shogaol (active compound of ginger) (Park et al., 2016; Shen et al., 2017; Mohamed et al., 2018; Takada-Takatori et al., 2019). Although these studies suggest a potential protective effect of Nrf2 activators on allergic contact dermatitis, further studies with Nrf2-deficient models are needed to identify the role of Nrf2 in these effects.

To specifically address the role of Nrf2 in contact dermatitis, a study was performed using WT and Nrf2-deficient mice. These mice were sensitized using the strong contact sensitizer 2,4-dinitrochlorobenzene (DNCB), which resulted in a significant increase in ear swelling in Nrf2-deficient mice compared with WT mice, suggesting that Nrf2 mitigates inflammation in this model (Table 2, El Ali et al., 2013). Additionally, when mice were treated with low concentrations of DNCB, inflammation was solely observed in Nrf2-deficient mice, further supporting the idea that Nrf2 protects against contact dermatitis. The protective effect of Nrf2 was not limited to DNCB, as several other chemical sensitizers also increased lymphocyte proliferation in Nrf2-deficient mice compared with WT mice (El Ali et al., 2013).

However, activation of Nrf2 is not protective against every contact sensitizer. Topical application of 1-fluoro-2,4-dinitrobenzene (DNFB), an immunogenic hapten, was found to elicit an antioxidant response through the expression of Nrf2 downstream targets. However, in Nrf2-deficient mice, contact hypersensitivity was not developed due to a compromised epidermal innate immune response as demonstrated by a decrease in IL-1β and keratinocyte-intrinsic factor, which is necessary for the development of immune memory (Ogawa et al., 2020b). Furthermore, clinical relevance of Nrf2 involvement in AD was also assessed in this study through analysis of patients with various congenital disorders that resemble allergic contact dermatitis. Increased expression of Nrf2 and its target gene, small proline-rich protein 2, were found in the epidermis of patients with Netherton syndrome and peeling skin syndrome as compared with healthy controls. Nrf2 has also been shown to play a role in maintaining contact hypersensitivity response in aging mice. Aging is associated with diminished T helper (Th1)-mediated responses, including contact hypersensitivity. The decline in the contact hypersensitivity response with age was reversed in Nrf2-deficient mice, suggesting that Nrf2 may play a role in maintaining Th1 response in healthy aging mice. However, further studies are needed to determine the role of Nrf2 in contact hypersensitivity response in aging mice.

Contact Dermatitis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Model</th>
<th>Effect of Nrf2-Knockout</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic Dermatitis</td>
<td>BALB/cWT & Nrf2 (−/−)</td>
<td>↓ Ear thickness; ↓ effector cell infiltration; ↓ type 2 cytokine; ↓ IgE response</td>
<td>(Ogawa et al., 2020b)</td>
</tr>
<tr>
<td>Contact Dermatitis</td>
<td>Ex vivo: BMDC Nrf2 (+/+) versus (−/−)</td>
<td>↓ Expression of antioxidant genes</td>
<td>(Mussotter et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>C57BL/6WT & Nrf2 (−/−)</td>
<td>↑ PMN recruitment to skin during sensitization phase</td>
<td>(Helou et al., 2019)</td>
</tr>
<tr>
<td></td>
<td>C57BL/6WT & Nrf2 (−/−)</td>
<td>↓ Ear thickness</td>
<td>(El Ali et al., 2013; Helou et al., 2019)</td>
</tr>
</tbody>
</table>

IgE, immunoglobulin E.
hypersensitivity in aged mice was more pronounced in Nrf2-deficient mice and less pronounced with treatment of the Nrf2 activator sulforaphane (Kim et al., 2008). Overall, these studies suggest that Nrf2 plays a contributing or causative role in the development of contact dermatitis in some instances.

Polymorphonuclear leukocytes (PMNs) are involved in hastened-induced inflammation during sensitization through the activation of DC (Weber et al., 2015). Nrf2 implication in PMN recruitment to DNBC-sensitized skin in WT and Nrf2-deficient mice was reported by Helou’s group. They found that Nrf2 plays an important role in controlling PMN recruitment to the skin, which was demonstrated by an increase in lymphocyte antigen 6 locus, complex GC (Ly6GC) + cells in the skin of Nrf2-deficient mice after sensitization with DNBC (Helou et al., 2019). Additionally, antioxidant genes, such as HO-1, glutamate-cysteine ligase catalytic subunit (GCLC), and NQO1, were upregulated in WT mice compared with Nrf2-deficient mice sensitized with DNBC. Notably, they discovered an upregulation in the effecytosis receptor CD36 on macrophages in the skin of sensitized WT mice, which was not observed in Nrf2-deficient mice. Overall, this study indicates that Nrf2 regulates neutrophil recruitment during the sensitization phase in this model of contact dermatitis.

A proteomics study was performed to assess potential biomarkers of activated DC by contact allergens, such as DNBC, cinnamaldehyde, and nickel (II) sulfate. Bone marrow-derived dendritic cells (BMDCs) from WT and Nrf2-deficient mice were used to determine the role of Nrf2. Several proteins, specifically stress response proteins such as glutamate-cysteine ligase modifier subunit (GCLM) and HO-1, were upregulated in WT cells treated with cinnamaldehyde and DNBC. Conversely, in Nrf2-deficient BMDCs, many of the proteins were not induced, suggesting Nrf2-dependent regulation (Mussotter et al., 2016). Taken together, the data from this study suggest an important role for Nrf2 in the induction of antioxidant genes by contact allergens in dendritic cells.

Current Challenges, Knowledge Gaps, and Future Directions. Based on studies dating back to the 2010s, there has been interest in developing Nrf2 activators for the treatment of allergic airway disease and skin allergy. However, the available therapeutic agents for this mechanism are limited in their practicality. Some of these therapeutic agents have related risks and are shown to have low efficacy and bioavailability (Egbujor et al., 2021). One of the challenges of these therapeutic agents is the lack of accurate and appropriate pharmacokinetic and pharmacodynamic reports, as well as safety profiles for administration.

Currently, there are several FDA-approved Nrf2 activators for clinical use. Dimethyl fumarate is approved for relapsing-remitting multiple sclerosis (Tecfidera) and internationally for psoriatic arthritis (Fumaderm). Recently, monomethyl fumarate (Batifertam) and diroximel fumarate (Vumeter) have been approved for relapsing-remitting multiple sclerosis (Hoogendoorn et al., 2021). These drugs have also been tested in in vitro studies, which indicate that they induce Nrf2 target genes and could potentially have an antioxidant effect. Likewise, these drugs have been shown to ameliorate the symptoms of other chronic diseases, such as diabetes, chronic kidney disease, asthma, and dermatitis (Seidel and Roth, 2013; Hu et al., 2018; Zhao and Wen, 2018; Ogawa et al., 2020a).

One of the major challenges in Nrf2 drug development is the lack of specificity of Nrf2 activators reacting with protein thiol targets. Most Nrf2 activators that have been approved or are under clinical development aim to react with Cys151 of the N-terminal domain of Keap1. However, these Nrf2 activators have off-target effects and accompanied toxicity due to covalent and indiscriminate alkylation of thiol groups on other proteins (Gazaryan and Thomas, 2016; Robledinos-Anton et al., 2019). In addition, the use of many of these drugs is limited by short half-life (Hoogendoorn et al., 2021). Some synthetic drug candidates, such as fumaric acid esters, sulforaphane, and nitro fatty acids have been considered as therapeutic agents and tested in clinical trials; however, they present inconsistent effects related to poor absorption, metabolism, and excretion (Egbujor et al., 2021). In addition to the covalent alkylation to thiol groups of Keap1, Nrf2 activation through a noncovalent inhibition of the Nrf2/Keap1 interaction is also being considered for therapeutic use (Satoh and Lipton, 2017).

Despite these challenges, there are ongoing clinical trials studying the pharmacokinetics of synthetic and naturally derived Nrf2 activators and inhibitors (Robledinos-Anton et al., 2019). Future work should be directed toward finding compounds or produgs with good pharmacokinetic/pharmacodynamic profiles that contain a more specific reaction to key thiol groups of Keap1 to avoid systemic side effects.

Authorship Contributions
Written or contributed to the writing of the manuscript: Rockwell, Jin, Boss, Kaiser, Awali.

References
Chen K, Lu R, Chang JC, and Kan YW (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 93:13943–13948.

Address correspondence to: Cheryl E. Rockwell, Michigan State University, B-440 Life Sciences, 1355 Bogue St., East Lansing, MI 48823. E-mail: rockwelc@msu.edu