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Abstract 

Vectorial transport of bile acids across hepatocytes is a major driving force for 

bile flow, and bile acid retention in the liver causes hepatotoxicity.  The basolateral and 

apical transporters for bile acids are thought to be targets of drugs that induce 

cholestasis.  Previously, we constructed polarized LLC-PK1 cells that express both a 

major bile acid uptake transporter human NTCP and the bile acid efflux transporter 

human BSEP and showed that monolayers of such cells can be used to characterize 

vectorial transcellular transport of bile acids.  In the present study, we investigated 

whether cholestasis-inducing drugs could inhibit bile acid transport in such cells.  

Because fluorescent substrates allow the development of a high throughput screening 

method, we examined the transport by NTCP and BSEP of fluorescent bile acids as well 

as taurocholate.  The aminofluorescein-tagged bile acids, CDCGamF and CGamF, 

were substrates of both NTCP and BSEP, and their basal-to-apical transport rates across 

co-expressing cell monolayers were 4.3-4.5 times those of the vector control, although 

smaller than for taurocholate.  The well-known cholestatic drugs, rifampicin, rifamycin 

SV, glibenclamide and cyclosporin A, reduced the basal-to-apical transport and the 
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apical efflux clearance of taurocholate across NTCP and BSEP co-expressing cell 

monolayers.  Further analysis indicated that the drugs inhibited both NTCP and BSEP.  

Our study suggests that such co-expressing cells can provide a useful system for the 

identification of inhibitors of these two transport systems, including potential drug 

candidates. 
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Introduction 

Hepatotoxic adverse effects, often indicated by cholestasis, are a concern for 

every drug, and severe hepatotoxicity may cause a drug to be withdrawn from the 

market.  Biliary excretion of bile acids is one of the principal driving forces for bile 

formation by generating an osmotic driving force favoring influx of water and 

electrolytes through the paracellular space (Wheeler et al., 1968) (Wheeler, 1972).  

The transcellular transport is mediated by transporter proteins located on the sinusoidal 

(basolateral) and canalicular (apical) membrane of hepatocytes (Meier and Stieger, 

2002; Trauner and Boyer, 2003).  The basolateral Na+-taurocholate cotransporting 

polypeptide (NTCP/SLC10A1) transports bile acids from the space of Disse into 

hepatocytes (Hagenbuch et al., 1991; Boyer et al., 1994).  Human NTCP accepts most 

physiological bile acids and some organic anions, such as estrone-3-sulfate and 

bromosulfophthalein (Meier et al., 1997).  Sodium-independent uptake of bile acids is 

carried out by members of the organic anion transporting polypeptide family, such as rat 

Oatp1a1 and human OATP1B1.  Although there are several carrier proteins capable of 

transporting bile acids, much evidence suggests, at least in the rodent, that 
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NTCP-mediated transport accounts for a large part of the total bile acid uptake (Wolkoff 

and Cohen, 2003).  At the canalicular membrane, the efflux of bile acids by the bile 

salt export pump (BSEP/ABCB11) mediates concentrative excretion (Boyer et al., 1994; 

Gerloff et al., 1998; Noe et al., 2002).  Mutations of BSEP in humans causes primary 

familial intrahepatic cholestasis type II (PFICII), a fatal condition.  (Strautnieks et al., 

1998). 

One mechanism for cholestasis is thought to be inhibition of hepatocyte 

transport systems for bile acids and other organic anions by drugs.  The inhibitory 

effects of such drugs on the uptake and efflux of bile acids have been studied using 

isolated and primary cultured hepatocyte or canalicular membrane vesicles 

(Kukongviriyapan and Stacey, 1991), as well as the isolated perfused liver (Bolder et al., 

1999).  Recently, NTCP and BSEP which generate bile salt-dependent bile flow, have 

been shown to be possible target molecules for cholestatic drugs (Kim et al., 1999; 

Stieger et al., 2000; Akita et al., 2001; Bohan and Boyer, 2002). 

Previously, we constructed NTCP and BSEP co-expressing LLC-PK1 cells as 

an in vitro model of the vectorial transcellular transport of bile acids in hepatocytes 
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(Mita et al., 2006).  This approach is useful for the screening of choleretic bile acids, 

which are good substrates of these transporters.  A second use of this system is to 

identify inhibitors of these transporters which might have cholestatic effects in vivo.  

The method should also be useful for defining structure-transport activity relationships 

of bile acids.  In the present study, we assessed the inhibitory effects of 

cholestasis-inducing drugs on transport across co-expressing cells with the aim of 

developing a screening system for cholestatic compounds.  We compared the transport 

of fluorescent bile acid derivatives with that of taurocholate in the hope that such 

fluorescent compounds would be efficiently transported and thereby permit the 

development of a high throughput screening method for detecting the inhibitory effects 

of drug candidates. 
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Materials and Methods 

Chemicals 

[3H]taurocholic acid (2 Ci/mmol) was purchased from PerkinElmer Life 

Sciences (Boston, MA).  Unlabeled taurocholic acid was obtained from Sigma 

Chemical Co. (St. Louis, MO).  Unlabeled cholic acid was purchased from Wako Pure 

Chemicals Industries, Ltd. (Osaka, Japan).  Unlabeled ursodeoxycholic acid, 

tauroursodeoxycholic acid and glycoursodeoxycholic acid were kindly provided by 

Mitsubishi Pharma (Osaka, Japan).  Fluorescent bile acids 

(cholylglycylamidofluorescein (CGamF), cholylamidofluorescein(CamF), 

chenodeoxycholylglycylamidofluorescein(CDCGamF), 

ursodeoxycholyl-(Nε-NBD)-lysine(UDC-L-NBD), 

7β-NBD-cholyltaurine(7β-NBD-NCT)) were synthesized in the laboratory of Alan F. 

Hofmann as described previously (Sorscher et al., 1992; Holzinger et al., 1998).  The 

following compounds were obtained from Sigma-Aldrich (St. Louis, MO): cyclosporin 

A, rifampicin, rifamycin SV and glibenclamide.  All other chemicals used were 

commercially available and of reagent grade. 
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Cell culture and transfection 

Human NTCP- and human BSEP-expressing LLC-PK1 cells were established 

and maintained as described previously (Mita et al., 2006).  Briefly, parental LLC-PK1 

cells were grown in M199 media (Invitrogen, Carlsbad, CA) supplemented with 10% 

fetal bovine serum and 1 % antibiotic-antimycotic (Gibco; 100 U/ml penicillin, 100 

µg/ml streptomycin, 0.25 µg/ml amphotericin B) at 37  C under 5 % CO2.  Full length 

human NTCP cDNA was subcloned into pcDNA3.1 (Invitrogen) and transfected into 

LLC-PK1 cells with FuGENE 6 (Roche Diagnostics Corporation, Indianapolis, IN) 

according to the manufacturer’s instructions.  Transfectants expressing NTCP were 

selected with G418 (800 µg/ml) and the clone with the highest NTCP activity was 

screened by the uptake activity for taurocholate.  The BD Adeno-X™ Adenoviral 

Expression System (BD Biosciences, Palo Alto, CA) was used to establish the 

recombinant adenovirus encoding human BSEP (Hayashi et al., 2005).  48 hrs before 

each experiment, LLC-PK1 cells were infected by the recombinant adenoviruses or 

control viruses containing green fluorescent protein (GFP) at a multiplicity of infection 

(MOI) of 100. 
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Transport Studies 

NTCP- or mock- transfected LLC-PK1 cells were seeded on Transwell 

membrane inserts (pore size of 3 µm; Falcon, Bedford, MA) in 12-well plates at a 

density of 1.4 × 105 cells per insert for transcellular transport studies, cultured at 

confluence for 2 days, and infected by recombinant adenovirus containing cDNAs for 

BSEP or GFP (100 MOI).  For uptake studies, NTCP- or mock- transfected LLC-PK1 

cells were seeded on 12-well plates and cultured without viral infection.  Cells were 

harvested 48 hrs after infection, and expression of NTCP was induced by 10 mM 

sodium butyrate for 24 hrs (Cui et al., 1999).  To evaluate the integrity of the 

monolayer, transepithelial electrical resistance (TEER) was measured using a 

Millicell-ERS (Millipore Co., Bedford, Mass.).  The monolayers’ TEERs before the 

experiments were 200-300 Ω cm2.  Then, cells were washed with transport buffer (118 

mM NaCl, 23.8 mM NaHCO3, 4.83 mM KCl, 0.96 mM KH2PO4, 1.20 mM MgSO4, 12.5 

mM HEPES, 5 mM glucose, and 1.53 mM CaCl2 adjusted to pH 7.4).  Subsequently, 3H 

labeled taurocholate or fluorescent bile acids were added to the transport buffer in the 

basal compartment (950 µl) for transcellular transport studies or 12-well plates for 
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uptake studies.  After the times indicated, the amount of substrates in the opposite 

apical compartment was measured by the radioactivity for taurocholate, or by the 

absorbance at 490nm for fluorescent bile acids using a Microplate Spectrophotometer 

(Molecular Devices, Sunnyvale, CA).  Potential inhibitors were added to both apical 

and basal compartments 30 minutes before the transport study.  The accumulated 

radioactivity in the cell was determined at the end of the experiments by lysing the cells 

with 500 µl 0.2N NaOH and measuring the radioactivity in the cell lysates.  Aliquots 

(50 µl) of cell lysate were used to determine protein concentrations by the method of 

Lowry (Lowry, 1951) with bovine serum albumin as a standard.  The apparent 

intracellular concentration of taurocholate (Ccell) was determined by assuming that the 

cellular volume per mg cellular protein was 4 µl.   

Data Analysis 

The kinetic parameters were defined as follows: PSb-a (µl/min/mg protein) is the 

permeability-surface area product (PS) for the basal-to-apical clearance defined for the 

ligand concentration in the medium [Cmed (pmol/µl)] (Fig. 1).  PS1 (µl/min/mg protein) 

is the PS product for the influx of ligand across the basal membrane, which is defined 
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for Cmed, PS3 (µl/min/mg protein) is the PS product for the efflux of ligand across the 

apical membrane, which is defined for the ligand concentration in the cells [(Ccell 

(pmol/µl)], PS2 (µl/min/mg protein) is the PS product for the efflux of ligand across the 

basal membrane from the cell to the basal compartment, which is defined for Ccell, 

respectively.  PSb-a is given as a hybrid parameter consisting of PS1, PS2 and PS3 

(Mita et al., 2005):  PSb-a = PS1·PS3 / (PS2 + PS3)     

In this study, PSb-a and PS3 of taurocholate were calculated as follows:  

PSb-a = Vapical / Cmed 

PS3 = Vapical / Ccell  

where Vapical (pmol/min/mg protein) is the increasing velocity of taurocholate in the 

apical compartment.  Vapical was determined by analyzing the transcellular transport for 

1 h.  Since the amount of taurocholate transported increased linearly as a function of 

time over the 2 h period and the intracellular concentration was constant during the 

incubation periods (Mita et al., 2006), we hypothesized that the initial transport velocity 

could be determined from the slope over the period 0-1 h.                                                           
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Results 

Transcellular transport of fluorescent bile acids 

To identify a good substrate of NTCP and BSEP for the functional probe in the 

inhibition study, the basal-to-apical transport clearance (PSb-a) of taurocholate and 

fluorescent bile acids across NTCP and BSEP co-expressing LLC-PK1 cells 

(LLC-NTCP/BSEP) was compared (Fig. 1, 2 and TABLE 1).  The PSb-a of [3H] 

taurocholate (1 µM) and aminofluorescein-tagged glycochenodeoxycholate and 

glycocholate (CDCGamF and CGamF) (10 µM), in LLC-NTCP/BSEP were 

significantly greater than that in control LLC-PK1 cells and NTCP-expressing 

LLC-PK1 (LLC-NTCP) cells, indicating that these bile acids are good substrates of 

BSEP.  On the other hand, for aminofluorescein-tagged cholate (CamF), 

lysine-NBD-tagged ursodeoxycholate (UDC-L-NBD) (10 µM) and 7β-NBD-NCT (10 

µM), transport by NTCP and BSEP was barely detectable. 

The value of PSb-a in LLC-NTCP/BSEP was the highest when [3H] taurocholate 

was used.  The absolute PSb-a value of all the fluorescent bile acids was less than 1/6 

that of [3H] taurocholate.  The ratio of the PSb-a value of LLC-NTCP/BSEP to that of 
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LLC-NTCP was 4.8-fold for [3H] taurocholate, 2.6-fold for CGamF and 1.8-fold for 

CDCGamF (Fig.2 bottom graph).  These results indicate that taurocholate is a better 

substrate for the subsequent inhibition studies.  Furthermore, labeled compounds are 

better tools for measuring the intracellular content of the compounds which is important 

for this study because it is needed to calculate the efflux clearance across the apical 

membrane (PS3). 

Inhibitory effects of a series of cholestasis-inducing drugs 

Next, the inhibitory effect of cholestasis-inducing drugs on the basal-to-apical 

transport clearance PSb-a of taurocholate was examined (Fig. 3).  PSb-a was reduced by 

100 µM rifampicin and rifamycin SV to 50 % of the control level and 10 µM 

glibenclamide reduced it to 70 % (Fig. 3A).  The intracellular concentration (Ccell) of 

taurocholate was determined for each compound at the end of the experiment (Fig.3B).  

The Ccell of taurocholate was increased by 100 µM rifampicin to 160 % of that of 

control cells (no inhibitor added).  However, 100 µM rifamycin caused a 10 % 

reduction in the apparent cellular concentration of taurocholate and 10 µM 

glibenclamide led to a 30 % reduction in Ccell compared with control cells.  Calculation 
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of the efflux clearance across the apical membrane PS3 using the measured Ccell showed 

that 100 µM rifampicin, rifamycin SV and glibenclamide produced a 70%, 44% and 

63% inhibition of PS3, respectively, indicating that the drugs inhibited the efflux of 

taurocholate by BSEP located in the apical membrane (Fig. 3C).  When the efflux 

process is the only target of inhibition, Ccell should be increased by the drugs compared 

with untreated LLC-NTCP/BSEP cells.  However, as mentioned above, Ccell was 

reduced by rifamycin SV and glibenclamide.  This means that not only BSEP but also 

NTCP was inhibited in this experiment as far as rifamycin SV and glibenclamide were 

concerned.  Of course, from these data, we cannot exclude the possibility that 

inhibition of NTCP is also involved in the case of rifampicin.  100 µM of Captopril 

and Cimetidine did not affect the transport and Ccell of taurocholate significantly (Fig. 

3A-C). 

Kinetics of the inhibition by cyclosporin A   

In order to evaluate the inhibition kinetics involved in the transcellular 

transport when both the uptake and efflux processes are affected, cyclosporin A, an 

inhibitor of both NTCP and BSEP, was also examined (Fig. 4).  The basal-to-apical 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 7, 2006 as DOI: 10.1124/dmd.105.008748

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD#8748 

 17

transport clearance PSb-a of taurocholate was inhibited by cyclosporin A (and its 

metabolites) with a Ki value of  1.0±0.2 (µM) (Fig. 4A).  The intracellular 

concentration Ccell determined at the end of each experiment was also reduced by 

cyclosporin A, suggesting that uptake of taurocholate by NTCP was inhibited by 

cyclosporin A treatment.  The inhibition of the uptake process was confirmed by 

evaluating the inhibitory effect of cyclosporin A on the uptake of taurocholate into only 

NTCP-expressing LLC-PK1 cells. The Ki value was determined as 0.27±0.06 (µM) 

(Fig. 4C).  At the same time, the calculated PS3 showed a reduction depending on the 

concentration of cyclosporin A, probably because of inhibition of BSEP by cyclosporin 

A (and/or its metabolites)(Fig. 4B).  These results showed that both uptake and efflux 

processes are affected by 1-10 µM cyclosporin A. 
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Discussion 

In the present study, we assessed the inhibitory effects of cholestasis-inducing 

drugs on bile acid transport across LLC-NTCP/BSEP cells.  Our hope was to develop a 

rapid screening system for drugs that inhibit these transporters. 

Initially, we focused on the fluorescent bile acids as a probe of NTCP and 

BSEP function and investigated whether they were substrates of NTCP and BSEP using 

LLC-NTCP/BSEP.  The fluorescent derivatives of bile acids used in this study were 

originally synthesized for the functional analysis of bile salt transport systems in 

isolated hepatocytes, immortalized cell lines derived from hepatocytes or in vivo 

(Holzinger et al., 1998; Cantz et al., 2000).  Direct demonstration of the transport of 

these bile acids via NTCP or BSEP has not yet been carried out, although 

sodium-dependent uptake for CGamF has been observed (Maglova et al., 1995).  

 Basal-to-apical transport across LLC-NTCP/BSEP was observed in a rank 

order of taurocholate > CGamF > CDCGamF and no significant transport was observed 

for UDC-L-NBD, CamF and 7β-NBD-NCT (Fig. 2).  This order was similar to that of 

the maximum output rate of the bile acids in an isolated liver perfusion study: 
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taurocholate 22.7 > CGamF 14.1 > CamF 7.7 > UDC-L-NBD 1.1 (nmol/g liver/min) 

(Holzinger et al., 1998).  This result supports the hypothesis that the transport of 

fluorescent derivatives of cholic acid in hepatocytes is mainly mediated by NTCP and 

BSEP, and showed that our in vitro system can reflect the physiological function of 

these transporters as far as transcellular transport is concerned.  As for UDC-L-NBD, 

although uptake by LLC-NTCP inhibited by taurocholate was observed using 

fluorescent microscopy (data not shown), no significant transcellular transport across 

LLC-NTCP/BSEP was observed.  This might be because of the nature of this bile salt 

which is sequestered in the cells (Holzinger et al., 1998; Cantz et al., 2000).  

Nonetheless, fluorescent bile acids were transported in this system.  Better fluorescent 

bile acids which will be transported as efficiently as taurocholate will make excellent 

tools for high-throughput screening. 

Inhibition of BSEP by cholestasis-inducible drugs is one of the most frequently 

reported mechanisms of drug-induced cholestasis (Bohan and Boyer, 2002).  Among 

such drugs, rifampicin, rifamycin SV, glibenclamide and cyclosporin A (Stieger et al., 

2000) (Byrne et al., 2002) were used in this study.  As shown in figure 3, PS3, the 
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efflux clearance that reflects the function of BSEP, was reduced by all the drugs 

examined.  The concentration needed for 50% inhibition of PS3 is between 10 and 100 

µM for rifampicin and glibenclamide and approximately 100 µM for rifamycin SV.  

The reported Ki values for the inhibition of taurocholate uptake into human 

BSEP-expressing membrane vesicles are 31 µM for rifamycin SV and 31 µM for 

glibenclamide (Byrne et al., 2002).  For rifampicin, only the Ki value of 12 µM for rat 

Bsep is available (Stieger et al., 2000).  Compared with these values, the inhibitory 

concentration was higher in our LLC-NTCP/BSEP cells than in other studies that used 

vesicles.  One possible explanation for this is that the protein unbound concentrations 

of the drugs in cytoplasm are lower than in the medium because the drugs may not 

penetrate the plasma membrane efficiently and the drugs may also bind to intracellular 

proteins. 

Inhibition of BSEP in the transcellular transport of taurocholate should be 

accompanied by an increase in the intracellular concentration of taurocholate.  

However, the increase was observed only in the case of rifampicin.  This means that 

rifamycin SV and glibenclamide also inhibited NTCP-mediated uptake at the same time.  
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Recently, it has been reported that 100 µM rifampicin or rifamycin SV can reduce the 

uptake of taurocholate by rat Ntcp to 60% of the total uptake (Fattinger et al., 2000).  

However, in this study, following incubation with 100 µM rifampicin and rifamycin SV, 

the reduction in Ccell was not as much as 60%.  An increase by rifampicin and only a 

slight decrease by rifamycin SV were observed (Fig. 3).  If we hypothesize there is no 

species difference in the inhibitory effect of these drugs between humans and rats, this 

result indicates that the inhibition of NTCP and BSEP balanced each other.   

Captopril and cimetidine are reported to cause cholestasis (Mohi-ud-din and 

Lewis, 2004).  However, their interactions with bile acid transporters have not been 

reported (Cimetidine does not have a significant inhibitory effect on BSEP (Wang et al., 

2003)) and other pathways are postulated as a possible mechanism.  Corresponding to 

this, both captopril and cimetidine did not affect the transcellular transport and Ccell of 

taurocholate at 100 µM (Fig. 3A-C).  

The inhibitory effect of cyclosporin A, an inhibitor of both NTCP and BSEP, 

was also examined as well as the inhibition kinetics of the transcellular transport when 

both the uptake and efflux processes are affected (Fig. 4).  The basal-to-apical 
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transport clearance PSb-a was inhibited with a value Ki of 1.0±0.2 (µM).  The efflux 

clearance PS3 was inhibited depending on the medium concentration of cyclosporin A.  

Although estimation of the exact Ki value is difficult, it appeared to be close to the 

reported Ki value for the inhibition of the uptake of taurocholate into human BSEP 

expressing membrane vesicles by cyclosporin A (9.5µM) (Byrne et al., 2002)  

The question which we must consider here is to what extent inhibition of the 

uptake and efflux process affects the net transcellular transport.  It was estimated that 

the Ki value for the inhibitory effect of cyclosporin A on the uptake of taurocholate into 

human NTCP expressing LLC-PK1 cells was 0.27±0.06 (µM) (Fig. 4).  This value is 

similar to the Ki value for PSb-a, which suggests that the inhibition of PSb-a reflects the 

inhibition of the uptake process mediated by NTCP.  Although we do not know 

whether NTCP or BSEP is important for the cyclosporin A-induced cholestasis in 

physiological situations, the result of this study and the following aspects support the 

importance of NTCP.  The transcellular transport clearance can be expressed as the 

hybrid of each transmembrane transport clearance as described in the Data Analysis 

section:  PSb-a = PS1·PS3 / (PS2 + PS3).  If the efflux clearance across the apical 
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membrane, PS3, is far greater than that across the basal membrane, PS2, PSb-a is nearly 

equal to PS1.  Thus, inhibition of the uptake process, PS1, can lead to inhibition of 

transcellular transport more easily than inhibition of the efflux process, PS3.  The 

effect of inhibition of the uptake and/or efflux process on the net transcellular transport 

is simulated in Fig.5.  The ratio of PS2:PS3 is substituted by the measured value in the 

isolated rat liver perfusion studies PS3:69.2 ± 6.3 (µl/min/g liver) PS2:8.4 ± 0.6 

(µl/min/g liver)(Akita et al., 2002).  If the efficacy of the inhibitory effect of the drug 

is similar for the uptake and efflux processes, inhibition of uptake is more effective than 

that of efflux as far as the net transcellular transport is concerned. 

BSEP has been extensively studied as a target molecule of drug-induced 

cholestasis because it plays a role in the regulation of the concentration of bile acids in 

hepatocytes.  Inhibition of BSEP leads to an intracellular accumulation of bile acids 

resulting in cellular damage because of their cytotoxic effects.  However, there should 

be some cases where the inhibition of NTCP plays a major role in drug-induced 

cholestasis considering the importance of the uptake process in the overall transcellular 

transport of bile acids as described above.  Cyclosporin A induced cholestasis may be 
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the one of those.  The plasma bile salt concentration was increased in rats following 

administration of cyclosporin A 10mg/kg (Stone et al., 1987) indicating that cyclosporin 

A inhibits the uptake of bile acids from the portal blood into hepatocytes.  Moreover, 

there was no change in liver histology in the cholestasis caused by cyclosporin A 

(Kukongviriyapan and Stacey, 1991) suggesting the cytotoxicity brought about by 

intracellular bile acids here is not very severe.  These facts indicate the importance of 

the inhibition of NTCP at least in the case of cyclosporin A induced cholestasis.   

In conclusion, LLC-NTCP/BSEP cells were used for the detection of the 

inhibitory effect of drugs on NTCP and/or BSEP although the quantitative evaluation of 

the inhibitory effect on BSEP appears to be difficult at the present time compared with 

transport studies using membrane vesicles.  Furthermore, in order to predict the effect 

of drugs under physiological conditions, we must consider the drug metabolites which 

sometimes significantly inhibit BSEP (Funk et al., 2001).  As there is only a minor 

quantity of hepatic enzymes involved in drug metabolism in LLC-PK1 cells (Gonzalez 

and Tarloff, 2004), the inhibitory effects observed in this study are speculated to be 

those produced by drugs in their unchanged forms.  The additional expression of such 
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enzymes and uptake transporters of drugs, such as OATP1B1 and OATP1B3, will 

provide a more useful tool for quantitative measurement of the inhibitory effect on 

BSEP.  
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Legends to figures 

Fig. 1.  Schematic diagram illustrating transcellular transport across LLC-PK1 

monolayers.  PSb-a (µl/min/mg protein) is the permeability-surface area (PS) product 

for the basal-to-apical clearance defined for the ligand concentration in the medium 

(Cmed (pmol/µl)).  PS1 (µl/min/mg protein) is the PS product for the influx of ligand 

across the basal membrane, which is defined for Cmed.  PS3 (µl/min/mg protein) is the 

PS product for the efflux of ligand across the apical membrane, which is defined for the 

ligand concentration in the cells (Ccell (pmol/µl)).  PS2 (µl/min/mg protein) is the PS 

product for the efflux of ligand across the basal membrane from the cell to the basal 

compartment, which is defined for Ccell, respectively.   

 

Fig. 2.  Transcellular transport of labeled and fluorescent bile acids across NTCP and 

BSEP co-expressing LLC-PK1 cells.  [3H]taurocholate (1 µM), 

cholylglycylamidofluorescein (CGamF), cholylamidofluorescein(CamF), 

chenodeoxycholylglycylamidofluorescein(CDCGamF), 

ursodeoxycholyl-(Nε-NBD)-lysine(UDC-L-NBD) and 
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7β-NBD-cholyltaurine(7β-NBD-NCT) (10µM) across the LLC-PK1 cell monolayers 

was determined.  Open, hatched and closed bars represent the basal-to-apical 

transcellular transport across the control (LLC), LLC-NTCP and LLC-NTCP/BSEP 

monolayers, respectively.  Vertical bars represent the S.E. of three determinations.  At 

the bottom is a graph where the transcellular transport data are expressed on the same 

scale. 

 

Fig. 3.  Inhibitory effects of cholestasis-inducing drugs on the transport of taurocholate 

across NTCP and BSEP co-expressing LLC-PK1 cells.  Basal-to-apical transport 

clearance PSb-a (A), intracellular concentration Ccell (B) and apical efflux clearance PS3 

(C) of taurocholate in LLC-PK1, LLC-NTCP and LLC-NTCP/BSEP cell monolayers 

were determined at 60 min (closed bars).  Inhibitory effects of 10 or 100 µM 

concentrations of various drugs on LLC-NTCP/BSEP were studied (open and hatched 

bars).  The drugs were added to the apical and basal compartment 30 minutes before 

applying taurocholate. 
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Fig. 4.  Inhibition of the transport of taurocholate by cyclosporin A.  Various 

concentrations of cyclosporin A were added to the apical and basal compartment of 

LLC-NTCP/BSEP (A, B).  After 30 minutes, the inhibitory effects of cyclosporin A 

(closed circles) and an excess (500 µM) of taurocholate (open circle) on the 

basal-to-apical transport of [3H]taurocholate (1 µM) for 1 h across LLC-NTCP/BSEP 

cell monolayers were studied (A).  Apical efflux clearance PS3 of taurocholate was 

calculated versus the intracellular concentration of taurocholate determined at the end of 

the experiments (B).  The inhibitory effects of cyclosporin A (closed circles) and an 

excess (500 µM) of taurocholate (open circle) on the uptake of [3H]taurocholate (1 µM) 

for 1 min into LLC-NTCP cells were studied (C).   

 

Fig. 5.  Simulation of the inhibitory effect of the uptake and/or efflux process on the 

net basal-to-apical transport of bile taurocholate across hepatocytes.  The 

basal-to-apical clearance PSb-a of taurocholate across hepatocytes was calculated in the 

cases where the influx clearance, PS1, the efflux clearance, PS3, or both were affected 

by the inhibitor under the following conditions: The Km values of PS1 and PS3 are = 30 
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µM and 6 µM, respectively, according to the reported Km values for rat Ntcp and rat 

Bsep (Schroeder et al., 1998, Hagenbuch et al., 1991, Gerloff et al., 1998 and Akita et 

al., 2001).  The unbound concentration of taurocholate in the basal compartment and 

the intracellular compartment are smaller than these Km values (Fixed at 1µM).  The 

inhibition constant Ki for both the influx and efflux clearance is , Ki = 1 µM, PS2:PS3 = 

1:8.2, .  PSb-a = PS1·PS3 / (PS2 + PS3 ), according to the equation in data analysis.  

PSb-a = PS1·PS3 / (PS2 + PS3 ) The ratio of PS1:PS2:PS3 is substituted by the measured 

value (PS1:PS2:PS3 = 1.0:0.7:6.0) in the isolated rat liver perfusion studies cited from 

Akita et al., 2002.   
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Table 1 

Transcellular transport of labeled and fluorescent bile acids across NTCP and BSEP 

co-expressing LLC-PK1 cells.  Data are expressed as mean ±SE. 

 

TC 0.36 ± 0.00 7.62 ± 0.26 20.94

CGamF 0.28 ± 0.08 1.19 ± 0.13 4.32

CDCGamF 0.27 ± 0.18 1.24 ± 0.22 4.61

CamF 0.66 ± 0.06 0.89 ± 0.07 1.33

7-NBD-NCT 1.38 ± 0.35 1.63 ± 0.13 1.18

UDC-L-NBD 1.16 ± 0.07 1.83 ± 0.00 1.58

Ratio
(NTCP/BSE
P/control)LLC-PK1 (control) LLC-NTCP/BSEP

Basal-to-apical transport (l/min/mg protein)
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