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ABSTRACT

Xenobiotic receptors, such as the pregnane X receptor, regu-
late multiple host physiologic pathways including xenobiotic
metabolism, certain aspects of cellular metabolism, and innate
immunity. These ligand-dependent nuclear factors regulate
gene expression via genomic recognition of specific promoters
and transcriptional activation of the gene. Natural or endoge-
nous ligands are not commonly associated with this class of re-
ceptors; however, since these receptors are expressed in a cell-
type specific manner in the liver and intestines, there has been
significant recent effort to characterize microbially derived me-
tabolites as ligands for these receptors. In general, these me-
tabolites are thought to be weak micromolar affinity ligands.
This journal anniversary minireview focuses on recent efforts
to derive potentially nontoxic microbial metabolite chemical
mimics that could one day be developed as drugs combating

xenobiotic receptor–modifying pathophysiology. The review
will include our perspective on the field and recommend certain
directions for future research.

SIGNIFICANCE STATEMENT

Xenobiotic receptors (XRs) regulate host drug metabolism, cel-
lular metabolism, and immunity. Their presence in host intes-
tines allows them to function not only as xenosensors but also
as a response to the complex metabolic environment present in
the intestines. Specifically, this review focuses on describing
microbial metabolite–XR interactions and the translation of
these findings toward discovery of novel chemical mimics as
potential drugs of the future for diseases such as inflammatory
bowel disease.

Introduction

Xenobiotic receptors or, more appropriately, xenobiotic nuclear re-
ceptors [NRs; specifically, the arylhydrocarbon receptor (AHR), the far-
nesoid X receptor (FXR), the liver X receptor (LXR), the constitutive
androstane receptor (CAR), the pregnane X receptor (PXR), the retinoid
X receptor (RXR), and their functionally related receptors] are promis-
cuous ligand-binding proteins that function as sensors for the presence

of foreign chemicals, either in their native or metabolized state, and reg-
ulate their metabolic clearance from the body (Xie and Evans, 2001;
Wallace and Redinbo, 2013). These receptors function as ligand-regu-
lated transcription factors resulting in the induction of gene promoter-
specific transcription. Recent studies have demonstrated that these xeno-
biotic receptors can bind to microbially derived metabolites and that
these receptors function beyond metabolism in regulating inflammation,
immunity, and other aspects of host physiology (Nieves et al., 2022).
The goal of this minireview is to update new findings of microbial me-
tabolite–NR interactions with an emphasis on intestinal physiology,
(Guan et al., 2021) and, with this knowledge, demonstrate recent advan-
ces in developing potent microbial metabolite mimics as potential drugs
of the future (Nuzzo and Brown, 2020). It is essential to point out that
the authors have previously published reviews on this topic (Dvo�r�ak,
Klapholz et al., 2020; Dvo�r�ak, Sokol et al., 2020, Dvo�r�ak et al., 2021);
however, here, we will only provide new updates to this field of re-
search (Li et al., 2020).
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Brief Historical Perspective

Gastrointestinal immune balance significantly depends on the func-
tion of NRs (Schmidt and Mangelsdorf, 2008; Klepsch et al., 2019).
The major xenobiotic receptors are expressed abundantly in the intesti-
nal epithelium and the microenvironment (including the immune cell
compartment), AHR (epithelium and mucosal immune cells), FXR (epi-
thelium), CAR (epithelium and immune cells), LXR (epithelium and
immune cells), PXR (epithelium > immune cells), and RXR (epithelium
and immune cells). Related receptors such as peroxisome proliferator-
activated receptor (PPAR) will only be mentioned where relevant con-
cerning microbial metabolite ligands (Modica et al., 2010).

Arylhydrocarbon Receptor. The mammalian AHR is a transcrip-
tion factor belonging to the basic helix-loop-helix (bHLH)-PAS family
of transcription factors. AHR activation is ligand-dependent. Upon bind-
ing with specific ligands, AHR translocates from the cytoplasm to the
nucleus, being chaperoned by proteins such as heat shock protein 90,
hepatitis B virus X-associated protein, and p23. In the nucleus, it dimer-
izes with AHR nuclear translocator. The latter is required for DNA
binding and AHR transcriptional activity (Stockinger et al., 2021). His-
torically, AHR is an evolutionarily conserved environmental sensor and
a critical pathway facilitating the toxic effects of environmental toxins.
However, more recently, this viewpoint has expanded to include a two-
faced receptor with perhaps beneficial functions seen in the context of
immune cells and “nontoxic” natural ligands. Under homeostatic condi-
tions, AHR involvement might be subtle, but its role becomes important
during pathology (e.g., regeneration following tissue injury) (Stockinger
et al., 2021). Microbial indoles are known ligands of AHR (Zelante
et al., 2013; Pernomian et al., 2020; Scott et al., 2020; Dvo�r�ak et al.,
2021; Gasaly et al., 2021; Wang et al., 2022).
Farnesoid X Receptor. The FXR was first identified by Forman

et al. (1995). Bile acids (e.g., chenodeoxycholic acid) serve as their
physiologic ligands (Gustafsson 1999; Kliewer et al., 1999). FXR is
also a ligand-driven transcription factor that heterodimerizes with
RXRa and drives gene/promoter-specific transcription. Bile acids, via
FXR, induce fibroblast growth factor (FGF) 15/FGF19. The latter is a
hormone secreted by the intestinal epithelial cells into the enterohepatic
circulation. FGF15/FGF19 activates hepatic FGF receptor 4-b-klotho re-
ceptor complexes. In this manner, FXR signaling regulates gene expres-
sion involved in cholesterol, bile acid, and lipid metabolism, as well as
that regulating cell proliferation. Agonists for FXR and analogs for
FGF15/19 are currently being developed as drugs combating metabolic
syndrome and cholestatic diseases (Katafuchi and Makishima, 2022;
Panzitt et al., 2022). Bacterial metabolites, although not chemically
characterized, serve as FXR ligands (Zhang et al., 2015). More recently,
microbial bile acids have been shown to function as FXR ligands (Scho-
eler and Caesar, 2019; Guzior and Quinn, 2021; Xiang et al., 2021; Yan
et al., 2021; Cai et al., 2022), and this pathway is relevant to humans
with inflammatory bowel disease (Wilson et al., 2020). Microbial bile
acids also regulate the levels of colonic retinoic acid receptor-related or-
phan receptor c1 regulatory T (Treg) cells, which reduces intestinal in-
flammation in appropriate colitis models (Song et al., 2020). Other
microbial metabolites serving as ligands for FXR include altenusin, a
nonsteroidal fungal metabolite (Zheng et al., 2017).
Liver X Receptor. The LXR, assigned initially as an orphan recep-

tor, was later deorphanized with the discovery of oxygenated cholesterol
derivatives such as oxysterols (Janowski et al., 1996). This receptor is a
master regulator of cholesterol metabolism (Peet et al., 1998). More re-
cently, the receptor has had significant pharmacologic effects on various
diseases, including obesity, diabetes, and autoimmunity, to name a few
(Viennois et al., 2011). LXR regulates intestinal immunity, modulating

receptor-related orphan receptor ct1 Treg and Th17 cells in the mesen-
teric lymph nodes through distinct mechanisms (Jakobsson et al., 2014;
Parigi et al., 2021). Steroidal and triterpenoidal fungal metabolites are
LXR ligands (Ondeyka et al., 2005). Hydroxy and oxo fatty acids, pro-
duced by microbes (e.g., lactobacillus) metabolizing unsaturated fatty
acids, serve as efficient LXR ligands (Nanthirudjanar et al., 2015). Mi-
crobial metabolites of citrus pectin oligosaccharides are also LXR li-
gands and have been shown to exhibit anti-inflammatory properties (Hu
et al., 2021).
Constitutive Androstane Receptor. The CAR is a constitutive

transactivator and undergoes ligand-mediated translocation to the nu-
cleus to exert full genomic effects. In addition, CAR has ligand-inde-
pendent effects (e.g., via kinase signaling) that can also result in gene
transcription (Mackowiak and Wang, 2016). It is expressed in the liver
and small intestines (Qatanani and Moore, 2005). CAR is also a regula-
tor of drug metabolism but has a more comprehensive role in modulat-
ing intestinal inflammation (Qatanani and Moore, 2005). Multiple
microbial indoles can activate CAR (Venkatesh et al., 2014), but the
significance of these interactions remains unknown.
Pregnane X Receptor. The PXR, a master regulator of xenobiotic

metabolism (Kliewer, 2015), is now an established (agonist) target
for the prevention of colitis and colitis-induced colon cancer (Cheng
et al., 2012). This receptor forms a complex with its obligate hetero-
dimeric partner, the RXR (NR2B1). The receptor complex binds re-
sponse elements in the promoters and enhancers, usually in the form
of direct (DR3, DR4) or averted (ER6) repeats of the consensus mo-
tif AG(G/T)TC(A/C) (Goodwin et al., 1999). Transcriptional induction
follows the recruitment of the p160 family and other coactivators but
with a complex interplay with other regulators, such as co-repressors. In
terms of its canonical role in drug metabolism, PXR was discovered in
1998 (Bertilsson et al., 1998; Blumberg and Evans, 1998; Kliewer
et al., 1998) and described as a master regulator of drug metabolism in
that PXR can enhance the clearance of its own xenobiotic ligands via
enzymatic (phases I and II) and transporter-mediated (phase III trans-
porters) effects. In addition, PXR is an important mediator of drug–drug
interactions when multiple drugs are coadministered (Goodwin et al.,
1999; Wang et al., 2014; Shehu et al., 2016; Nicolussi et al., 2020,
Wang et al., 2020; Hall et al., 2021). PXR also has a role in bile acid
metabolism, acting on feedback and feed-forward mechanisms to alter
bile acid production from cholesterol (Handschin and Meyer, 2005).
PXR has a very promiscuous ligand binding pocket, allowing for vari-
ous xenobiotic interactions (Orans et al., 2005). Specific interactions of
interest include the effect of the antitubercular drug rifampicin on isoni-
azid-mediated hepatotoxicity via the accumulation of the endogenous
hepatotoxin protoporphyrin IX in the liver (Li, Lu et al., 2013). PXR
may prognosticate for survival in patients undergoing liver transplanta-
tion (Amer et al., 2019), perhaps via its effects on tacrolimus metabo-
lism (Stifft et al., 2018). In addition, recent work has highlighted new
roles for PXR as a factor promoting radio resistance in cancer (Niu
et al., 2022) and drug sensitivity or resistance (Creusot et al., 2020; S�ari
et al., 2020; Matheux et al., 2021; Ozawa et al., 2021) and promotes
striated and smooth muscle metabolism and physiology (Swales et al.,
2012; Zhang et al., 2019; Ortiz-Flores et al., 2020). Our prior work
demonstrated that gut microbe-produced indole metabolites of L-trypto-
phan (e.g., indole and indole propionic acid) are ligands of PXR (Ven-
katesh et al., 2014). To develop nontoxic yet “nature”-inspired agonists
for PXR, we developed synthetic analogs mimicking the binding of in-
dole pharmacophore on PXR. These PXR-selective leads, FKK5 and
FKK6, are potent inhibitors of intestinal inflammation in organoids and
mice (Dvo�r�ak, Kopp et al., 2020). We termed this concept microbial
metabolite mimicry, which has been reviewed as a new approach to the
drug discovery (Nuzzo and Brown, 2020). These compounds are,
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however, synthetic intermediates in the chemistry toward a dual indole
structure (a requirement called for by the simultaneous binding of multi-
ple indoles on PXR). It is important to note, however, that, to date, no
crystal structure studies have been published with microbial metabolites
or their mimics and PXR. This contrasts with the availability of struc-
tures demonstrating synergistic binding of select endocrine-disrupting
molecules within the PXR ligand-binding domain (Delfosse et al.,
2021). Other microbially derived metabolites of bile acid (lithocholic
acid) and vitamin metabolism (vitamin K2) are PXR ligands and drive
metabolic maturation of pluripotent stem cells and fetal hepatocytes
(Avior et al., 2015).
The FKK5 and FKK6 compounds at the schedule and concentrations

reported do not seem toxic to mice; however, these results are unpub-
lished and would need confirmation in larger animals and other rodent
models. To this end, it is known that systemic PXR activation can result
in deleterious consequences such as hyperlipidemia and adverse
changes in blood pressure and glucose metabolism (Rys€a et al., 2013;
Hassani-Nezhad-Gashti et al., 2020; Rahunen et al., 2022). In this con-
text, PXR is expressed at the protein and mRNA level in microdissected
human intestines (epithelial mucosa) and the liver (Miki et al., 2005;
Godoy et al., 2013). Interestingly, even in total liver mRNA analysis,
PXR was the most abundant compared with related receptors, AHR,
and CAR (Liu, Lu et al., 2021). Others have reported cell-specific XR
signatures in the intestines (Modica et al., 2010). On a functional level,
it is clear that PXR is present in the liver as potent ligands such as hy-
perforin have resulted in drug interactions in humans (Nicolussi et al.,
2020). PXR can also modulate the drug hepatotoxicity (Shehu et al.,
2021). Thus, our goals are to formulate FKK5 and FKK6 for locore-
gional (colonic) delivery with limited systemic bioavailability.
Since the publication of our original paper on microbial metabolites

and PXR (Venkatesh et al., 2014), several groups have independently
replicated our findings concerning indole 3-propionic acid (IPA) and its
effects on mouse intestinal barrier function (Dodd et al., 2017) and have
found that IPA abrogates intestinal inflammation (Konopelski and Mo-
gilnicka, 2022), IPA action partly depends on PXR (Pulakazhi Venu
et al., 2019; Xiao et al., 2020; Du et al., 2021), PXR inversely regulates
toll-like receptor (TLR) 4 (Esposito et al., 2016; Huang et al., 2018;
Erickson et al., 2020; Lu et al., 2021; Su et al., 2022; Yuan et al.,
2022), epithelial TLR4 regulates inflammation and tumors (Fukata
et al., 2011; Sodhi et al., 2012; Burgue~no et al., 2021), as well as the
discovery of additional indole microbial metabolites (e.g., indole acet-
amide) with weak effects on PXR (Ill�es et al., 2020). Two reports from
the same investigators challenge the notion that epithelial TLR4 is func-
tional (Crame et al., 2021; Tam et al., 2022); however, further work is
needed to clarify this discrepancy as these observations are likely to be
context- and model-specific (Gribar et al., 2008; Takahashi et al., 2009;
Soliman et al., 2010; Nanthakumar et al., 2011; Sodhi et al., 2012, Li
et al., 2014; Belmonte et al., 2016; Dheer et al., 2016; Kim et al., 2016;
Coleman and Haller, 2017; Inoue et al., 2017; Hu et al., 2018; Latorre
et al., 2018; Price et al., 2018; Nighot et al., 2019; Stephens and von
der Weid, 2020; Burgue~no et al., 2021; Chen, Zhang et al., 2021; Kayi-
soglu et al., 2021; Qi-Xiang et al., 2022; Sodhi et al., 2022; Zhou et al.,
2022). IPA is a weak human PXR (steroid and xenobiotic receptor li-
gand) (Venkatesh et al., 2014); in keeping with this, intercellular perme-
ability is not altered in the human caco-2 cells (Scott et al., 2020).
Another downstream effector of intestinal inflammation is dysregulated
NF-jB signaling in both immune and epithelial cells. In this context,
epithelial NF-jB signaling is thought to be essential for the maintenance
of epithelial self-renewal and the maintenance of a proper balance be-
tween Paneth and goblet cells (Brischetto et al., 2021). In our context,
however, PXR inhibits NF-jB signaling (Shah et al., 2007; Bautista-
Olivier and Elizondo, 2022), creating an apparent contradiction.

However, it is known that noncanonical epithelial NF-jB via the sup-
plementation of RelA dimers to the canonical NF-jB modules exacer-
bates intestinal inflammation (McDaniel et al., 2016; Ke et al., 2019;
Ramakrishnan et al., 2019; Chawla et al., 2021). Hence, it is conjectured
that PXR may inhibit the noncanonical NF-jB or normalize epithelial
NF-jB signaling pathways within the in vivo context of intestinal in-
flammation (Guma et al., 2011; Kaci et al., 2011). Indeed, since PXR
activation also prevents colitis-induced cancer, PXR may be involved in
inhibiting the IKK2/NF-jB signaling pathway in epithelial cells (Vlantis
et al., 2011).
Microbial indole metabolite biomimicry has been successful for re-

ceptors beyond PXR (Dvo�r�ak, Klapholz et al., 2020, Dvo�r�ak, Sokol
et al., 2020, Li et al., 2020). IPA has several complementary host tar-
gets, which further asserts the premise that IPA inhibits inflammation
(Alexeev et al., 2021; S�ari et al., 2020). In this context, indole acts to
mitigate cytotoxicity by Klebsiella spp. via suppression of toxin produc-
tion, enhanced conversion of tilimycin (cytotoxin) to tilivalline (less po-
tent cytotoxin) and activation of PXR (Ledala et al., 2022). Indeed, IPA
may promote nerve regeneration by an unknown mechanism partly de-
pendent on PXR (Serger et al., 2022). Additionally, PXR activation is
expressed in platelets. It inhibits platelet-mediated thrombosis in mice
expressing the human PXR transgene, perhaps via nongenomic inhibi-
tion of the Src family of kinases (Flora et al., 2019).
Retinoid X Receptor. The RXR integrates signaling via several

NRs by heterodimerization. RXR dimers signal via binding to specific
DNA sequences on gene promoters. RXR interacts with ligands that are
specific to the receptor (e.g., 9-cis-13,14-dihydroretinoic acid), and these
ligands are endogenous or exogenous xenobiotics (e.g., organotins).
However, to date, microbial metabolite ligands that specifically bind
RXR have not been described, although it is conceivable that low-affin-
ity promiscuous ligands are present in the microbial metabolome with
RXR binding properties (Brtko and Dvo�r�ak, 2020). However, a dietary
microbial metabolite of chlorophyl A, phytol, and itsmetabolites, phy-
tanic and pristanic acids, are ligands of RXR and one heterodimeric
partner, P PARa and P PARc (Bobe et al., 2020). Other known micro-
bially derived ligands to PPARc include conjugated linoleic acid (Bas-
saganya-Riera et al., 2012) and indole metabolites (Venkatesh et al.,
2014; Tsukidate et al., 2020). More recently, inosine, a gut microbial
metabolite, has been described as a PPARc signaling activator that at-
tenuates colitis in mice (Li et al., 2021).
Endogenous Microbially Derived Ligands for XRs and Their

Use as Potential Therapeutic Agents. Various microbially derived
metabolites serve as ligands to xenobiotic NRs. Microbial metabolites
with host protective properties (e.g., intestinal inflammation/obesity and
short-chain fatty acids, indole metabolites), per se, have been proposed
as sources for developing new drugs (Giddings and Newman, 2013;
Saha et al., 2016; Stringlis et al., 2018; Descamps et al., 2019; Raihan
et al., 2021; Ram�ırez-Rendon et al., 2022). The use of purified micro-
bial metabolites as drugs has had mixed results. Considerable caution is
advocated in this approach, especially with high or chronically adminis-
tered doses of the microbial metabolite in question (Lee, Ecton et al.,
2020; Konopelski et al., 2021; Liu, Sun et al., 2021; Sehgal et al., 2021;
Chen et al., 2022; Paeslack et al., 2022; Teng et al., 2022; Zhang, Jiang
et al., 2022). For example, several microbial metabolites have been pro-
posed to partly function as antioxidants, such as microbial “green tea”
metabolites (P�erez-Burillo et al., 2021). However, not all molecules
with antioxidant function remain beneficial when used in large doses.
Vitamin C (ascorbic acid) has been proposed as a potent anti-infective
and antisepsis agent (Kuhn et al., 2018; Moskowitz et al., 2018; May
et al., 2021). Yet, recent randomized clinical studies have questioned
such benefits (Assouline et al., 2021; Sevransky et al., 2021) and dem-
onstrated an even higher risk of death from intravenous ascorbic acid
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(Lamontagne et al., 2022). It is likely that indiscriminate applications of
antioxidants may result in a similar fate and should be approached with
caution (Ye et al., 2022). With that said, one must be cautious the other
way in interpreting all indole metabolites, even uremic toxins, as uni-
formly injurious to health (Vanholder et al., 2022).

Key Recent Advances

One alternative approach to the therapeutic use of endogenous micro-
bial metabolites requires that microbial ligands bind xenobiotic recep-
tors (XR). The metabolite should be amenable to easy chemical analog
synthesis. The metabolite should serve as potent XR ligands and affect
host physiology in the desired manner. These microbial metabolite
mimics could be developed into new drugs. The requisite here is that
the mimics must be nontoxic to the host. Thus, not all ligand–receptor
pairs would be amenable to such an approach. We have termed this ap-
proach microbial metabolite mimicry (Dvo�r�ak, Sokol et al., 2020).

Arylhydrocarbon Receptor. Microbially derived ligands of AHR
include short chain fatty acids (e.g., butyrate) are products of the gut mi-
crobiome (Marinelli et al., 2019). By contrast, however, butyrate was
found only to induce AHR expression but not to serve as a direct ligand
(Jin et al., 2017; Jourova et al., 2022; Modoux et al., 2022). The overall
result in an intact host may be additive or synergistic; AHRs, while in-
duced by short chain fatty acids, are activated by resident ligands that
are also derived from the microbiota (Modoux et al., 2022). For exam-
ple, indoles derived from the tryptophan metabolism are efficient AHR
ligands (Rothhammer et al., 2016). The indole scaffold is a promising
chemical moiety for drug mimicry (Dvo�r�ak, Klapholz et al., 2020). This
scaffold is built on the observation that the microbial metabolite, indole,
and its metabolites are endogenous AHR ligands (Hubbard et al., 2015;
Lamas et al., 2016). Indeed, potent drug leads, PY109 and PY108, were
developed for AHR using indole as the primary chemical scaffold
(Chen et al., 2020). Other AHR mimics include the triarylmethanes
(Goya-Jorge et al., 2020). More recently, it was shown that a chemically
stable form of Thermosporothrix hazakensis metabolite 2-(1'H-indole-
30-carbonyl)-thiazole-4-carboxylic acid methyl ester, 2-(1H-indole-3-
carbonyl)-N-methyl thiazole-4-carboxamide is a nanomolar potency
AHR activator (Grycov�a et al., 2022). Recently, a 2.85 Å cryo-EM
crystal structure was submitted for binding the heat shock protein
90–hepatitis B virus X-associated protein–AHR complex, which pro-
vides the first structural visualization of the PAS B domain attached to
indirubin (J. Gruszczyk et al., preprint, DOI: https://doi.org/10.1101/
2022.05.17.491947). These developments should promote the discovery
and characterization of microbial metabolites that serve as AHR ligands.
Another recent advance, at least conceptually, calls for studying micro-
bial metabolites combined at their physiologically relevant concentra-
tions. Groestlinger et al. (2022) show that combining urolithin A,
alternariol, and deoxynivalenol yields different effects on gut barrier
function when each is used alone. Indeed, newer tryptophan microbial
metabolites are being evaluated as AHR ligands and inducers; indole
3- carboxaldehyde is an AHR ligand (Vyhl�ıdalov�a et al., 2020) with se-
lective benefit in epithelial cell proliferation rather than intestinal barrier
function in piglets (Zhang, Huang et al., 2022). This raises the possibil-
ity that different activators/inducers may augment receptor bias regard-
ing which phenotypes might be most affected. In this context, in a
mouse model of immune cancer checkpoint–induced colitis, indole
3- carboxaldehyde alleviated colitis without affecting the antitumor effi-
cacy of the immune cancer checkpoint (Renga et al., 2022). Enteric for-
mulated indole 3-carboxaldehyde has been characterized for therapeutic
use in murine metabolic syndrome (Puccetti et al., 2021). However, mi-
crobial metabolites, specifically indoles, can also drive cancer growth

via AHR (Hezaveh et al., 2022). Ellagitannin-containing foods are par-
tially converted to urolithin A, an AHR ligand (Shen et al., 2021). Uro-
lithin A analog, UAS03, is efficient in reducing colonic inflammation
and enhancing barrier function in vivo (Singh et al., 2019). It is impor-
tant to note that not all microbial metabolite ligands of AHR will result
in a typical phenotype (indole), and indole 3-carboxaldehyde (AHR li-
gand) protects against E.coli-induced endometritis in dysbiotic mice.
Still, indole propionic acid does not (Zhao, Bao et al., 2022). Yet it is
abundantly clear that in the intestines, IPA protects from inflammation
(Konopelski and Mogilnicka, 2022). Thus, context is a crucial issue
when evaluating metabolites as XR ligands.
Farnesoid X Receptor. More recently, intestinal commensal fungi,

specifically Penicillium oxalicum SL2 produce metabolites that are
ligands of FXR [e.g., (6R)3,7-dimethyl-6,7-dihydroxy-2(Z)-octanoic
acid] (Zhao, Luan et al., 2022). Novel amino acid conjugations of host
bile acids producing phenylalanocholic acid, tyrosocholic acid, and leu-
cocholic acid have been described as novel FXR agonists. Still, they are
enriched in patients with inflammatory bowel disease (Quinn et al.,
2020). Newer computational models for ligand docking and binding
have been published that could aid in biomimicry and synthesis of new
microbial mimics (Jiang et al., 2021). Isoform- or tissue-specific ligands
might tease out beneficial functions from nonbeneficial ones (van Zut-
phen et al., 2019; Ramos Pittol et al., 2020). Microbial bile acids may
target receptors beyond FXR and PXR, as a recent study shows that
NR4A1 (NUR77) is targeted by isoallo-lithocholic acid, which enhan-
ces Treg function (Li, Hang et al., 2021).
Constitutive Androstane Receptor. New observations for the

CAR in the intestines show that CAR acts within T cells in the small in-
testine to detoxify bile acids and diminish inflammation (Chen, Huang
et al., 2021). However, to date, no microbial metabolites have been
found as ligands to CAR. For the other receptors, LXR, PXR, PPAR,
and RXR, there need to be further discovery efforts on biomimicry.

Current Challenges and Knowledge Gaps

The current challenge is to address the true impact of microbial me-
tabolites on NR targets. First, we need to look at all 48 human recep-
tors. Context-specific approaches are required to validate receptor-
ligand relationships. In general, the microbial metabolites would be
weak ligands of a given receptor; however, chemical mimics may be
designed to improve potency based on their interactions with the recep-
tor. Modest potency mimics may suffice in conditions where the chemi-
cal mimic may induce receptor abundance or be combined with
microbial metabolites that function as such. In this current challenge, a
better understanding of NR crosstalk would help to elucidate microbial
metabolite effects on overall phenotype. For example, it is now estab-
lished that there is a fine cross-sharing of promoter occupancy by multi-
ple NR(s) such that the absence of one or more receptors could be
partially compensated for by the presence of other receptors (Pascussi
et al., 2004; Kumar et al., 2010; Zhai et al., 2010; Oladimeji et al.,
2016; Pavek 2016; Bwayi et al., 2022). Suppose potency differences ex-
ist in activating the different NRs by a given microbial metabolite(s). In
that case, the receptor interplay could have profound effects on the final
phenotype of the host.
Second, we need to characterize crystal structures of microbial me-

tabolites bound to xenobiotic receptors. This is not an easy task as
many of the metabolites have significant solubility issues. More innova-
tive approaches toward crystal structure determination would help move
the field forward (Delfosse et al., 2021). It is also possible that weak li-
gands will not be amenable to structural resolution when bound to
receptors.
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Third, we need to define a system’s view of how different microbial
metabolites interact with a given xenobiotic receptor, for example, by
performing synergy or antagonist studies of a combinatorial effect of
different indole metabolites on a given xenobiotic receptor to determine
what may result in synergy, additivity, or antagonism.
Fourth, we must characterize concentration-dependent effects of a

microbial metabolite on different proteins/enzymes and receptor systems
and present a hierarchical receptor structure that informs the scientific
community of how the metabolite might function in vivo. For example,
microbial metabolites also bind G protein-coupled receptors and interact
with histone-modifying enzymes (e.g., short-chain fatty acids). In a sys-
tem’s view, this knowledge should ideally be combined with other ef-
fects the metabolite may have on other receptor systems (e.g., AHR).
There is also a paucity of knowledge regarding the alternatively spliced
isoforms of each NR. For example, PXR has at least three isoforms
with variable expression across tissues and at least one isoform with
dominant negative function (Tompkins et al., 2008; Lin et al., 2009;
Breuker et al., 2014; Brewer and Chen, 2016). Thus, knowing which
isoforms are targeted by the metabolite and in which tissues these inter-
actions dominate would be a critical knowledge gap to cover.
Fifth, we need to assess whether specific diets or medications could

alter metabolites significantly and how that affects receptor physiology
and phenotypes in an intact host. This is a very challenging aspect of
discovery. It is now established that in the human diet, for example, fi-
ber or fat consumption markedly changes the microbial structure and
the metabolome in the feces and gut mucosa (Claesson et al., 2012;
Wan et al., 2019; Dahl et al., 2020; Tanes et al., 2021). The use of med-
ications significantly modulates the fecal microbiome and its metabo-
lome (Weersma et al., 2020; Kumari et al., 2022). Additionally,
variability introduced by ethnicity and geography also impacts a healthy
gut microbiome (Shanahan et al., 2021). Carefully controlled human
studies are required from which fecal metabolomes are tested against
various XRs. These should also be modeled in appropriate animal mod-
els of the disease where possible.
Sixth, we should assess for xenobiotic receptor selectivity and catego-

rize single versus dual versus multireceptor engaging mimics, noting
which receptors, when engaged, are prone to be off-target and contrib-
ute to toxicity of the compound.
Seventh, we must define ligands/mimics with other binding modes,

especially orthosteric versus allosteric antagonism of receptors (Biswas
et al., 2009; Chai et al., 2020).
Finally, we need to understand how microbial metabolite

mimics may be developed in the context of the known fact that
since these XRs are expressed in both the intestines and liver,
there is a potential for unpredictable drug–drug or metabolic ad-
verse interactions. For example, a potent PXR ligand could induce
high blood cholesterol (Meng et al., 2019; Sui et al., 2021) or
even drug interactions with coadministered drugs by the induction
of cytochrome [CYP enzymes and phase III transporters (e.g.,
MDR1)]. One strategy might be to consider compounds with co-
lonic delivery to bypass systemic delivery via absorption in the
small intestines. This could also bypass drug–drug effects that in
the intestines might most likely occur during small intestinal CYP
and transporter induction. However, this aspect requires proof-of-
concept and validation before they are adopted within the thera-
peutic platform.

Perspective on Future Directions

Discovery of Natural Microbial Metabolite Agonists of XRs.
With the advent of pulldown approaches and insights into deconvolu-
tion of metabolites by mass spectrometry (Kim et al., 2011), the Krause

laboratory has had significant success in delineating novel ligands to
XRs such as PPARa (Liu et al., 2022). A similar effort is needed to
capture fecal and tissue homogenates from rodents and humans, espe-
cially using a solid phase microextraction (Huang et al., 2019; Sajid
et al., 2019; Kataoka, 2021). Mining the literature for new microbially
produced ligands (e.g., N-methylserotonin) (Han et al., 2022), could
also be screened for ligand activation across multiple xenobiotic recep-
tors. Careful and context-driven applications of these metabolites should
be fully assessed. In addition, defining all the modifications of the me-
tabolite in the host would be relevant to how host metabolism (e.g., via
CYP450s) alters how the metabolite interacts with a particular NR. For
example, baicalein efficiently interacts with PXR, but its glucuronide
metabolite is a weak interactor (Dou et al., 2012). Similarly, microbial
metabolites in a host could be heavily modified by host metabolism re-
sulting in mixtures of the parent metabolite and its metabolism by-prod-
ucts. In addition, microbial metabolites could interact with their cognate
receptors (e.g., mouse PXR ligand pregnenolone carbonitrile does not
activate human PXR, and similarly, rifampicin, a human PXR ligand
does not activate mouse PXR). So species-specific interaction rodent
models should be employed to study the in vivo aspects of metaboli-
te–XR interactions and phenotypes.
Discovery of Natural Microbial Metabolite Antagonists of

XRs. To date, very few microbial metabolite antagonists of XRs
have been described. One study shows that mice treated with tem-
pol have reduced Lactobacillus and bile salt hydrolase in the gut,
and this leads to an increase in Tauro-b-muricholic acid, which is
an FXR antagonist (Li, Jiang et al., 2013). Indeed, several other
bile acid conjugates, Tauro-conjugated beta, and alpha-muricholic
acids have also been identified as FXR antagonists (Sayin et al.,
2013; Degirolamo et al., 2014; Gonzalez et al., 2016). Other ex-
amples include combinatorial concentrations of indoles that, in
some combinations, act to antagonize the AHR (Jin et al., 2014).
Emphasis must be placed on finding novel natural microbial me-
tabolites as antagonists for XRs. As previously mentioned, mining
the literature for novel microbially produced ligands with well-de-
fined host phenotypes (e.g., imidazole propionate) (Koh et al.,
2018) can guide the assessment of ligand-XR interactions.
Discovery of Physiologically Relevant Interactions of Metabo-

lites on Receptor Systems. A more comprehensive review of the dif-
ferent receptor systems that are engaged by microbial metabolites has
been published (Zheng et al., 2022). Here we call for a detailed analysis
of receptor dynamics using combinatorial concentrations of microbial
metabolites that may be present in a context-dependent manner in a
host. There could be significant concentration dependencies of different
metabolites on different receptors, and knowledge of how this could
be integrated would significantly advance our understanding of host–
microbiome relationships.
Systems Study of Multiple Metabolite–XR Interactions on

Host Physiology or Pathophysiology. In an intact host, multiple
microbial metabolites are contextually present and can drive
phenotypes. For example, tryptophan loading increases indole
metabolites of tryptophan (Wikoff et al., 2009), and in this
manner, diet could influence the metabolite repertoire consider-
ably. In the context of host pathophysiology, during intestinal in-
flammation, indole metabolites decrease (Alexeev et al., 2018), and
depending on the diet, these levels could replete or vary consider-
ably (Li, Ill�es et al., 2021). The net outcome could vary on several
levels, one of which is dietary constituents. In the future, more con-
trolled systematic studies of metabolite XR interactions are needed
as they relate to specific host physiologies or pathophysiological
conditions.
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Conclusions

We are honored to contribute a minireview to the Xenobiotic Recep-
tors special section in honor of Drug Metabolism and Disposition’s
50th anniversary. The 50th anniversary celebrates Professor Wen Xie’s
contributions to the field and congratulates him on the well-deserved
honor of being the recipient of the Richard Okita Early Career Award
in Drug Metabolism and Disposition. Following Professor Xie’s land-
mark paper in Nature describing the first humanized steroid and xenobi-
otic receptor mice in 2000 (Xie et al., 2000), the entire orphan NR field,
and acknowledging the seminal contribution of other investigators and
receptor systems, has exploded with discoveries and novel pathways
regulated by these receptors. We anxiously await new treatment
paradigms built on a new fund of knowledge of how these xenobi-
otic receptors contextually contribute to disease.
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