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ABSTRACT: 

Estimation of xenobiotic kinetics in man frequently relies upon extrapolation from experimental 

data generated in animals. In an accompanying paper, we have presented a unique, generic, 

physiologically-based pharmacokinetic model, and described its application to the prediction of 

rat plasma pharmacokinetics from in vitro data alone. Here we demonstrate the application of the 

same model, parameterized for human physiology, to the estimation of plasma pharmacokinetics 

in man, and report a comparative evaluation against some recently published predictive methods 

that involve scaling from in vivo animal data. The model was parameterized through an 

optimization process, employing a training set of in vivo data taken from the literature, and 

validated using a separate test set of published in vivo data. On average, the vertical divergence of 

the predicted plasma concentrations from the observed data, on a semi-log concentration-time 

plot, was 0.47 log units. For the training set, more than 80% of the predicted values of a 

standardized measure of AUC were within threefold of the observed values; over 70% of the test 

set predictions were within the same margin. Furthermore, in terms of predicting human 

clearance for the test set, the model was found to match or exceed the performance of three 

published interspecies scaling methods, all of which showed a distinct bias towards over-

prediction. We conclude that the generic PBPK model, as a means of integrating readily-

determined in vitro and/or in silico data, is potentially a powerful, cost-effective tool for 

predicting human xenobiotic kinetics in drug discovery and risk assessment. 
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Physiologically-based pharmacokinetic (PBPK) models are mathematical descriptions of the flow 

of blood throughout the body, developed for the simulation of xenobiotic absorption, distribution 

and elimination. Such models have been employed by scientists from a number of different 

disciplines who are interested in the simulation and prediction of exposure (Grass and Sinko, 

2002; Leahy, 2003).  

The application of a generic form of a PBPK model to the prediction of xenobiotic plasma levels 

in rat following an intravenous dose has been reported in an accompanying publication 

(Brightman et al., 2005). Here we describe the work that we have done to parameterize the same 

PBPK model for man, and to assess the reliability of the model in estimating plasma levels of 

xenobiotics, where these values are known from experimentation. In addition, we draw 

comparisons with alternative methods for predicting human pharmacokinetic properties that 

involve extrapolation from experimental data generated in animals. 

Just as there are numerous published compound-specific PBPK models for the rat that utilize data 

derived from in vivo studies (Sugita et al., 1982; Igari et al., 1983; Tsuji et al., 1983; Bernareggi 

and Rowland, 1991; Kawai et al., 1994; Blakey et al., 1997), there are many examples of 

comparable PBPK models for man that rely upon scaling from in vivo animal data in order to 

simulate the human pharmacokinetics of a particular compound, and frequently incorporate 

observed clearance data from human subjects (Igari et al., 1983; Sawada et al., 1985; Tsuji et al., 

1985; Bernareggi and Rowland, 1991; Kawai et al., 1994; Kawai et al., 1998). The PBPK model 

for man presented herein appears to represent the only truly generic model to be published to 

date, since it has been parameterized for human physiology, independently of any specific 

compound, and the manner in which in vivo distribution and elimination kinetics are predicted is 
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the same for all xenobiotics. Furthermore, the only compound-dependent inputs that the model 

requires are readily determined in vitro, or even in silico. 

In this paper, we have concentrated on predicting the in vivo pharmacokinetics of compounds for 

which plasma levels have been determined following an intravenous dose. Work that we have 

done to extend the model to predict both human and rat plasma levels following an oral dose will 

be reported separately. 
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Methods 

Model Inputs. A generic PBPK model, which enables the prediction of the pharmacokinetic 

behaviour of any given compound dosed intravenously in a specified human population, without 

recourse to data derived through in vivo studies, is presented herein. The compound-dependent 

inputs required by the model are the same as those listed previously (Brightman et al., 2005). 

Model Description. The PBPK model is based upon that published by Bernareggi and Rowland 

(Bernareggi and Rowland, 1991), as shown in their Fig. 1, but with substantial modification of 

the tissue distribution and elimination components, and comprises a series of compartments 

representing 14 major organs and tissues in the body, interconnected by further compartments 

representing arterial and venous blood pools, according to the principles developed by Bischoff 

and others (Bischoff, 1975). 

The additional features of the model, including adaptations to facilitate modelling of ‘diffusion-

limited’ distribution of an intravenously administered compound into the various tissues and 

organs, as well as the various processes involved in renal excretion, are described in detail in the 

accompanying paper, discussing its application to the prediction of rat in vivo pharmacokinetics 

(Brightman et al., 2005). 

Model Parameters. The physiological parameters used in the model were obtained from the 

literature and are given in the Appendix (which is available online as supplemental data); these 

were scaled according to the actual body weights of the subjects used in the clinical studies being 

simulated. Tissue and organ volumes were largely derived from a single comprehensive 

compilation of physiological data for use in pharmacokinetic models (Brown et al., 1997), 

supplemented by data from other sources for skin (Mapleson, 1963) and testes (Spector, 1956) 
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volumes, and represent the extravascular (combined interstitial fluid and intracellular space sub-

compartments) volumes only. Blood flow rates were taken almost exclusively from Bernareggi 

and Rowland (Bernareggi and Rowland, 1991), with the exception of the blood flow to the testes 

(Williams and Leggett, 1989). The glomerular filtration rate and urine flow rate were from 

Davies and Morris (Davies and Morris, 1993) and Tang-Liu et al. (Tang-Liu et al., 1983), 

respectively, whilst the renal tubular lumen volume was obtained from a textbook of physiology 

(Pitts, 1974). A haematocrit of 0.441 (Altman and Dittmer, 1971) was assumed. 

Parameterization of the distribution and elimination components of the generic PBPK model for 

human required the development of a number of correlation models. Two such models, for the 

prediction of parameters corresponding to the effective in vivo lipophilicity and plasma protein 

binding, were derived through a process of optimization of the performance of the PBPK model, 

as described in the companion paper (Brightman et al., 2005). A comprehensive training set of in 

vivo data was used for this purpose, and is described in greater detail below. 

The following parameters were derived as detailed previously (Brightman et al., 2005): 

permeability-surface area products for organ and tissue distribution; intracellular space/interstitial 

fluid (unbound) partition coefficients; blood/plasma concentration ratio (R); parameters 

governing renal excretion; hepatic microsomal intrinsic clearance (CLint) and fractions unbound 

in plasma (fup) and interstitial fluid (fut).  

Stochastic simulations were performed in order to incorporate known variability in the subject 

body weights and imprecision in the values of the physicochemical parameters, as described 

previously (Brightman et al., 2005). 
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Training Dataset. The set of in vivo data employed in training the model comprised 180 

instances of data (where an instance corresponds to a single plasma concentration-time profile) 

for 69 different compounds, and was derived from numerous published clinical studies of 

intravenous dosing in human subjects. The compounds in this diverse training set were drawn 

from many therapeutic areas. The required model inputs for the training set compounds were 

obtained as described previously (Brightman et al., 2005). As before, no attempt was made to 

eliminate compounds from the training set on the basis of any features of the in vivo 

pharmacokinetic behaviour. 

Test Dataset. In order to objectively evaluate the performance of the model, an independent set 

of in vivo test data was constructed. This consisted of 39 instances of plasma concentration-time 

data for 18 compounds dosed intravenously in human subjects. These data were derived from the 

literature. 

The test set compounds were varied in terms of physicochemical properties, and represented 

diverse therapeutic areas. The requisite model inputs for these compounds were derived as 

described previously (Brightman et al., 2005). 

Calculation of the Plasma Concentration Weighted Mean Log Fold Error (wMLFE). For 

each pair of in vivo and simulated plasma concentration-time profiles, the log fold prediction 

error was determined at each simulated time point for which there were corresponding in vivo 

data, and the mean of these errors over all time points was calculated, to give an overall mean 

prediction error for each instance of simulated data. The wMLFE represents the weighted mean 

of these individual means. The weights used in the calculation arise from there being multiple 

instances and/or sources of in vivo data for several compounds, and hence the contribution of 
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each individual log fold prediction error to the overall mean is weighted accordingly; i.e., so that 

each compound contributes equally, whatever the number of instances of in vivo data for that 

compound. 
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Results 

Model Validation. For any given set of input data, output from the PBPK model is in the form of 

a predicted plasma concentration-time profile. When stochastic simulations are performed for a 

single set of input data, each iteration generates a predicted profile, and hence the total output 

consists of a population of profiles that reflect the inherent uncertainty in the input data. 

Examples of typical simulation results, plotted on the same axes as the corresponding in vivo 

data, are given in Fig. 1 for selected training set compounds and in Fig. 2 for a similar selection 

of test set compounds.  

The simulated profiles in Figs. 1A and B and Figs. 2A and B illustrate accurate estimation of 

plasma concentrations over time, for selected training set and test set compounds, respectively. 

There is little variation within the population of profiles generated for either of the training set 

compounds dexamethasone and verapamil (Figs. 1A and B), and the fit of the model output to the 

single set of observed data is precise and almost exact in both cases. Conversely, Figs. 2A and B 

demonstrate accurate, but less precise simulation of the in vivo plasma data for the test 

compounds, biperiden and acecainide; although the median predicted profiles for these 

compounds depart very slightly from the observed profiles, the ranges of predicted profiles 

encompass the in vivo data. The variation within the model output for biperiden, for example, 

was generated from both known variability in the subject weights, and a combination of 

variability and uncertainty arising from multiple estimates of in vivo fup and CLint. 

Some other simulation results are shown in Figs. 1C and D and Figs. 2C and D. Somewhat 

inaccurate estimation of the in vivo tissue distribution of the training set compound phenytoin, 

resulting in a tendency to under-predict plasma levels, is indicated by Fig 1C. However, there is 
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clearly a degree of variability in the observed data for this compound, which is reflected in the 

model output. In contrast, the elimination half-life of alprazolam has been underestimated (Fig. 

1D). The median predicted profiles for the test set compounds dofetilide and budesonide deviate 

from the observed profiles (Figs. 2C and D), but the in vivo data are captured by the ranges 

predicted; hence, the model results can still be considered acceptable.  

For the remainder of the results presented here, the median of the population of predicted profiles 

generated from each set of input data was used as an individual estimate of the plasma 

concentration time course. In order to assess the overall performance of the model in terms of 

successfully predicting in vivo plasma levels, the plasma concentration wMLFE was determined 

for both the training and test sets; this statistic corresponds to the mean vertical deviation (in log 

units) of a simulated data point from a corresponding observed data point on a semi-log plot of 

plasma concentration versus time. A plasma concentration wMLFE of 0.47 was determined for 

both the training set and the test set. By way of illustration, the median predicted profiles shown 

in Fig. 1C and Fig. 2C both have an associated MLFE of approximately 0.47. 

The frequency distributions of the actual mean fold errors in plasma concentration prediction for 

both sets of compounds are shown in Fig. 3. Interestingly, the results appear rather better for the 

test set than for the training set, in that plasma concentration predictions are on average within a 

factor of two above or below the observed data points for a far greater percentage of the test set 

compounds. However, given the relatively small size of the test set, this discrepancy is unlikely 

to be significant. In fact, very similar proportions of the two sets (59% of the training set and 

61% of the test set) are on average within threefold of the observed data, and the same percentage 

of each set mean has a mean prediction error of more than fivefold. 
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Although the primary outputs from the PBPK model are the predicted in vivo plasma 

concentration-time profiles that are generated, these can be utilized for estimation of standard 

pharmacokinetic (PK) parameters of interest, including area under the concentration-time curve 

(AUC), allowing direct comparisons to be made with analogous in vivo data. Since different 

methods of extrapolating AUC from zero time to the first time point and from the last time point 

to infinity can vary in the estimates they yield, the simulation results were compared to observed 

data in terms of a standardized parameter, the dose-normalized AUC from the first to the last 

recorded time points (AUCt1-tlast-DN). 

The capability of the PBPK model to accurately predict AUCt1-tlast-DN in man has been evaluated 

in terms of the median values and interquartile (IQ) ranges of the predicted/observed ratios, for 

both the training and test sets, as given in Table 1. These summary data indicate that prediction of 

AUCt1-tlast-DN is generally successful, although the predictions for the test set are again apparently 

more accurate than those for the training set. Thus, the median predicted/observed ratio is close to 

1.0 for either set of compounds, and half of the test set predictions are within a factor of 

approximately 1.5 above or below the observed values, but the range is slightly greater for the 

same proportion of training set predictions. 

The frequency distributions of the predicted/observed ratios of AUCt1-tlast-DN for both the training 

and test sets are more clearly demonstrated by the histograms shown in Fig. 4. The majority 

(55%) of the predictions for the training set compounds are within twofold of the observed 

values, and more than 80% are within threefold. Similarly, over 60% of the test set predictions 

are within a factor of two of the observed values, and greater than 70% are within a factor of 

three. The predicted/observed ratios for this small test set are somewhat skewed towards low 

values. 
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Comparison of the PBPK Model with Interspecies Pharmacokinetic Extrapolation 

Methods. In order to further evaluate the potential of the generic PBPK model as a means for 

estimating the human pharmacokinetics of novel compounds within a drug discovery program, a 

performance-related comparison was made between the model parameterized for human and 

three recently published interspecies scaling methods for the prediction of clearance in man from 

rat in vivo data alone, derived for possible use as early pharmacokinetic screening tools (Caldwell 

et al., 2004; Ward and Smith, 2004). Both of the methods published by Caldwell et al. utilize 

simple allometric scaling (Caldwell et al., 2004), whilst the technique of Ward and Smith 

considers clearance as a fixed proportion of liver blood flow (Ward and Smith, 2004). 

Predictions of human clearance for the different sets of compounds used in training the PBPK 

model, by Caldwell et al. and by Ward and Smith, were evaluated in terms of the average fold 

error, as defined by Caldwell et al. (Caldwell et al., 2004), and by the proportion of predictions 

within two-, three- and fourfold of the observed values. The statistics presented for the two 

Caldwell et al. methods have been reproduced directly from the original source. In order to 

calculate comparable statistics for the Ward and Smith method, it was necessary to regenerate the 

original results of these authors from rat clearance data presented graphically in the source 

publication. The majority, but not all (97 out of 103), of the data points could be extracted from 

the source. However, the median prediction fold error calculated for this subset was the same as 

that reported in the publication for the full training set, and hence for the purposes of the analysis 

described here, the fold error distribution we derived was assumed to be acceptably close to the 

true distribution. 

For many of the compounds in the PBPK model training set there were multiple instances of in 

vivo data, derived from one or more published sources. The statistics shown for the PBPK model 
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have therefore been calculated on the basis of the weighted mean fold prediction error for each 

compound, and hence are directly comparable with those for the published interspecies scaling 

methods, which were also determined on a per-compound basis. The weighting system employed 

was the same as that used in the calculation of the plasma concentration wMLFE. There was 

considerable overlap in the compounds comprising the training sets for the four different 

methods. 

The results of this analysis for the individual methods and their respective training sets, as shown 

in Table 2, demonstrate that the PBPK model apparently compares favourably with the Ward and 

Smith method, with the former having a lower average fold error and predicting a slightly greater 

proportion of compounds within a factor of three of the observed values. However, they also 

suggest that the current version of the PBPK model might be somewhat less accurate than the 

methods of Caldwell et al. in the quantitative prediction of human clearance.  

In order to further investigate the relative capabilities of the four methods, a similar statistical 

analysis of their predictions of clearance in man for the PBPK model test set compounds was 

carried out, and is summarized in Table 3. This test set was completely independent, so that the 

compounds selected for inclusion were not present in any of the training sets, but also represented 

those for which suitable rat and human in vivo intravenous dosing data were readily available. 

Predictions of human clearance made by the Caldwell et al. and Ward and Smith methods were 

calculated from published values of rat in vivo clearance for the test set compounds and evaluated 

against the corresponding published human clearances. Again, the statistics for the PBPK model 

were derived from the weighted mean fold prediction error for each compound.  
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The predictive accuracy of each method, and particularly of the Ward and Smith method, is 

generally poorer for the test set compounds than for those comprising the respective training sets, 

but still at what might be considered an acceptable level for the early stages of drug discovery 

(Caldwell et al., 2004; Ward and Smith, 2004). However, the deterioration in overall performance 

is proportionately less for the PBPK model than for the other methods. Consequently, the 

expected accuracy of the PBPK model seems to be at least comparable to that of Caldwell et al.’s 

methods in terms of predicting human clearance for a set of novel compounds. For both methods, 

the same number of predicted values are within a factor of two of the observed values, and an 

equal or greater proportion of the PBPK model predictions are within a factor of three or four 

above or below the observed values, although the average fold error for the PBPK model is rather 

higher. On the evidence shown, the PBPK model would appear however, to considerably 

outperform the method of Ward and Smith in predicting human clearance for novel compounds. 

Moreover, the PBPK modelling approach has the obvious advantage over all three interspecies 

extrapolation methods that no in vivo data are required in order to predict human 

pharmacokinetics, with a better or similar degree of accuracy. 

Consideration of the median values of the predicted/observed ratios for the test set (Table 3) also 

reveals an interesting trend in the values predicted by the interspecies scaling methods, which all 

appear to have a tendency to over-predict human clearance, to varying degrees. This is confirmed 

by the histograms shown in Fig. 5, illustrating the frequency distribution of the predicted/ 

observed ratios for each method. Although most of the values predicted by either of the Caldwell 

et al. methods are within a factor of two of the observed values, an almost equivalent number are 

between two and ten times the observed values (Fig. 5A and B). The majority (56%) of the 

values predicted by the Ward and Smith method are also between two and ten times greater than 
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the observed values (Fig. 5C). In contrast, the errors in the PBPK model predictions are normally 

distributed, with the highest single proportion of predictions, and the majority overall, being 

within twofold of the observed values (Fig. 5D). 

It is notable that all four methods were found to substantially over-predict clearance in man of the 

test set compound digitoxin, which is also a significant outlier for the prediction of AUCt1-tlast-DN 

by the PBPK model: the predicted/observed ratios for clearance are 14.5, 9.5, 15.0 and 22.1 for 

the two Caldwell et al. methods, Ward and Smith’s method and the PBPK model, respectively. 

However, the human clearance of quinine, also in the test set, is similarly poorly predicted by the 

three interspecies scaling methods (predicted/observed ratios of 9.5, 10.5 and 16.6 for Caldwell et 

al.’s and Ward and Smith’s methods, respectively), but more successfully predicted by the PBPK 

model, with a predicted/observed ratio of 4.3.  

Finally, the same analysis was applied to a further method published by Ward and Smith for 

predicting human clearance, requiring scaling from clearance in monkey (Ward and Smith, 

2004). The average fold error for the training set data of these authors was found to be 2.04, with 

64%, 78% and 89% of the predictions being less than two-, three- and fourfold in error, 

respectively. The overall level of performance therefore does not greatly exceed that 

demonstrated by the Caldwell et al. methods when applied to the corresponding training set. 

Hence, it would have been interesting to establish whether the same deterioration in predictive 

capability might be shown by this alternative method of Ward and Smith, when applied to the 

PBPK model test set, as observed for their analogous method that depends on scaling from rat 

clearance. However, appropriate monkey in vivo data were unfortunately not available for this 

particular set of compounds. Similarly, Obach et al. have reported several methods of predicting 

clearance in man (as well as volume of distribution and half-life) from preclinical 
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pharmacokinetic data and/or in vitro data (Obach et al., 1997), but the compounds used in their 

analysis were not identified, and hence we were unable to directly compare the performances of 

the PBPK model and these particular methods. 
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Discussion 

In this and the preceding paper (Brightman et al., 2005), we have demonstrated that a generic 

PBPK model can produce reliable predictions of mammalian PK following intravenous dosing, 

for a wide range of organic compounds, from a small number of readily-determined, compound-

dependent inputs. We expect the overall physiological description to be common to all 

mammalian species, and that the fundamental model could be successfully adapted to any species 

by changing the physiological parameters.  

Since a PBPK model is physiologically realistic, with explicit equations for flows into the major 

tissues and organs of the body, the compound-dependent parameters required to simulate PK are 

real properties that can be measured. Consequently, such models can be used to define a 

minimum set of absorption, distribution, metabolism and elimination (ADME) properties that 

must be obtained by in vitro or in silico screening in order to predict in vivo PK for any 

compound. In the same way that clinical trials are the point at which all the experimental data 

generated during drug discovery and preclinical development are integrated to produce a clear 

picture of the clinical potential of a new drug, so PBPK models can create the framework for 

integrating ADME, toxicity and efficacy data throughout discovery and even preclinical 

development. Our aim is to develop models that are driven by inputs that can be determined 

within imposed cost and time constraints, and can reliably inform compound selection, by being 

able to predict human PK with sufficient confidence for a particular phase of the 

discovery/development process. 

The PBPK model that we have described in this paper generates predictions of plasma 

concentrations and clearance in man that appear to be sufficiently reliable to inform compound 
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selection during early drug discovery. We have not, so far, been able to validate the human 

version of the model against drug-discovery compounds to the same extent as the rat version. 

Nonetheless, there is no reason to believe that the relative robustness shown by the latter model 

in its ability to predict PK for compounds that are distant from the training set is not also a 

property of the human model. We have, however, demonstrated the equal or even superior ability 

of the current version of the human model to predict clearance when compared to interspecies 

extrapolation methods. Further development of the model, for example, through incorporation of 

additional physiological or biochemical processes currently not simulated, extension of the 

training set and/or the use of additional inputs, will serve to further enhance the predictive 

capability of the model above methods that are dependent on in vivo animal experimentation. 

The maximum value that can be extracted from the use of this model within drug discovery 

largely depends upon the modus operandi of an individual company, drug-discovery programme 

or project. Significant factors that determine the relative merits of applying the model in any 

particular situation include: the number of compounds passing through the successive stages of 

the discovery process; the role of early ADME determination; access to low-cost ADME screens; 

the methods used for lead expansion and the usage of in silico techniques. Assays are available, 

for each of the required model inputs, that have sufficiently high throughput to enable human PK 

prediction using measured values within the timescale dictated by successive synthesis rounds of 

a typical project in lead optimization. Recent, well-documented changes in practice within the 

pharmaceutical industry have led to ADME data being generated more thoroughly and earlier in 

drug discovery than was previously the case. Hence, experimental measurement of some or all of 

the required inputs will be routinely available during lead optimization for many projects. 

Alternatively, in silico methods can be used to predict one or more inputs, in order to reduce cost, 
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increase throughput and/or reduce the requirement for the physical compound, the availability of 

which may be restricted during early discovery. Consequently, we anticipate that the use of rapid 

in vitro/in silico screening of ADME and physicochemical properties, coupled to the prediction 

of human PK through PBPK modelling, will enable the optimization of human PK to be a 

significant determinant of the lead expansion and optimization phases, rendering rat and mouse 

PK studies increasingly unnecessary. 

The logical extension is that all the required inputs could be predicted by in silico methods, 

enabling virtual human PK screening. The PK of large numbers of virtual compounds can be 

simulated by the model over a relatively short time scale (simulating a 24-hour time course takes 

a fraction of a second on a 1.3 GHz server with 1 GB of RAM running Red Hat Linux 7.2); 

calculation of the compound-dependent inputs, rather than execution of the PBPK model, is rate-

limiting for some methods of input value prediction. In addition, due to the capability of the 

model to perform Monte-Carlo simulations, uncertainty in the values of the predicted inputs can 

be transformed into uncertainty in the predicted PK. This permits assessment of the associated 

risk when making assumptions based on any combination of predicted inputs and the uncertainty 

in those inputs. Thus, when using in silico prediction of its inputs, PBPK modelling has a 

potential role to play during lead identification, and even in prioritizing compounds to be passed 

through biological activity screens. The balance of how to use available computing resources 

most effectively, between the number of compounds to simulate and the number of Monte Carlo 

iterations to perform, depends on: the number of compounds (virtual or real) under consideration; 

the number to be taken forward; the quality of the predicted model inputs and the acceptable 

degree of uncertainty in PK when selecting compounds. It is important to note that the 

uncertainty in predicted PK that results from uncertainty in the inputs is highly dependent on the 
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combination of input values for a compound. Thus, high uncertainty in CLint transforms to 

relatively low uncertainty in predicted PK for compounds whose unbound CLint (i.e., fup · CLint) is 

greater than hepatic blood flow, whereas for compounds with low CLint, uncertainty in predicted 

AUC is nearly proportional to uncertainty in CLint. 

During such a virtual screening process, care must be taken with the input prediction. Whilst 

commercial software is available for predicting many of the inputs to the PBPK model, the ability 

of such software to generalize with acceptable accuracy to drug discovery compounds is not 

guaranteed, as in most cases these compounds will lie outside the property space of the training 

data for the underlying models. Consequently the suitability of predictive software should be 

determined by comparison with experimental data for a subset of the compounds to be screened. 

In those cases where reliability is not sufficient, possible alternative courses of action include 

building quantitative structure-property relationship (QSPR) models to make corrections to the 

predicted output for particular chemistry (some commercial software permits this local training) 

or developing bespoke QSPR predictions. Fortunately, one of the most difficult properties to 

predict reliably, CLint, is one of the simplest to determine experimentally. This provides the 

potential for inexpensively generating a significant experimental clearance database, for use in 

PK prediction and in the development of QPSR models for predicting clearance of further 

compounds. 

As compounds progress towards preclinical development, the limitations of the current generic 

PBPK model, in both predictive reliability and the amount of information concerning the 

determinants of PK behaviour that project teams typically require, are likely to become apparent. 

The potential for further model development, however, means that such restrictions need only be 

provisional. In principle, any process that affects PK can be incorporated into the model. The 
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only limitations are the availability of relevant, usable data with which to modify the model and, 

if the changes require additional inputs, the availability of appropriate data to drive the model for 

novel compounds. As our understanding of the processes that govern PK increases, along with 

the availability of cost-effective in vitro techniques for their determination, so generic PBPK 

models can evolve to incorporate them. Within this scheme, the PBPK model can play an active 

role, informing in vitro and in silico method development regarding the accuracy and precision 

required for reliable in vivo prediction. We can, in time, expect to see developments in in vitro 

and in silico methods that enable successful PBPK-based prediction further along the 

discovery/development pipeline. Other potential developments of the PBPK model are less 

dependent on the provision of additional in vitro assays. These include improvements in the 

prediction of PK differences arising from sex, age and body-weight differences, permitting 

realistic inter-individual variability to be simulated.   

As we have already discussed (Brightman et al., 2005), the capacity to reliably predict 

mammalian PK from in vitro or in silico inputs is also of great potential benefit in assessing the 

risk posed to populations from exposure to environmental chemicals, without recourse to animal 

experimentation, and the consequent uncertainties in interspecies extrapolation to man. 

Consequently, in the light of the results presented here, we conclude that the generic PBPK 

model can be a powerful, efficient and cost-effective tool for xenobiotic PK prediction and 

reduction of in vivo animal experimentation in industry. 
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Legends for Figures 

FIG. 1. Predicted and observed plasma concentration-time profiles for selected training set 

compounds: A, dexamethasone; B, verapamil; C, phenytoin; D, alprazolam. 

The in vivo data (filled symbols) are taken from the literature (Odar-Cederlof and Borga, 1974; 

Tsuei et al., 1979; Dominic et al., 1981; Smith et al., 1984). The simulated data are the median 

values (solid line) of a population of predicted profiles generated from 100 stochastic 

simulations; also indicated are the 10th (dashed line) and 90th (dotted line) percentiles of the 

population. 

 

FIG. 2. Predicted and observed plasma concentration-time profiles for selected test set 

compounds: A, biperiden; B, acecainide; C, dofetilide; D, budesonide. 

The in vivo data (filled symbols) are taken from the literature (Ryrfeldt et al., 1982; Grimaldi et 

al., 1986; Coyle et al., 1991; Smith et al., 1992). The simulated data are the median values (solid 

line) of a population of predicted profiles generated from 100 stochastic simulations; also 

indicated are the 10th (dashed line) and 90th (dotted line) percentiles of the population. 

 

FIG. 3. Frequency distribution of the plasma concentration mean fold errors for the training set 

(A) and test set (B) compounds. 

The training set and test set comprise 69 and 18 different drugs, respectively. 
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FIG. 4. Frequency distribution of the predicted/observed ratios of AUCt1-tlast-DN for the training 

set (A) and test set (B) compounds. 

The training set and test set comprise 69 and 18 different drugs, respectively. 

 

FIG. 5. Frequency distribution of the predicted/observed ratios of clearance for the 18 test set 

compounds: A, Method I of Caldwell et al.; B, Method II of Caldwell et al.; C, the method of 

Ward and Smith; D, PBPK Model. 
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Tables 

TABLE 1 

Summary of the AUCt1-tlast-DN predicted/observed ratio distributions for the training set and test 

set compounds. 

Training Set Test Set 

Median IQ Range Median IQ Range 

1.14 0.65-2.44 0.96 0.73-1.55 
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TABLE 2 

The prediction of human clearance by the PBPK model and the published interspecies 

extrapolation methods of Caldwell et al. (2004) and Ward and Smith (2004) for the respective 

training sets. 

The value of n corresponds to the number of compounds in each training set. 

 Caldwell et al. (n=176) 

 Method I Method II 

Ward and Smith 

(n=97) 

PBPK Model 

(n=69) 

Average Fold Error 2.16 2.22 2.64 2.51 

Fold Error < 2 56% 52% 49% 46% 

Fold Error < 3 77% 79% 70% 72% 

Fold Error < 4 88% 86% 79% 75% 
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TABLE 3 

The prediction of human clearance by the PBPK model and the published interspecies scaling 

methods of Caldwell et al. (2004) and Ward and Smith (2004) for the PBPK model test set 

(n=18). 

 Caldwell et al.  

 Method I Method II 

Ward and Smith  PBPK Model  

Average Fold Error 2.61 2.53 3.44 2.78 

Fold Error < 2 50% 50% 28% 50% 

Fold Error < 3 56% 56% 44% 61% 

Fold Error < 4 72% 67% 61% 72% 

Median 

Predicted/Observed 1.74 1.60 2.54 1.06 
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