










m6A modification can affect miRNA processing (Fig. 3). m6A modi-
fication of pri-miRNAs recruits heterogeneous nuclear ribonucleoprotein
A2/B1, which interacts with DiGeorge syndrome critical region 8 of
pri-let-7e to facilitate miRNA biogenesis (Alarc�on et al., 2015). Another
example is that nuclear factor-kappa B-activating protein recognizes
m6A in pri-miR-25 to recruit DiGeorge syndrome critical region 8,
resulting in maturation promotion (Zhang et al., 2019). Since knowledge
about the functional roles of m6A modification of miRNA precursors is
limited, additional studies are needed for a comprehensive understand-
ing of the roles of m6A modification in miRNA maturation.
Physiologic and Pathologic Roles of m6A Modification. Recently,

accumulating evidence suggests that m6A modification plays significant
roles in biologic processes such as cell differentiation (Batista et al.,
2014), development (Heck and Wilusz, 2019), immune response
(O’Connell et al., 2015), and circadian rhythms (Fustin et al., 2013).
Thus, disruption of m6A levels and dysregulation of m6A writers, eras-
ers, and readers is associated with various diseases, such as obesity (Jia
et al., 2011), neuronal disorders (Maity and Das, 2016), infectious dis-
eases (Gokhale et al., 2016), cancer (Deng et al., 2018), and infertility
(Zheng, et al., 2013). Regarding the physiologic role of m6A modifica-
tion in the liver, it has been reported that METTL3 decreases hepatic
insulin sensitivity by upregulating fatty acid synthase (Xie et al., 2019),
and it enhances lipid accumulation by downregulating peroxisome pro-
liferator-activator a expression (Zhong et al., 2018). Hepatic METTL3
expression in type 2 diabetes mellitus patients is higher than that in
healthy subjects (Xie et al., 2019). Thus, m6A modification plays impor-
tant roles in hepatic lipid metabolism.
m6A Modification Modulates Drug Metabolism Potency. In

RMBase (https://rna.sysu.edu.cn/rmbase/index.php), a database of RNA
modification, drug metabolism-related genes are registered as mRNAs
that are subjected to m6A modification (Table 2). Our group has
revealed that the m6A modification actually has significance in the regu-
lation of drug metabolism. In the following sections, our recent findings

that m6A modification regulates P450, UGT, and esterase isoforms are
summarized in Table 2 and introduced in detail.
m6A Modification Downregulates CYP2C8 Expression. To

examine whether m6A modification affects P450 expression, we evalu-
ated the expression levels of P450 isoforms in HepaRG cells treated
with 3-deazaadenosine (DAA), an inhibitor of S-adenosylmethionine
synthesis (Chiang, 1998; Nakano et al., 2020). CYP1A2 (1.6-fold), 2B6
(2.2-fold), and 2C8 (2.7-fold) expression levels were significantly
increased by treatment with DAA. The CYP2C8 expression level and
enzymatic activity were increased (1.4–2.0-fold) by silencing of
METTL3 and METTL14, but it was reduced to 22%–75% of control
by silencing of FTO but not by ALKBH5. By immunoprecipitation of
m6A-containing RNA using an anti-m6A antibody, we found that the
50-UTR and the 30-UTR of CYP2C8 mRNA undergo m6A modification
in HepaRG cells and human liver samples. The m6A modification in
the 30-UTR of CYP2C8 negatively regulates CYP2C8 expression by
recruiting YTHDC2, which promotes the degradation of CYP2C8
mRNA (Fig. 4). This is the first study to demonstrate m6A modifica-
tion-mediated regulation of P450 isoforms.
m6A Modification Downregulates UGT2B7 Expression. To expand

the knowledge of m6A modification-mediated regulation of drug metab-
olism potencies, we investigated whether m6A modification regulates
UGT isoforms (Ondo et al., 2021). Treatment of HepaRG cells with
DAA significantly increased (1.3–2.6-fold) the UGT1A1, 1A3, 1A4,
1A9, 2B7, 2B10, and 2B15 mRNA levels. Among them, we focused on
UGT2B7 because it most highly contributes to glucuronidation of clini-
cally used drugs (Williams et al., 2004). The UGT2B7 expression level
in Huh-7 cells was significantly increased (1.5-fold) by double knock-
down of METTL3 and METTL14 but was reduced to 70% and 66% of
control by knockdown of FTO or ALKBH5, respectively, suggesting
that m6A modification negatively regulates UGT2B7 expression. Methy-
lated RNA immunoprecipitation assays revealed that the 50-UTR and the
30-UTR of UGT2B7 mRNA have m6A modification sites in HepaRG

TABLE 2

Drug metabolism-related genes whose mRNA is subjected to m6A modification and whose expression is regulated by m6A-related enzymes

Gene

m6A Modified Region

Effects, m6A-Related
Enzymes, Cell Line ReferenceEvaluation by NGSa

Evaluation by RIP with
Anti-m6A Antibody

CYP2B6 30-UTR ND ND
CYP2C8 Coding region, 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation,
FTO; downregulation,
YTHDC2, HepaRG and

Huh-7 cells

Nakano et al., 2020

UGT1A Coding region, intron, 30-UTR ND ND
UGT2B4 Coding region ND ND
UGT2B7 Not registered Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation,
FTO and ALKBH5, Huh-

7 cells

Ondo et al., 2021

UGT2B15 Coding region ND ND
UGT2B17 Intron ND ND
CES1 50-UTR, coding region ND ND
CES2 50-UTR, coding region, intron, 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation
by FTO and ALKBH5;
downregulation by

YTHDC2, HepaRG and
Huh-7 cells

Takemoto et al., 2021

AhR 50-UTR, coding region, 30-UTR ND ND
CAR Coding region, intron, 30-UTR ND ND
HNF4a 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Upregulation, FTO, Huh-7

cells
Ondo et al., 2021

PXR Coding region, 30-UTR ND ND

ND, no data; NGS, next generation sequencing; RIP, RNA immunoprecipitation.
aRMBase (https://rna.sysu.edu.cn/rmbase/index.php), a database of m6A modification sites identified by NGS.
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cells and human livers. However, these methylation events do not
directly affect the UGT2B7 expression level. Reporter assays demon-
strated that the promoter region has a key role in m6A modification-
mediated regulation of UGT2B7. We found that the expression level of
HNF4a, which regulates the transcription of UGT2B7, was significantly
reduced to 46% of control by knockdown of FTO, indicating that this
would be the underlying mechanism of m6A modification-mediated neg-
ative regulation of UGT2B7 transactivation. Since HNF4a also transacti-
vates CYP2C8 (Ferguson et al., 2005), the negative regulation of HNF4a
by m6A modification contributes to the downregulation of CYP2C8
expression by the m6A modification described above. Further study is
needed to clarify the effects of m6A modification-mediated repression of
HNF4a expression on the other P450 and UGT isoforms. Entacapone,
which is used for treating Parkinson’s disease, has been reported to
inhibit FTO in vitro and in vivo (Peng et al., 2019). Interestingly, treat-
ment with entacapone decreased HNF4a and UGT2B7 expression to
35% and 21%, respectively. Thus, entacapone has the potential to cause
drug-drug interactions through the negative regulation of UGT2B7 (Fig.
4). This study provided novel insight into a unique regulatory mecha-
nism for UGT expression.
m6A Modification Downregulates Carboxylesterase 2 Expression.

Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydroly-
sis of various drugs, such as 7-ethyl-10-[4-(1-piperidino)-1-piperidino]car-
bonyloxycamptothecin, and endogenous substrates, such as triglycerides
and diacylglycerides (Humerickhouse et al., 2000; Ruby et al., 2017).
Recently, we revealed that m6A modification affects drug and lipid metab-
olism by regulating hepatic CES2 expression (Takemoto et al., 2021a)
(Fig. 4). The CES2 expression level and its hydrolase activity for 7-ethyl-
10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin in HepaRG and
HepG2 cells were significantly increased (1.2–1.4-fold) by double knock-
down of METTL3 and METTL14 but were reduced to 25%–81% of

control by knockdown of FTO or ALKBH5, suggesting that m6A modifi-
cation downregulates CES2 expression. Consistently, cellular lipid
accumulation was decreased to 82% of control by double knockdown
of METTL3 and METTL14, but it was increased (1.2–
1.5-fold) by knockdown of FTO or ALKBH5. RNA immunoprecipita-
tion assays using an anti-m6A antibody revealed that the 50-UTR and
the last exon of CES2 are subjected to m6A modification. We found
that YTHDC2 recognizes m6A in the 50-UTR of CES2 and promotes
the degradation of CES2 mRNA. Because CES2 is also transcriptionally
regulated by HNF4a (Li et al., 2016), m6A may indirectly contribute to
the downregulation of CES2 via attenuation of HNF4a expression. Col-
lectively, m6A modification has a strong impact on the regulation of
CES2, affecting pharmacokinetics, drug responses, and lipid metabolism.

Conclusion

In this review article, current knowledge about A-to-I RNA editing
and m6A modification-dependent regulation of drug metabolism is sum-
marized. The significance of such posttranscriptional regulation in the
field of pharmacokinetics research has only recently started to become
clear. In addition to drug metabolizing enzymes, some drug transporters
have been reported to be subjected to posttranscriptional regulation.
Omata et al. (2021) reported that ADAR1 regulates P-glycoprotein in
human renal cells by affecting its alternative splicing. Xiao et al. (2021)
reported that FTO upregulates multidrug resistance-associated protein 7
expression in nonsmall cell lung cancer to confer gefitinib resistance.
Thus, A-to-I RNA editing and m6A modifications could be distinct reg-
ulators of pharmacokinetics.
In addition to the regulation of drug metabolizing enzymes and trans-

porters, A-to-I RNA editing and m6A modification have been shown to
impact the sensitivity of anticancer drugs. Ishizuka et al. (2019) reported,
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Fig. 4. m6A modification modulating drug metabolism-related genes. CYP2C8 mRNA is subjected to m6A modification, leading to YTHDC2-mediated degradation of
its mRNA. m6A modification negatively regulates UGT2B7 expression by downregulating HNF4a. YTHDC2 promotes degradation of CES2 mRNA by recognizing
m6A in the 50-UTR.
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by using syngeneic mouse models, that knockout of Adar1 sensitizes
tumors to immune checkpoint blockade. Sun et al. (2020) reported that
ADAR1 contributes to resistance to bromodomain and extraterminal
domain inhibitors in pancreatic cancer cells. Thus, inhibition of ADAR1
would be a promising approach to overcome cancer resistance. There are
currently no clinically used ADAR inhibitors, although adenosine ana-
logs, 8-azaadenosine and 8-chloroadenosine, have been reported to
inhibit ADAR1 (Zipeto et al., 2016; Ding et al., 2020; Ram�ırez-Moya
et al., 2020). These compounds would be useful, but a recent study
reported that they are not selective inhibitors of ADAR1 (Cottrell et al.,
2021). Thus, the development of novel specific inhibitors of ADAR1 is
desired. Knowledge about the roles of m6A modification in the cancer
therapy response is more mature than knowledge about A-to-I editing,
and it has been recently summarized in a review by Lan et al. (2021).
For example, FTO expression levels are increased during the develop-
ment of resistance to tyrosine kinase inhibitors, and rhein, an inhibitor of
FTO, restores sensitivity to tyrosine kinase inhibitors (Yan et al., 2018).
m6A modification would also be an attractive target for cancer therapy.
In addition to cancer, knowledge about significance of FTO in energy
metabolism has been accumulated. Research using mouse models has
shown that ubiquitous overexpression and knockout of Fto results in
obesity and reduced body weight, respectively (Fischer et al., 2009;
Church et al., 2010). Because HNF4a and CES2 are known to regulate
lipid and glucose metabolisms (Gonzalez, 2008; Ruby et al., 2017),
FTO-mediated upregulation of HNF4a and CES2 (described in Sections
2.4.1 and 2.4.2) would be a piece of the functional roles of FTO in
energy metabolism. Inhibition of FTO using entacapone and rhein would
be a promising strategy for treatment of metabolic disorders such as obe-
sity and diabetes.
Until now, the roles of A-to-I RNA editing and m6A modification in

the regulation of drug metabolism-related genes have been examined
separately. It has been reported that A-to-I editing preferentially occurs
in m6A-negative transcripts, indicating that these posttranscriptional reg-
ulations may suppressively interfere with each other (Xiang et al.,
2018). As described above, A-to-I RNA editing positively regulates
CYP2C8 expression (Fig. 2), whereas m6A modification negatively reg-
ulates CYP2C8 expression (Fig. 4). There is a possibility that A-to-I
RNA editing upregulates CYP2C8 expression by repressing m6A modi-
fication-mediated negative regulation and vice versa. To deeply under-
stand the importance of these two posttranscriptional regulations in the
regulation of drug metabolizing enzymes, it should be noted that one
posttranscriptional modification affects the levels of the other modifica-
tion on the same transcript.
It is now clear that A-to-I RNA editing and m6A modification are

novel regulators of drug metabolism potency. Elucidation of the extent
and causes of inter- and intraindividual differences in these posttran-
scriptional modifications as well as the development of inhibitors and
activators for RNA modifications are expected to contribute to the prac-
tice of personalized medicine.

Authorship Contributions

Wrote or contributed to the writing of the manuscript: Nakano, Nakajima.

References

Adams JM and Cory S (1975) Modified nucleosides and bizarre 50-termini in mouse myeloma
mRNA. Nature 255:28–33.

Ahmad A, Shameem M, and Husain Q (2013) Altered oxidant-antioxidant levels in the disease
prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 17:1104–1109.

Alarc�on CR, Lee H, Goodarzi H, Halberg N, and Tavazoie SF (2015) N6-methyladenosine marks
primary microRNAs for processing. Nature 519:482–485.

Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, Gallo A, Shomron N, and
Eisenberg E (2012) Systematic identification of edited microRNAs in the human brain.
Genome Res 22:1533–1540.

Bass BL, Nishikura K, Keller W, Seeburg PH, Emeson RB, O’Connell MA, Samuel CE, and
Herbert A (1997) A standardized nomenclature for adenosine deaminases that act on RNA.
RNA 3:947–949.

Bass BL and Weintraub H (1987) A developmentally regulated activity that unwinds RNA
duplexes. Cell 48:607–613.

Bass BL and Weintraub H (1988) An unwinding activity that covalently modifies its double-
stranded RNA substrate. Cell 55:1089–1098.

Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar
K, et al. (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic
stem cells. Cell Stem Cell 15:707–719.
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