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ABSTRACT

Interindividual differences in the expression and activity of drug
metabolizing enzymes including cytochrome P450, UDP-glucurono-
syltransferase, and esterases cause variable therapeutic efficacy or
adverse events of drugs. As the major mechanisms causing the vari-
ability in the expression of drug metabolizing enzymes, transcrip-
tional regulation by transcription factors, epigenetic regulation
including DNA methylation, and posttranscriptional regulation by
microRNA are well known. Recently, adenosine-to-inosine RNA edit-
ing and methylation of adenosine at the N6 position on RNA have
emerged as novel regulators of drug metabolism potency. In this

review article, the current knowledge of these two prevalent types of
posttranscriptional modification mediated modulation of drug meta-
bolism involved genes is introduced.

SIGNIFICANCE STATEMENT

Elucidation of the significance of adenosine-to-inosine RNA edit-
ing and N6-methyladenosine in the regulation of drug metabolizing
enzymes is expected to lead to a deeper understanding of interindi-
vidual variability in the therapeutic efficacy or adverse effects of
medicines.

Introduction

There are large interindividual differences in the expression and
activity of drug metabolizing enzymes including cytochrome P450
(P450), UDP-glucuronosyltransferase (UGT), and esterases, causing
variable therapeutic efficacy or adverse events of drugs. The expression
of drug metabolizing enzymes is regulated in each step, transferring
genetic information from genomic DNA to RNA and then to protein.
Transcriptional regulation by transcription factors including aryl hydro-
carbon receptor (AhR), pregnane X receptor (PXR), constitutive andros-
tane receptor (CAR), and hepatocyte nuclear factor 4a (HNF4a) is
widely known (Zanger and Schwab, 2013). As well as such transcrip-
tional regulation, posttranscriptional regulation has been recognized to
contribute to interindividual differences in the expression of drug
metabolizing enzymes. In the past decade, it became apparent that
microRNAs (miRNAs), endogenous �22-nucleotide noncoding RNAs,

posttranscriptionally modulate the expression of P450, UGT, and related
transcription factors, and their significance in interindividual differences
in drug metabolizing enzyme expression has been broadly recognized
(Nakano and Nakajima, 2018a; Li et al., 2019).
In addition to posttranscriptional regulation by trans-acting factors

such as miRNAs and RNA binding proteins, hundreds of distinct post-
transcriptional modifications contribute to the regulation of the expres-
sion and function of proteins (Fu et al., 2014; Boccaletto et al., 2018).
Two prevalent types of RNA modifications are adenosine-to-inosine
(A-to-I) RNA editing and methylation of adenosine at the N6 position
(m6A modification), which are observed in 38% and 25% of human
genes (Picardi et al., 2017; Zhang et al., 2021). These epitranscriptomic
regulations can modulate RNA processing, affecting protein expression
and function (Maity and Das, 2016; Nishikura, 2016). Recently, we
demonstrated that A-to-I RNA editing and m6A modification modulate
the expression of drug metabolizing enzymes, including P450, UGT,
and esterase. This review describes the current knowledge of these post-
transcriptional modifications and their significance in the regulation of
drug metabolism.

A-to-I RNA Editing
In 1987, a phenomenon in which double-stranded RNA (dsRNA) is

unwound was found in Xenopus laevis oocytes and embryos (Bass and
Weintraub, 1987). Later, this phenomenon was found to be caused by
hydrolytic deamination of adenosine to convert to inosine, which occurs
in human cells as well as Xenopus laevis (Bass and Weintraub, 1988;
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Wagner et al., 1989). The nucleotide change named A-to-I RNA editing
has been demonstrated to be catalyzed by adenosine deaminase acting
on RNA (ADAR) enzymes (Kim et al., 1994; O’Connell et al., 1997).
Inosine is formed by ADAR-catalyzed hydrolytic deamination of adeno-
sine at the C6 position in dsRNA (Gerber et al., 1997). In the 1990s, a
limited number of editing sites were identified in the coding region of
mRNA by Sanger sequencing (Sommer et al., 1991). In the last decade,
the emergence of next generation sequencing has enabled the compre-
hensive identification of 4.5 million editing sites in the noncoding and
coding regions of the human transcriptome (Picardi et al., 2017). Since
inosine is recognized by the cellular machinery as guanosine, the con-
version of nucleotides can affect gene function and expression.
Molecular Basis of ADAR. In mammals, there are three types of

ADARs: ADAR1, ADAR2 (ADARB1), and ADAR3 (ADARB2)
(Bass et al., 1997). ADARs have a highly conserved deaminase domain
in the C-terminal region and dsRNA-binding domains in the N-terminal
region required for A-to-I RNA editing activity (Nishikura, 2016).
ADAR1 has two isoforms: ADAR1 p110 (110 kDa protein) and ADAR1
p150 (150 kDa protein), by using alternative promoters. ADAR1 p110 is
constitutively expressed in most human tissues and is localized in the
nucleus, whereas ADAR1 p150 expression is induced by interferon and
is localized in both the nucleus and cytoplasm (Patterson and Samuel,
1995; Desterro et al., 2003). ADAR2, which is also a ubiquitous protein,
is highly expressed in the brain and is localized in the nucleus (Melcher
et al., 1996a). ADAR1 has a 50 neighbor preference (A 5 U > C > G)
but no apparent 30 neighbor preference (Riedmann et al., 2008). ADAR2
has a 50 neighbor preference (A � U > C 5 G) that is similar to that of
ADAR1 and has a 30 neighbor preference (U 5 G > C 5 A) (Polson
and Bass, 1994). Homodimerization is required for ADAR1 p110,
ADAR1 p150, and ADAR2 to exert their editing activities (Cho et al.,
2003; Poulsen et al., 2006; Valente and Nishikura, 2007). ADAR3 is
mainly expressed in the brain, but it does not have editing activity
(Melcher et al., 1996b; Herbert et al., 1997; Chen et al., 2000). A recent

study has shown that ADAR3 may disturb ADAR2 function by acting as
a competitive inhibitor (Oakes et al., 2017).
Functional Roles of A-to-I RNA Editing in Gene Regulation.

According to a study by Picardi et al. (2017), 73% of A-to-I RNA edit-
ing events (3,399,200) occurred in protein coding genes in humans.
Among them, 0.2% (6,786), 97% (3,286,779), 0.2% (5,236), and 3%
(100,399) of editing sites were located in coding regions, introns,
50-untranslated regions (UTRs), and 30-UTRs, respectively. The func-
tional consequences of this nucleotide conversion depend on the region
where the editing events occur (Fig. 1). Of 6,786 editing events in the
coding region, the conversion of 4,388 sites resulted in changes of the
amino acid sequence. Nonsynonymous A-to-I RNA editing has a great
impact on protein function, although such editing events infrequently
occur (Chen et al., 2013). The majority of A-to-I changes occur in
introns and possibly affect splicing by creating or deleting alternative
splice sites (Hsiao et al., 2018; Tang et al., 2020). The identified RNA
editing sites have been compiled into databases such as DARNED
(https://darned.ucc.ie/, Kiran et al., 2013) and REDIportal (http://srv00.
recas.ba.infn.it/atlas/, Picardi et al., 2017), but the functional significance
of most of them remains to be clarified.
In recent years, the presence of circular RNAs, ring-shaped stable

noncoding RNAs, which are produced during the “back-splicing” of
exons and function as miRNA sponges, has been revealed (Hsiao et al.,
2017). It is interesting that the A-to-I editing event in circular RNA pre-
cursors inhibits ring formation (Rybak-Wolf et al., 2015; Ivanov et al.,
2015). A-to-I editing within the 30-UTR possibly creates or destroys the
binding site of miRNAs (Borchert et al., 2009) and can affect the
nuclear retention of mRNA (Hundley and Bass, 2010). In the process
of miRNA biogenesis, primary transcripts (pri-miRNAs) are processed
into precursor miRNAs in the nucleus, and they are then transported
into the cytoplasm to undergo further processing into mature miRNAs.
The stem-loop structures of pri-miRNAs and precursor miRNAs can
be targeted by ADARs (Luciano et al., 2004; Kawahara et al., 2007).
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Fig. 1. Functional significance of A-to-I RNA editing. Adenosine deaminase acting on RNA (ADAR) enzymes converts adenosine to inosine by hydrolytic deamina-
tion. Inosine is recognized by the cellular machinery as if it were guanosine. Through nucleotide conversion, amino acid sequence, splicing, microRNA (miRNA) proc-
essing, and miRNA targeting can change.
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The editing events in a miRNA transcript can change its processing,
influencing miRNA expression. In other cases, A-to-I conversion of
the miRNA seed sequence, which is nucleotides 2–7 at the 50-end of
the miRNA and is critical for recognition of the targets (Lewis et al.,
2005), could change its target binding efficiency (Alon et al., 2012;
Nakano et al., 2017). In addition, it has been reported that ADAR1
promotes the generation of miRNA in an editing-independent manner
by interacting with the microprocessor complex (Ota et al., 2013).
Physiologic and Pathologic Roles of A-to-I RNA Editing. Early

studies showed that A-to-I editing plays key roles in the central nervous
system (Tariq and Jantsch, 2012). For example, 5-hydroxytryptamine
receptor subtype 2C and glutamate receptor subtype A2 are known to
undergo A-to-I RNA editing (Sommer et al., 1991; Lomeli et al., 1994;
Burns et al., 1997), and the disruption of RNA editing in these RNAs
leads to Prader-Willi syndrome and amyotrophic lateral sclerosis,
respectively (Kawahara et al., 2004; Morabito et al., 2010). In addition,
aberrant A-to-I RNA editing or ADAR expression is associated with
other diseases, including cancer, metabolic diseases, neurologic disor-
ders, viral infections, and autoimmune disorders (Song et al., 2016). In
particular, it has been elucidated by recent research that ADAR1 is com-
monly overexpressed in liver, lung, breast, and esophageal cancer as well
as in chronic myelogenous leukemia, and it promotes cancer progression
(Xu and €Ohman, 2018). ADAR1-mediated RNA editing contributes to
carcinogenesis by reducing the activity of tumor suppressors, such as
bladder cancer-associated protein, or enhancing the activity of oncogenic
proteins, such as antizyme inhibitor 1, by changing their amino acid
sequences (Chen et al., 2013; Hu et al., 2015). Our research group dem-
onstrated that ADAR1 positively regulates the expression of dihydrofolate
reductase, a key enzyme in folate metabolism, by disrupting the miRNA
binding sites in the 30-UTR of dihydrofolate reductase and enhancing the
proliferation of breast cancer cells (Nakano et al., 2017). Therefore,
ADAR1 is expected to be a novel target for cancer therapy.
A-to-I RNA Editing Modulates Drug Metabolism Potency. In

REDIportal, drug metabolism-related genes are registered as mRNAs
that are subjected to A-to-I RNA editing (Table 1). Recently, our
research group found large (over 200-fold) interindividual variability in
ADAR1 expression in human liver samples (Nakano et al., 2016). This
finding prompted us to investigate the involvement of ADAR1 in the

interindividual differences in hepatic expression of drug metabolizing
enzymes (Nakano and Nakajima, 2018b). Recent findings of A-to-I
editing-mediated regulation of drug metabolism-related genes are sum-
marized in Table 1 and introduced below in detail.
ADARs Modulate Drug Metabolizing P450 Expression. To

examine the role of ADARs in the regulation of drug metabolizing
P450 expression in the human liver, we knocked down ADAR1 or
ADAR2 in HepaRG cells (Nozaki et al., 2019), which show higher
P450 expression than HepG2 cells (Guillouzo et al., 2007). Knockdown
of ADAR1 or ADAR2 resulted in a decrease in CYP2C8 mRNA (66%
and 54% of control, respectively) and protein expression (77% and
64% of control, respectively) in a promoter region-dependent manner.
The CYP2C8-catalyzed amodiaquine N-desethylation activity was
significantly decreased to 64% and 40% of control by the knockdown
of ADAR1 and ADAR2, respectively. We found that the decreased
expression of HNF4a protein (63% and 79% of control, respectively)
(but not mRNA) by the knockdown of ADAR1 or ADAR2 was the rea-
son for the decreased transactivity of CYP2C8 (30% and 49% of con-
trol, respectively) (Ferguson et al., 2005) (Fig. 2). The mRNA levels of
other P450 isoforms, such as CYP2A6, 2C9, 2C19, 2D6, and 2E1,
which are known to be regulated by HNF4a (Kamiyama et al., 2007;
Chen et al., 2018), were also reduced to 20%–81% of control by
ADAR1 or ADAR2 knockdown. Exceptionally, the CYP3A4 mRNA
level was increased (3-fold) by ADAR1 knockdown, which could be
attributed to the increased CAR and PXR expression, as explained
below. Thus, ADARs indirectly regulate P450 expression via modula-
tion of the expression of transcription factors or nuclear receptors. In
the following three sections, insights into ADAR-mediated regulation of
AhR, CAR, and PXR, which are important for the transcription of drug
metabolizing enzymes, are introduced.
A-to-I RNA Editing Downregulates AhR Expression by Creat-

ing a miRNA Recognition Site. AhR is a ligand-responsive transcrip-
tion factor that modulates the transcription of xenobiotic-metabolizing
enzymes such as CYP1A1, CYP1A2, CYP1B1, UGTs, and glutathione
S-transferases. In response to ligand binding, AhR forms a heterodimer
with aryl hydrocarbon receptor nuclear translocator, and it binds to the
upstream region of its target genes (Ramadoss et al., 2005). The
30-UTR of AhR has an everted Alu repeat, which can form a dsRNA

TABLE 1

Drug metabolism–related genes whose mRNA is subjected to A-to-I RNA editing and expression is regulated by ADARs

Gene

A-to-I RNA EDITED REGION

Effects, ADARs, Cell Line ReferenceEvaluation by NGSa Evaluation by Sanger Sequencing

CYP1A2 Intron, 30-UTR ND Upregulation, ADAR2, HepaRG cells Nozaki et al., 2019
CYP2A6 Intron ND Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP2B6 Intron, 30-UTR Not edited in 30-UTR Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP2C8 50-UTR, intron ND Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP2C9 Intron, 30-UTR ND Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP2C19 30-UTR ND Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP2D6 Coding region ND Upregulation, ADAR2, HepaRG cells Nozaki et al., 2019
CYP2E1 Intron ND Upregulation, ADAR1 and ADAR2, HepaRG cells Nozaki et al., 2019
CYP3A4 Intron, 30-UTR Not edited in 30-UTR Downregulation, ADAR1, HepaRG and HepG2 cells Nozaki et al., 2019;

Takemoto et al., 2021b
UGT1A Intron, 30-UTR ND Downregulation, ADAR1, HepG2 cells Takemoto et al., 2021b
UGT2B4 Intron ND ND
UGT2B15 Intron ND ND
UGT2B17 Intron ND ND
CES1 Intron ND ND
CES2 50-UTR, intron ND ND
AhR 30-UTR Edited in 30-UTR Downregulation, ADAR1, Huh-7 cells Nakano et al., 2016
CAR Intron Not edited in intron Downregulation, ADAR1, HepG2 cells Nakano et al., 2019
HNF4a Intron ND Upregulation, ADAR1 and ADAR2, HepaRG and Huh-7cells Nozaki et al., 2019
PXR Intron Not edited in 30-UTR Downregulation, ADAR1 and ADAR2, HepaRG and HepG2 cells Takemoto et al., 2021b

ND, no data; NGS, next generation sequencing.
aREDIportal (http://srv00.recas.ba.infn.it/atlas/), a database of A-to-I RNA editing sites identified by NGS.
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structure, a typical target of ADAR. By Sanger sequence analysis, in
which RNA editing sites show a peak of guanosine along with that of
adenosine in cDNA but show a single adenosine peak in genomic
DNA, we identified 38 ADAR1-mediated A-to-I RNA editing sites in
the 30-UTR of AhR in the human liver. These editing events negatively
regulate AhR expression in human hepatoma-derived Huh-7 cells by
creating a recognition site of miR-378 in the 30-UTR of AhR (Nakano
et al., 2016) (Fig. 2). The downregulation of AhR attenuated the
2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated induction of CYP1A. In
human liver samples, there is a significant inverse correlation between
the miR-378 and AhR protein levels, suggesting that the RNA editing-
dependent downregulation of AhR by miR-378 contributes to the vari-
able expression of AhR in human liver. This is the first evidence to
show that A-to-I RNA editing regulates xenobiotic metabolism-related
genes.
ADAR1 Disrupts Splicing of CAR mRNA. CAR is a member of

the nuclear receptor superfamily and it is a crucial regulator of drug
metabolism and excretion. CAR is activated by some synthetic com-
pounds, drugs, and natural products (Chang and Waxman, 2006), and it
induces the expression of CYP2B6, CYP2C9, CYP3A4, UGTs, sulfo-
transferases, and drug transporters (Negishi and Honkakoski, 2000;
Moore et al., 2006). We found that ADAR1 negatively regulates CAR
expression in human hepatoma-derived HepG2 cells, resulting in attenu-
ation of the ligand-dependent induction of CYP2B6 and CYP3A4. As
for the mechanism of negative regulation of CAR by ADAR1, it was
demonstrated that ADAR1 attenuates the splicing of CAR intron 3,
which has two inverted Alu elements but does not have A-to-I RNA
editing sites (Nakano et al., 2019) (Fig. 2). ADAR1 may bind to the
dsRNA in intron 3 of CAR pre-mRNA, resulting in the attenuation of
splicing in an RNA editing activity-independent manner.
ADARs Promote Degradation of PXR mRNA. PXR is a nuclear

receptor that regulates the expression of at least 40 types of genes,
including P450s, UGTs, sulfotransferases, glutathione S-transferases, and
drug transporters (Kliewer et al., 2002). In our recent study, it was found
that the knockdown of ADAR1 or ADAR2 significantly increased PXR

protein levels (1.5–1.9-fold) in HepaRG and HepG2 cells via attenuation
of mRNA degradation, resulting in increased CYP3A4 (71-fold) and
UGT1A1 (1.9-fold) expression. A luciferase assay demonstrated that the
30-UTR of PXR mRNA is responsible for the ADAR-mediated posttran-
scriptional regulation of PXR expression, despite the lack of RNA edited
sites in this region (Takemoto et al., 2021b). Although the underlying
mechanism of ADAR-mediated downregulation via the 30-UTR has not
been clarified, ADARs may edit the seed sequence of certain miRNAs
to create a novel miRNA-PXR mRNA interaction. It has been suggested
that the ADAR1-mediated negative regulation of PXR would be a rea-
son for the negative regulation of CYP3A4 by ADAR as described in
Section 2.4.1.
Cigarette Smoke Induces Degradation of ADAR1 Protein.

Recently, we performed a study to identify extrinsic factors affecting
ADAR expression and found that cigarette smoke extract (CSE) treat-
ment decreased ADAR1 protein expression to 45% of control in human
lung carcinoma-derived A549 cells (Takizawa et al., 2020). Addition-
ally, exposure to cigarette smoke decreased pulmonary Adar1 protein in
mice to 70% of control. The reduction in ADAR1 expression by CSE
was demonstrated to be caused by the degradation of ADAR1 protein
via the autophagy pathway. Cigarette smoking induces oxidative stress,
which is relevant to the pathophysiology of chronic obstructive pulmo-
nary disease (Ahmad et al., 2013). Interestingly, we also demonstrated
that the knockdown of ADAR1 resulted in an increase (1.3-fold) in
CSE-induced oxidative stress and a decrease in superoxide dismutase
activity (88% of control) and heme oxygenase-1 expression (32% of
control), indicating that ADAR1 has a role in suppressing oxidative
stress. Thus, it was demonstrated that ADAR1 has a role in regulating
the biologic response to protect against xenobiotic exposure.

m6A Modification
In addition to A-to-I RNA editing, RNA is subjected to nearly 160

kinds of modifications, such as methylation of adenosine at the N6 posi-
tion (m6A modification), methylation of adenosine at the N1 position
(N1-methyladenosine modification), dimethylation of adenosine at the
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Fig. 2. A-to-I RNA editing modulating drug metabolism-related genes. ADAR1 and ADAR2 positively regulate hepatocyte nuclear factor 4a (HNF4a) by promoting
translation, leading to upregulation of CYP2C8 expression. ADAR1 negatively regulates aryl hydrocarbon receptor (AhR) by creating a miRNA binding element, lead-
ing to downregulation of CYP1A2 expression. ADAR1 negatively regulates constitutive androstane receptor (CAR) by attenuating splicing, leading to downregulation
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N6 and ribose 20-O positions (N6,20-O-dimethyladenosine modification),
methylation of cytidine at the C5 position (5-methylcytosine
modification), and hydroxylation of 5-methylcytosine (5-hydroxyme-
thylcytosine modification), which do not result in nucleotide conversion.
Among them, m6A modification is the most prevalent internal chemical
modification of mRNA, which was discovered more than 45 years ago
in the rat, mouse, and human transcriptomes (Desrosiers et al., 1974;
Adams and Cory, 1975; Wang et al., 2015; Mauer et al., 2017; Furuichi
et al., 1975). Due to the lack of a methodo-logy for the site-specific
detection of m6A, the cellular function of m6A modification has been
unclear over the years (Dominissini et al., 2012). Next generation
sequencing techniques combined with RNA immunoprecipitation using
an anti-m6A antibody revealed that m6A ubiquitously occurred in the
DRACH (D 5 A, G or U; R 5 A or G; H 5 A, C or U) motif mainly
located near the stop codon in the last exon and was secondarily located
in the 50-UTR (Dominissini et al., 2012; Meyer et al., 2012), and
480,000 m6A sites were identified in the human transcriptome (Xuan
et al., 2018). Elucidation of the physiologic significance of m6A modifi-
cation has just started.
m6A Writers and Erasers. m6A is deposited by a methyltransferase

complex containing methyltransferase-like 3 (METTL3) and METTL14,
which are called “m6A writers” (Liu et al., 2014; Ping et al., 2014;
Schwartz et al., 2014). METTL3 is catalytically active, whereas
METTL14 is an allosteric activator (�Sled�z and Jinek, 2016; Wang
et al., 2016). This METTL3-METTL14 complex catalyzes the
majority of m6A modifications on mRNA (Geula et al., 2015). In
this reaction, S-adenosylmethionine is used as a methyl donor.
Additionally, METTL16 has been found to possess potential m6A
methyltransferase activity (Warda et al., 2017).
m6A is reversibly demethylated to adenosine by the “m6A eraser”.

The first identified m6A eraser was fat mass and obesity associated (FTO)

(Jia et al., 2011). FTO is a member of the Fe(II)- and a-ketoglutarate-
dependent AlkB family (Gerken et al., 2007), and its loss results in
reduced body weight and food intake in mice (Fischer et al., 2009;
Church et al., 2010). FTO-catalyzed demethylation of m6A involves
stepwise oxidation of m6A to N6-hydroxymethyladenosine and N6-for-
myladenosine to adenosine (Fu et al., 2013). FTO is also known to
preferentially demethylate N6,20-O-dimethyladenosine in the 50 cap of
mRNA (Mauer et al., 2017). AlkB homolog 5 (ALKBH5), the second
identified m6A eraser, is also a member of the Fe(II) and a-ketogluta-
rate-dependent AlkB family. Unlike FTO, ALKBH5 directly demethy-
lates m6A to adenosine (Zheng et al., 2013) since the intermediate is
unlikely to be detected in the process of demethylation. Thus, m6A is
dynamically and reversibly regulated by “m6A writers” and “m6A
erasers” (Fig. 3).
Functional Roles of m6A Modification in Gene Regulation.

Unlike A-to-I RNA editing, m6A modification does not result in base
conversion but instead exerts its functions by recruiting proteins called
“m6A readers”. The first identified readers were YTH (YT521-B homol-
ogy) domain-containing proteins (Dominissini et al., 2012). In humans,
there are five members: YTHDF1, YTHDF2, YTHDF3, YTHDC1, and
YTHDC2. YTHDF1 delivers m6A-containing mRNA to the translation
machinery and enhances translation initiation (Wang et al., 2015).
YTHDF2 enhances the degradation of m6A-modified mRNA by deade-
nylation and translocation into the P-body (Wang et al., 2014; Du et al.,
2016). YTHDF3 promotes the translation of targeted mRNAs by inter-
acting with YTHDF1 (Shi et al., 2017). YTHDC1 mediates splicing
(Xiao et al., 2016) and nuclear export of m6A-modified mRNA (Round-
tree et al., 2017). YTHDC2 promotes the translation efficiency of its tar-
get m6A-containing mRNAs and promotes mRNA degradation (Hsu
et al., 2017; Kretschmer et al., 2018). Thus, various steps of mRNA
processing are potentially affected by the binding of readers to m6A.
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m6A modification can affect miRNA processing (Fig. 3). m6A modi-
fication of pri-miRNAs recruits heterogeneous nuclear ribonucleoprotein
A2/B1, which interacts with DiGeorge syndrome critical region 8 of
pri-let-7e to facilitate miRNA biogenesis (Alarc�on et al., 2015). Another
example is that nuclear factor-kappa B-activating protein recognizes
m6A in pri-miR-25 to recruit DiGeorge syndrome critical region 8,
resulting in maturation promotion (Zhang et al., 2019). Since knowledge
about the functional roles of m6A modification of miRNA precursors is
limited, additional studies are needed for a comprehensive understand-
ing of the roles of m6A modification in miRNA maturation.
Physiologic and Pathologic Roles of m6A Modification. Recently,

accumulating evidence suggests that m6A modification plays significant
roles in biologic processes such as cell differentiation (Batista et al.,
2014), development (Heck and Wilusz, 2019), immune response
(O’Connell et al., 2015), and circadian rhythms (Fustin et al., 2013).
Thus, disruption of m6A levels and dysregulation of m6A writers, eras-
ers, and readers is associated with various diseases, such as obesity (Jia
et al., 2011), neuronal disorders (Maity and Das, 2016), infectious dis-
eases (Gokhale et al., 2016), cancer (Deng et al., 2018), and infertility
(Zheng, et al., 2013). Regarding the physiologic role of m6A modifica-
tion in the liver, it has been reported that METTL3 decreases hepatic
insulin sensitivity by upregulating fatty acid synthase (Xie et al., 2019),
and it enhances lipid accumulation by downregulating peroxisome pro-
liferator-activator a expression (Zhong et al., 2018). Hepatic METTL3
expression in type 2 diabetes mellitus patients is higher than that in
healthy subjects (Xie et al., 2019). Thus, m6A modification plays impor-
tant roles in hepatic lipid metabolism.
m6A Modification Modulates Drug Metabolism Potency. In

RMBase (https://rna.sysu.edu.cn/rmbase/index.php), a database of RNA
modification, drug metabolism-related genes are registered as mRNAs
that are subjected to m6A modification (Table 2). Our group has
revealed that the m6A modification actually has significance in the regu-
lation of drug metabolism. In the following sections, our recent findings

that m6A modification regulates P450, UGT, and esterase isoforms are
summarized in Table 2 and introduced in detail.
m6A Modification Downregulates CYP2C8 Expression. To

examine whether m6A modification affects P450 expression, we evalu-
ated the expression levels of P450 isoforms in HepaRG cells treated
with 3-deazaadenosine (DAA), an inhibitor of S-adenosylmethionine
synthesis (Chiang, 1998; Nakano et al., 2020). CYP1A2 (1.6-fold), 2B6
(2.2-fold), and 2C8 (2.7-fold) expression levels were significantly
increased by treatment with DAA. The CYP2C8 expression level and
enzymatic activity were increased (1.4–2.0-fold) by silencing of
METTL3 and METTL14, but it was reduced to 22%–75% of control
by silencing of FTO but not by ALKBH5. By immunoprecipitation of
m6A-containing RNA using an anti-m6A antibody, we found that the
50-UTR and the 30-UTR of CYP2C8 mRNA undergo m6A modification
in HepaRG cells and human liver samples. The m6A modification in
the 30-UTR of CYP2C8 negatively regulates CYP2C8 expression by
recruiting YTHDC2, which promotes the degradation of CYP2C8
mRNA (Fig. 4). This is the first study to demonstrate m6A modifica-
tion-mediated regulation of P450 isoforms.
m6A Modification Downregulates UGT2B7 Expression. To expand

the knowledge of m6A modification-mediated regulation of drug metab-
olism potencies, we investigated whether m6A modification regulates
UGT isoforms (Ondo et al., 2021). Treatment of HepaRG cells with
DAA significantly increased (1.3–2.6-fold) the UGT1A1, 1A3, 1A4,
1A9, 2B7, 2B10, and 2B15 mRNA levels. Among them, we focused on
UGT2B7 because it most highly contributes to glucuronidation of clini-
cally used drugs (Williams et al., 2004). The UGT2B7 expression level
in Huh-7 cells was significantly increased (1.5-fold) by double knock-
down of METTL3 and METTL14 but was reduced to 70% and 66% of
control by knockdown of FTO or ALKBH5, respectively, suggesting
that m6A modification negatively regulates UGT2B7 expression. Methy-
lated RNA immunoprecipitation assays revealed that the 50-UTR and the
30-UTR of UGT2B7 mRNA have m6A modification sites in HepaRG

TABLE 2

Drug metabolism-related genes whose mRNA is subjected to m6A modification and whose expression is regulated by m6A-related enzymes

Gene

m6A Modified Region

Effects, m6A-Related
Enzymes, Cell Line ReferenceEvaluation by NGSa

Evaluation by RIP with
Anti-m6A Antibody

CYP2B6 30-UTR ND ND
CYP2C8 Coding region, 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation,
FTO; downregulation,
YTHDC2, HepaRG and

Huh-7 cells

Nakano et al., 2020

UGT1A Coding region, intron, 30-UTR ND ND
UGT2B4 Coding region ND ND
UGT2B7 Not registered Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation,
FTO and ALKBH5, Huh-

7 cells

Ondo et al., 2021

UGT2B15 Coding region ND ND
UGT2B17 Intron ND ND
CES1 50-UTR, coding region ND ND
CES2 50-UTR, coding region, intron, 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Downregulation,

METTL3/14; upregulation
by FTO and ALKBH5;
downregulation by

YTHDC2, HepaRG and
Huh-7 cells

Takemoto et al., 2021

AhR 50-UTR, coding region, 30-UTR ND ND
CAR Coding region, intron, 30-UTR ND ND
HNF4a 30-UTR Modified in 50-UTR,

coding region, and 30-UTR
Upregulation, FTO, Huh-7

cells
Ondo et al., 2021

PXR Coding region, 30-UTR ND ND

ND, no data; NGS, next generation sequencing; RIP, RNA immunoprecipitation.
aRMBase (https://rna.sysu.edu.cn/rmbase/index.php), a database of m6A modification sites identified by NGS.
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cells and human livers. However, these methylation events do not
directly affect the UGT2B7 expression level. Reporter assays demon-
strated that the promoter region has a key role in m6A modification-
mediated regulation of UGT2B7. We found that the expression level of
HNF4a, which regulates the transcription of UGT2B7, was significantly
reduced to 46% of control by knockdown of FTO, indicating that this
would be the underlying mechanism of m6A modification-mediated neg-
ative regulation of UGT2B7 transactivation. Since HNF4a also transacti-
vates CYP2C8 (Ferguson et al., 2005), the negative regulation of HNF4a
by m6A modification contributes to the downregulation of CYP2C8
expression by the m6A modification described above. Further study is
needed to clarify the effects of m6A modification-mediated repression of
HNF4a expression on the other P450 and UGT isoforms. Entacapone,
which is used for treating Parkinson’s disease, has been reported to
inhibit FTO in vitro and in vivo (Peng et al., 2019). Interestingly, treat-
ment with entacapone decreased HNF4a and UGT2B7 expression to
35% and 21%, respectively. Thus, entacapone has the potential to cause
drug-drug interactions through the negative regulation of UGT2B7 (Fig.
4). This study provided novel insight into a unique regulatory mecha-
nism for UGT expression.
m6A Modification Downregulates Carboxylesterase 2 Expression.

Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydroly-
sis of various drugs, such as 7-ethyl-10-[4-(1-piperidino)-1-piperidino]car-
bonyloxycamptothecin, and endogenous substrates, such as triglycerides
and diacylglycerides (Humerickhouse et al., 2000; Ruby et al., 2017).
Recently, we revealed that m6A modification affects drug and lipid metab-
olism by regulating hepatic CES2 expression (Takemoto et al., 2021a)
(Fig. 4). The CES2 expression level and its hydrolase activity for 7-ethyl-
10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin in HepaRG and
HepG2 cells were significantly increased (1.2–1.4-fold) by double knock-
down of METTL3 and METTL14 but were reduced to 25%–81% of

control by knockdown of FTO or ALKBH5, suggesting that m6A modifi-
cation downregulates CES2 expression. Consistently, cellular lipid
accumulation was decreased to 82% of control by double knockdown
of METTL3 and METTL14, but it was increased (1.2–
1.5-fold) by knockdown of FTO or ALKBH5. RNA immunoprecipita-
tion assays using an anti-m6A antibody revealed that the 50-UTR and
the last exon of CES2 are subjected to m6A modification. We found
that YTHDC2 recognizes m6A in the 50-UTR of CES2 and promotes
the degradation of CES2 mRNA. Because CES2 is also transcriptionally
regulated by HNF4a (Li et al., 2016), m6A may indirectly contribute to
the downregulation of CES2 via attenuation of HNF4a expression. Col-
lectively, m6A modification has a strong impact on the regulation of
CES2, affecting pharmacokinetics, drug responses, and lipid metabolism.

Conclusion

In this review article, current knowledge about A-to-I RNA editing
and m6A modification-dependent regulation of drug metabolism is sum-
marized. The significance of such posttranscriptional regulation in the
field of pharmacokinetics research has only recently started to become
clear. In addition to drug metabolizing enzymes, some drug transporters
have been reported to be subjected to posttranscriptional regulation.
Omata et al. (2021) reported that ADAR1 regulates P-glycoprotein in
human renal cells by affecting its alternative splicing. Xiao et al. (2021)
reported that FTO upregulates multidrug resistance-associated protein 7
expression in nonsmall cell lung cancer to confer gefitinib resistance.
Thus, A-to-I RNA editing and m6A modifications could be distinct reg-
ulators of pharmacokinetics.
In addition to the regulation of drug metabolizing enzymes and trans-

porters, A-to-I RNA editing and m6A modification have been shown to
impact the sensitivity of anticancer drugs. Ishizuka et al. (2019) reported,
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by using syngeneic mouse models, that knockout of Adar1 sensitizes
tumors to immune checkpoint blockade. Sun et al. (2020) reported that
ADAR1 contributes to resistance to bromodomain and extraterminal
domain inhibitors in pancreatic cancer cells. Thus, inhibition of ADAR1
would be a promising approach to overcome cancer resistance. There are
currently no clinically used ADAR inhibitors, although adenosine ana-
logs, 8-azaadenosine and 8-chloroadenosine, have been reported to
inhibit ADAR1 (Zipeto et al., 2016; Ding et al., 2020; Ram�ırez-Moya
et al., 2020). These compounds would be useful, but a recent study
reported that they are not selective inhibitors of ADAR1 (Cottrell et al.,
2021). Thus, the development of novel specific inhibitors of ADAR1 is
desired. Knowledge about the roles of m6A modification in the cancer
therapy response is more mature than knowledge about A-to-I editing,
and it has been recently summarized in a review by Lan et al. (2021).
For example, FTO expression levels are increased during the develop-
ment of resistance to tyrosine kinase inhibitors, and rhein, an inhibitor of
FTO, restores sensitivity to tyrosine kinase inhibitors (Yan et al., 2018).
m6A modification would also be an attractive target for cancer therapy.
In addition to cancer, knowledge about significance of FTO in energy
metabolism has been accumulated. Research using mouse models has
shown that ubiquitous overexpression and knockout of Fto results in
obesity and reduced body weight, respectively (Fischer et al., 2009;
Church et al., 2010). Because HNF4a and CES2 are known to regulate
lipid and glucose metabolisms (Gonzalez, 2008; Ruby et al., 2017),
FTO-mediated upregulation of HNF4a and CES2 (described in Sections
2.4.1 and 2.4.2) would be a piece of the functional roles of FTO in
energy metabolism. Inhibition of FTO using entacapone and rhein would
be a promising strategy for treatment of metabolic disorders such as obe-
sity and diabetes.
Until now, the roles of A-to-I RNA editing and m6A modification in

the regulation of drug metabolism-related genes have been examined
separately. It has been reported that A-to-I editing preferentially occurs
in m6A-negative transcripts, indicating that these posttranscriptional reg-
ulations may suppressively interfere with each other (Xiang et al.,
2018). As described above, A-to-I RNA editing positively regulates
CYP2C8 expression (Fig. 2), whereas m6A modification negatively reg-
ulates CYP2C8 expression (Fig. 4). There is a possibility that A-to-I
RNA editing upregulates CYP2C8 expression by repressing m6A modi-
fication-mediated negative regulation and vice versa. To deeply under-
stand the importance of these two posttranscriptional regulations in the
regulation of drug metabolizing enzymes, it should be noted that one
posttranscriptional modification affects the levels of the other modifica-
tion on the same transcript.
It is now clear that A-to-I RNA editing and m6A modification are

novel regulators of drug metabolism potency. Elucidation of the extent
and causes of inter- and intraindividual differences in these posttran-
scriptional modifications as well as the development of inhibitors and
activators for RNA modifications are expected to contribute to the prac-
tice of personalized medicine.
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