Absorption, distribution, metabolism and elimination of the direct renin inhibitor aliskiren in healthy volunteers

Felix Waldmeier, Ulrike Glaenzel, Bernard Wirz, Lukas Oberer, Dietmar Schmid, Michael Seiberling, Jessica Valencia, Gilles-Jacques Riviere, Peter End and Sujata Vaidyanathan.

Novartis Pharma AG, Basel, Switzerland (F.W., U.G., B.W., L.O., D.S., P.E.); Swiss Pharma Contract Ltd, Allschwil, Switzerland (M.S.); Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA (J.V., S.V.); Novartis Pharma SAS, Rueil-Malmaison, France (G-J.R.)
Absorption, metabolism and excretion of aliskiren

Author for correspondence:
Felix Waldmeier PhD
Novartis Pharma AG
WSJ-210.4.20
Lichtstrasse 35
CH-4056 Basel
Switzerland

Telephone: +41 61 324 5206
Fax: +41 61 324 8940
E-mail: felix.waldmeier@novartis.com

Number of text pages: 50
Number of tables: 4
Number of figures: 6
Number of references: 27
Abstract word count (max. 250): 235
Introduction word count (max. 750): 730
Discussion word count (max. 1500): 1244

Abbreviations used: ACE, angiotensin converting enzyme; AMS, accelerator mass spectrometry; ARB, angiotensin receptor blocker; AUC\textsubscript{0–\infty}, area under the
concentration-time curve from time zero to infinity; AUC\textsubscript{0-t}, area under the concentration-time curve from time zero to t (last measured time point above LOQ); BP, blood pressure; Cl/F, apparent plasma clearance; CYP, cytochrome P450; F\textsubscript{E}, fraction of total radioactivity bound to red blood cells; HPLC, high performance liquid chromatography; LOQ, limit of quantification; LSC, liquid scintillation counting; MS, mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; PRA, plasma renin activity; SPE, solid phase extraction; t\textsubscript{1/2}, elimination half-life; t\textsubscript{max}, time to maximum concentration.
Abstract

Aliskiren (2(S),4(S),5(S),7(S)-N-(2-carbamoyl-2-methylpropyl)-5-amino-4-hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)phenyl]-octanamid hemifumarate) is the first in a new class of orally active, non-peptide direct renin inhibitors developed for the treatment of hypertension. The absorption, distribution, metabolism and excretion of [14C]aliskiren were investigated in four healthy male subjects after administration of a single 300 mg oral dose in an aqueous solution.

Plasma radioactivity and aliskiren concentration measurements and complete urine and faeces collections were made for 168 h post-dose. Peak plasma levels of aliskiren \((C_{\text{max}}) \) were achieved between 2 and 5 h post-dose. Unchanged aliskiren represented the principal circulating species in plasma, accounting for 81% of total plasma radioactivity \((\text{AUC}_{0-\infty}) \), and indicating very low exposure to metabolites. Terminal half-lives for radioactivity and aliskiren in plasma were 49 h and 44 h respectively.

Dose recovery over 168 h was nearly complete (91.5% of dose); excretion occurred almost completely via the faecal route (90.9%), with only 0.6% recovered in the urine. Unabsorbed drug accounted for a large dose proportion recovered in faeces in unchanged form. Based on results from this and from previous studies, the absorbed fraction of aliskiren can be estimated to approximately 5% of dose. The absorbed dose was partly eliminated unchanged via the hepatobiliary route. Oxidized metabolites in excreta accounted for at least 1.3% of the radioactive dose. The major metabolic pathways for aliskiren were O-demethylation at the phenyl-propoxy side chain or 3-methoxy-propoxy group, with further oxidation to the carboxylic acid derivative.
Introduction

Hypertension is a major risk factor for cardiovascular and kidney diseases, and affects more than 25% of adults worldwide (Kearney et al., 2005). Despite the known risks associated with hypertension and the availability of a range of antihypertensive drug therapies, the majority of patients with hypertension do not have their BP controlled to recommended target levels (<140/90 mmHg for most patients). Indeed, data from the National Health and Nutrition Examination Surveys for 1999–2002 showed that BP was uncontrolled in more than 70% of patients with hypertension in the United States (Centers for Disease Control and Prevention, 2005).

The renin system plays a key role in the physiological regulation of blood pressure and intravascular volume through the actions of the peptide angiotensin II (Ang II). Excessive renin system activity may lead to hypertension and associated target organ damage (Weir and Dzau, 1999). Drugs that inhibit the renin system, such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), have proven to be highly successful treatments for hypertension and related cardiovascular diseases (Sleight and Yusuf, 2003). However, all currently available agents that inhibit the renin system stimulate compensatory renin release from the kidney, which results in an increase in plasma renin activity (PRA) that may ultimately lead to increased levels of Ang II (Mooser et al., 1990; Azizi and Menard, 2004).

Targeting the renin system at its point of activation by directly inhibiting renin activity has therefore long been proposed as the optimal means of suppressing the renin system (Skeggs et al., 1957). However, previous efforts to develop clinically
Effective direct renin inhibitors have been thwarted by the low potency and/or poor pharmacokinetic profiles of peptide-like compounds (Fisher and Hollenberg, 2005). Previous generation renin inhibitors have exhibited an oral bioavailability of around 1%, due to low intestinal absorption and/or considerable hepatic first-pass metabolism (Rongen et al., 1995).

Aliskiren (2(S),4(S),5(S),7(S)-N-(2-carbamoyl-2-methylpropyl)-5-amino-4-hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)phenyl]-octanamid hemifumarate) is the first in a new class of orally effective, non-peptide direct renin inhibitors developed for the treatment of hypertension. The design of aliskiren resulted from a combination of crystallographic structure analysis and computational molecular modelling of the binding of putative inhibitor compounds to human renin. Crystallographic structure analysis of subsequent inhibitors revealed a hitherto uncharacterised non-substrate subpocket within the human renin active site (Wood et al., 2003). This allowed the addition of further substituents in order to fill this subpocket and thus increase affinity for the enzyme, leading to the synthesis of aliskiren, a potent (in vitro IC₅₀ 0.6 nmol/L) and highly specific inhibitor of human renin (Wood et al., 2003). Pharmacokinetic studies in healthy volunteers have demonstrated that aliskiren is rapidly absorbed (tₘₐₓ 1–3 h) and exhibits a long plasma half-life (t½ 30–40 h) (Vaidyanathan et al., 2006a; Vaidyanathan et al., 2006b) suitable for once-daily dosing. Aliskiren demonstrates dose-proportional pharmacokinetics at doses of up to 600 mg once daily in healthy volunteers (Vaidyanathan et al., 2006a). Clinical trials have shown that once-daily treatment with aliskiren lowers blood pressure at least as effectively as ARBs (Stanton et al., 2003; Gradman et al., 2005; Pool et al., 2006) and ACE inhibitors (Uresin et al., 2006) in
patients with hypertension.

Studies investigating the disposition of oral doses of \(^{14}\text{C} \) aliskiren in rats and marmosets indicated that excretion of an oral dose occurred almost exclusively in the faeces, mainly as unchanged aliskiren; a small proportion of the absorbed dose was excreted in the form of oxidized metabolites, probably derived from oxidation by cytochrome P450 (CYP) 3A4 (Novartis, data on file). However, no interaction of aliskiren with cytochrome P450 isoenzymes was found in human liver microsomes in vitro (Vaidyanathan et al., 2005), suggesting a low potential for clinically significant drug interactions of aliskiren. Indeed, no clinically relevant pharmacokinetic interactions have been observed between aliskiren and the CYP substrates celecoxib, digoxin, lovastatin or warfarin, or the CYP inhibitor cimetidine, in healthy volunteers (Dieterle et al., 2004; Dieterle et al., 2005; Dieterich et al., 2006). Animal studies indicate that aliskiren is a substrate for the efflux transporter P-glycoprotein, which may play a role in the hepatobiliary/intestinal excretion of the drug; however, the lack of pharmacokinetic interaction between aliskiren and the P-glycoprotein substrate digoxin indicates that aliskiren does not inhibit P-glycoprotein activity (Dieterich et al., 2006). The aim of the present study was to characterize the absorption, distribution, metabolism and excretion of a single 300 mg oral dose of \(^{14}\text{C} \) aliskiren in healthy male subjects.
Methods

Clinical and subjects

The study was performed at SPC Ltd (Swiss Pharma Contract), CH-4123 Allschwil, Switzerland. Four healthy, non-smoking male subjects, aged 26 to 47 years with normal medical history, vital signs (body temperature, blood pressure and heart rate), 12-lead ECG and laboratory tests participated in this open-label study. All patients had body weight within ±20% of normal for their height and frame size according to Metropolitan Life Insurance Tables.

Exclusion criteria included exposure to radiation greater than 0.2 mSv in the 12 months before the start of the study; use of any prescription drug, over-the-counter medication (except paracetamol), grapefruit juice, St John’s Wort and/or herbal remedies in the 2 weeks prior to the study; and a history of any condition known to interfere with the absorption, distribution, metabolism and excretion of drugs.

The study was conducted in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki (1964 and subsequent revisions), and all patients gave written informed consent before participation. The subjects were exposed to a radiation dose <1 mSv, which was calculated according to the guidelines of the ICRP and Swiss regulations. The protocol and the dosimetry calculation were approved by the local ethics committee and by the Swiss Federal Health Authority (BAG) Radiation Protection Department.
Study medication

Aliskiren was specifically labelled with 14C in the 2-methyl groups (Figure 1); this position is metabolically stable. The radioactive label had a specific activity of 9.27 kBq/mg (0.25 µCi/mg) as 300 mg free base and 55.56 kBq/mL in 50 mL of drink solution, and a radiochemical purity of >99%. The established solid dosage form of aliskiren could not be manufactured with 14C-radiolabelled drug substance due to radiochemical instability. The radiolabelled drug was stable in aqueous solution, frozen at –20°C. Subjects therefore received a single 300 mg oral dose of $[^{14}\text{C}]$aliskiren (331.5 mg hemifumarate salt, prepared by the Isotope Laboratory, Novartis Pharma, Basel, Switzerland), containing a mean dose of radioactivity of 2.8 MBq (75 µCi), in the form of an oral solution (in 50 mL water). Following dose administration, the solution container was rinsed twice with 50 mL water, which was also swallowed by the subjects.

Study protocol

Following a screening period of up to 21 days, eligible subjects reported to the study centre at least 16 h prior to dosing for baseline safety evaluations, and were domiciled in the study centre for the 168 h post-dose observation period. Safety and pharmacokinetic assessments were performed for up to 336 h post-dose.

A single 300 mg oral dose of aliskiren was administered to all subjects in the morning, after an overnight fast of at least 10 h. Blood samples were collected by direct venipuncture or an indwelling catheter into heparinized tubes pre-dose and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 16, 24, 48, 72, 96, 120, 144 and 168 h post-dose. Three aliquots of 0.3 mL each were taken from each sample and
frozen immediately at ≤–20°C for subsequent radiometry. Plasma was prepared from the remaining blood by centrifugation at 4°C for 10 min at 2000 g. Urine was collected pre-dose and at 0–6, 6–12, 12–24, 24–48, 48–72, 72–96, 96–120, 120–144 and 144–168 h post-dose, in a total of 10 fractions. Faecal samples were collected pre-dose and thereafter up to 168 h post-dose; each portion was diluted with 2–3 volumes of water and homogenized. Blood plasma, urine and faeces were stored at ≤–20°C until required for analysis. Blood samples collected on days 10, 12 and 15 were not analysed for radioactivity as the terminal elimination phase for aliskiren could be characterised sufficiently with the samples collected in the time period 48–144 h.

Throughout the study, subjects were not permitted to perform strenuous physical exercise (for 7 days before dosing until after the end of study evaluation), or take alcohol (for 72 h before dosing until the end of the study) or citrus fruit or fruit juices (for 48 h before dosing throughout the domiciled period). Intake of xanthine-containing food or beverages was also not permitted from 48 h before dosing until 48 h post-dosing. Consumption of other foods that might lead to interactions with study drug or lead to technical problems in the analysis of excreta was also not permitted during the domiciled period.

Analysis of unchanged aliskiren

Plasma sample preparation

Plasma samples were cleaned by automated solid phase extraction (SPE) using a 96-well plate and Oasis® MCX 10 mg (Waters Corporation, Milford, MA, USA) on Multiprobe® II (Packard Biosciences, Meriden, CT, USA). After the conditioning steps (500 μL of methanol-water [90:10, v:v] containing 1% acetic acid, then 500 μL
of 1% acetic acid in water), 600 µL of acidified sample was transferred to the well. The sample was washed twice with acetic acid (1% in water), and once with methanol–acetonitrile (40:60, v:v). After the elution step (300 µL of methanol-water [90:10, v:v] containing 2% ammonia), the extract was partially evaporated (concentration by approximately 2-fold) and then diluted with 150 µL of 1% acetic acid in water.

Urine sample preparation

Urine samples were cleaned by automated SPE using a 96-well collection plate, Oasis® MCX 10 mg on Multiprobe® II. After the conditioning steps (200 µL of methanol, then 200 µL of pH 12 buffer), 200 µL of alkalinized sample was transferred to the well. The sample was washed with 400 µL of methanol–water (25:75, v:v). After the elution step (300 µL of acetonitrile–water [90:10, v:v] containing 1% acetic acid), the extract was partially evaporated (concentration by approximately 2-fold) and then diluted with 200 µL of 1% acetic acid in water.

HPLC-MS-MS analysis

HPLC was performed using a MetaSil™ Basic 5 µm column (50 x 2.0 mm; column temperature 40°C, flow rate 0.25 mL, injection volume 10 µL; Metachem, Palo Alto, CA, USA) with gradient elution from 10 mM aqueous ammonium acetate–acetonitrile (75:25, v:v) to 10 mM aqueous ammonium acetate–acetonitrile (40:60, v:v) over 0.4 minutes.

An API 3000™ (Applied Biosystems, Foster City, CA, USA) was used for mass spectrometry. The general settings used were: selected reaction monitoring, positive
ion mode, electrospray ionisation interface; temperature 500°C; mass resolution 0.7 amu; scan time 0.50 s. The lower limit of detection for the HPLC-MS-MS assay was 0.5 ng/mL for plasma and 5 ng/mL for urine. A derivative of aliskiren (gem-dimethyl d₆-aliskiren) was used as an internal standard.

Total radioactivity measurement

Total ¹⁴C-radioactivity in blood and plasma was measured at Novartis Pharma AG (Basel, Switzerland) using liquid scintillation counting (LSC). Blood and plasma samples (triplicates of 300 µL each, weighed) were counted after solubilization in Biolute® S-isopropanol (1:1, v/v; Zinsser Analytic, Frankfurt, Germany), and LSC used Rialuma® (Lumac-LSC, Groningen, the Netherlands). LSC was performed using a Tri-Carb® 3170 TR/SL liquid scintillation counter (“Low-level counter”; Packard Biosciences, Meriden, CT, USA). Counting was performed for 60 or 180 min per sample in low level counting mode.

Total ¹⁴C-radioactivity in urine and faeces was measured at RCC Ltd (Itingen, Switzerland) using LSC with a typical counting time of 10 min. Faecal samples (quadruplicates of 400 mg each, weighed) were counted after homogenization in 2–3 volumes of water and solubilization with Soluene 350® (Packard Biosciences); LSC used Irga-Safe Plus™ (PerkinElmer, Boston, MA, USA). Urine samples (duplicates of 1 mL each) were measured directly with scintillation cocktail (Irga-Safe Plus™). LSC was performed using a Tri-Carb® 2500 TR, 2550TR/LL or 2900TR liquid scintillation counter (Packard Biosciences).

Quench correction was performed by the external standard method. The background
for blood and plasma was determined and subtracted from the measurements of study samples. The limit of quantification (LOQ) of LSC was determined as described previously (Jost et al., 2006) and was defined as the minimal number of sample disintegrations which are statistically significant above background and which show a relative statistical uncertainty equal to or smaller than 20%. Thus the LOQ was 17 ng-eq/mL (2.8 dpm) for blood (counting time 60 min), 11.4 ng-eq/mL (1.8 dpm) for plasma (counting time 180 min) and approximately 0.01% of dose for urine and faeces.

Radioactivity levels in plasma samples collected at 16 and 144 h post-dose were below the LOQ of LSC and were therefore analysed using accelerator mass spectrometry (AMS) by Xceleron Ltd (York, UK). Samples were thawed and centrifuged at 4000 g for 5 min at 10°C; 60 µL aliquots of plasma were then dried under a vacuum with copper oxide, combusted (at 900°C for 2 h), reduced to graphite, and analysed using AMS, which separates the carbon isotopes and determines specifically the 14C-isotope (Garner, 2000).

Biologic sample preparation for metabolite profile analysis
For the following sample preparation processes, radioactivity was traced by quantitative radiometric measurements of aliquots using a Tri-Carb® 2500TR liquid scintillation counter as described previously (Botta et al., 1985).

Plasma

A plasma sample of 2 mL was mixed with 2 mL ice-cold acetonitrile. After 30 minutes on ice, the sample was centrifuged (17,500 g, 15 min) and the supernatant
was withdrawn. The extract was then concentrated in a rotary evaporator to a volume of 0.7–1.1 mL. An aliquot was taken for determination of total radioactivity by LSC; the rest of the sample (0.6–1 mL) was analysed by HPLC to obtain the metabolite profile. The overall recovery from sample processing and analysis was 88%.

Urine

Individual urine samples were centrifuged and 1 mL supernatant directly injected for HPLC analysis. The recovery from sample processing and analysis was complete.

Faeces

From each subject, the two samples of faeces homogenate that contained the most of the applied radioactivity were pooled. Thus more than 98% of the radioactivity excreted with bile/faeces was covered. Approximately 2 g of pooled faeces homogenate were mixed with 2 mL water and 4 mL acetonitrile and shaken for 30 min. After centrifugation at 10,000 g for 15 min, the supernatant was withdrawn and a 200 µL sample was directly injected for HPLC analysis. The overall recovery from sample processing and analysis was 90%.

Metabolite analysis by HPLC-radiometry

Samples of plasma, urine and faeces extract were chromatographed by reversed-phase HPLC with subsequent radioactivity detection. HPLC analysis was performed on an Agilent 1100 HPLC chromatographic system (Agilent Technologies) incorporating a capillary pump G1376A, a degasser G1379A, a thermostat sample holder G1329A (set at 15°C), a column thermostat G1316A (set at 40°C) and a diode array multi-wavelength UV-detector G1315B (set at 235 nm). Chromatographic separation was
performed on a LiChrospher 100-5 RP-18 ec column (5 µm, 250 x 2 mm, Macherey-Nagel, Düren, Germany) protected by a guard filled with the same material.

Gradient elution using mobile phase solvent A (50 mmol/L ammonium acetate adjusted to pH 6.0 with acetic acid) and solvent B (acetonitrile) was applied at a flow rate of 0.25 mL/min as follows: 0 to 35 min, 10 to 30% solvent B; 35 to 45 min, 30% solvent B; 45 to 50 min, 30 to 40% solvent B; 50 to 65 min, 40 to 90% solvent B; 65 to 70 min, 90% solvent B. Samples of 200–1000 µL were injected via a 1 mL loop into the HPLC system. Radioactivity was detected offline by collecting the eluate in 0.25 min fractions into three 96-well Deepwell Lumaplates® (Packard Biosciences) by means of an Agilent 1100 fraction collector (Agilent Technologies). After solvent evaporation in a Speedvac® Plus SC210A vacuum centrifuge (Savant Instruments Inc., Holbrook, NY, USA), radioactivity was determined (counting time 3 x 20 min) on a Topcount NXT® microplate scintillation and luminescence counter (Packard Biosciences).

Metabolite characterisation by HPLC-MS

Selected pooled extracts of urine and faeces from individual subjects were analysed directly by LC-MS with simultaneous radioactivity detection. For confirmation of proposed structures of metabolites of aliskiren, the retention times in the radiochromatograms and mass spectral data obtained in the current study were compared with those obtained for reference compounds and samples from a parallel study in rabbits (see below, 1H-NMR analysis).

HPLC-MS was run using an Agilent 1100 or Alliance HT 2795 HPLC instrument.
(Waters Corporation), and a triple stage quadrupole mass spectrometer (model Finnigan TSQ7000) with an ESI II electrospray ion source, in positive ion mode. Alternatively, for exact mass determination, a Time-of-flight (LCT) mass spectrometer (Micromass, Manchester, UK) was used, in positive ion mode. For hydrogen/deuterium exchange experiments, water in the mobile phase was replaced by D$_2$O.

LC-MS analysis

MS spectra with unit mass resolution were determined by LC-MS using an Agilent 1100 HPLC system, equipped with a binary capillary pump model G1376A, a degasser model G1379A and a UV/VIS diode array detector model G1315B with a standard flow cell model G1315-60012. UV spectra were monitored in the range 200-800 nm. Chromatographic separation was performed using the same column and gradient as described for *Metabolite analysis by HPLC-radiometry*, with a flow rate of 250 µL/min.

For LC-MS analysis of metabolites M12-M14, a column CC 8/3 Nucleodur C18 Pyramid was used (5 µm, 250 mm x 4.6 mm I.D. 5 µm; Macherey-Nagel), protected by a guard filled with the same material. At a flow rate of 750 µL/min, the following solvent gradient was formed: 0 to 10 min, 10 to 30% solvent B; 10 to 65 min, 30 to 90% solvent B; 65 to 70 min, 90% solvent B; 70 to 71 min, 90 to 10% solvent B; 71 to 80 min, 10% solvent B.

Samples were injected using a PAL autosampler (CTC, Zwingen, Switzerland). The column effluent was used for UV/VIS (DAD) monitoring and then split in a ratio 1:6; the smaller fraction was passed into the electrospray LC-MS interface, while the remainder was used for radioactivity monitoring. If radioactivity concentrations were
sufficient, online radiomonitoring was performed using a Berthold model LB507A (Berthold, Munich, Germany) with a model Z-200 flow cell, after mixing with 2.8 mL/min Flo-Scint™ A liquid scintillation cocktail (Perkin Elmer). For offline radiomonitoring, 0.1 or 0.2 min fractions were collected into 96-well Lumaplates and counted on a Topcount NXT® microplate scintillation counter as described above.

MS was performed using a model TSQ7000 triple stage quadrupole mass spectrometer (Finnigan MAT, San Jose, CA, USA) equipped with an ESI II ion source, in positive ion mode; settings were: manifold temperature 70°C; spray voltage 4.0 kV; capillary temperature 250 or 275°C; in-source collision offset (APICID) 0, 30 or 40, and 60 V.

Exact mass determination

Exact masses were determined by LC-MS using a Waters Alliance HT 2795 HPLC system, equipped with a diode-array detector model PDA996 and with chromatographic conditions as described in *Metabolite analysis by HPLC radiometry* above. After the column, the effluent was used for UV/VIS (DAD) monitoring. The effluent was then split in a ratio of approx. 1:6; the smaller fraction was passed through a valve, allowing temporary diversion of the flow to waste, and then into the electrospray LC-MS interface. The remainder of the effluent was used for online radioactivity monitoring using a Berthold model LB506 C-1 radiomonitor equipped with a flow cell model Z-100-4. Before entering the radiomonitor, the effluent was mixed with 1.2 mL/min of Rialuma® liquid scintillation cocktail.

MS was performed using a Time-of-flight (LCT) mass spectrometer, in positive ion
mode, employing a Z-spray interface with LockSpray™ option. The reference channel of the LockSpray™ interface was operated with a solution of sulphasidemethoxine (0.78 µg/mL) and reserpine (0.19 µg/mL) in acetonitrile at a flow rate of 10 µL/min. During data acquisition from the reference channel, the cone voltage was set to 30 V. For the MS run, cone voltages of 20, 60 and 80 V were applied. The source block temperature was 80°C, and the desolvation temperature was 160°C, using nitrogen as the desolvation gas.

1H-NMR analysis

Since the metabolites in human urine were available only at very low concentrations, metabolites were obtained in a parallel study from New Zealand rabbits, following a single oral dose of 200 mg/kg. Urinary metabolites from rabbit that were shown to be identical in LC-MS with the human metabolites, were subjected to 1H-NMR analysis. 1H-NMR spectra were recorded on a spectrometer Bruker DMX-500 (Bruker Biospin AG, Fällanden, Switzerland) equipped with a 4 mm selective inverse 1H/13C LC probe (flow cell: 120 µL). The amounts of metabolites used for analysis were 5–15 µg. NMR spectra were obtained in the stop-flow mode using XWINNMR, software version 3.1, and HyStar, software version 2.3 (Bruker Biospin AG). The stop-flow NMR measurement of single peaks in the chromatogram was controlled by the UV signal from a diode array detector (280 nm). The 1H-NMR pulse program $lclpmcwps$ from Bruker, was applied. Signals from the HPLC solvents were suppressed using a multiple solvent suppression with 13C-decoupling.

Pharmacokinetic analysis

Pharmacokinetic parameters ($\text{AUC}_{0-\infty}$, AUC_{0-t}, C_{max}, t_{max}, $t_{1/2}$ and CL/F) for total
radioactivity in blood and plasma and unchanged aliskiren in plasma, and the amount of unchanged drug excreted into urine from time zero to time \(t (\text{Ae}_{0,t}) \) were determined by non-compartmental methods using WinNonlin Pro (Version 4.1, Pharsight Corp, Mountain View, CA, USA).

Blood and plasma concentrations of radioactivity, parent drug and metabolites are expressed in mass units (ng-eq/mL) or in molar units (µmol/L). One gram of plasma or blood was taken as 1 mL. Plasma concentrations of metabolites were derived from the radiochromatograms (metabolite patterns) by calculating the proportion (%) recovered and the proportions (%) of individual metabolites from the peak areas and total radioactivity eluting from the column. The latter were converted to concentrations (ng-eq/mL) using the total plasma radioactivity concentrations. Plasma concentrations of parent drug were derived from the radiochromatograms in the same way, but these values are to be considered as semiquantitative only (as opposed to those determined by the validated quantitative LC/MS/MS assay).
Results

Subjects and tolerability

Four Caucasian male subjects took part in this study; all completed the study. The subjects had a mean age of 35 years (range 26–47) and a mean weight of 72 kg (range 60–88). No adverse events or clinically relevant changes in vital signs, clinical chemistry, hematology or urinalysis were observed during the course of the study.

Blood and plasma concentrations of radioactivity and aliskiren

Concentration-time profiles for plasma radioactivity and aliskiren in each of the 4 study subjects following single oral doses of 300 mg $[^{14}\text{C}]$ aliskiren are presented in Figures 2a and 2b respectively. Inter-individual variability was substantial, and one subject exhibited a considerably lower exposure than the other subjects. Peak concentrations (C_{max}) of radioactivity in blood and plasma and for aliskiren in plasma were reached between 2 and 5 h after dosing. Concentration-time curves for radioactivity and aliskiren were parallel throughout the entire observation period (Figure 2c). Radioactivity in plasma was detected typically for 8–12 h after dosing, but thereafter was below the limit of quantification of conventional LSC and was therefore assessed using the more sensitive AMS method.

The key pharmacokinetic parameters for radioactivity and aliskiren in blood and plasma are summarized in Table 1. Early apparent half-lives for elimination from plasma (by non-compartmental analysis) were 1.8 h for radioactivity and 2.1 h for aliskiren (difference not significant). Terminal half-lives of radioactivity and aliskiren were 49 h and 44 h respectively. Approximately 81% of total plasma radioactivity
(AUC\(_{0-\infty}\); 86% for AUC\(_{0-10h}\)) was accounted for by unchanged aliskiren, indicating very low exposure to metabolites. Radioactivity in blood was detected up to 4–12 h after dosing, and was subsequently below the LOQ. The mean ratio of AUC\(_{0-10h}\) blood:plasma was 0.61, indicating that radioactivity was largely present in plasma.

Excretion and mass balance in urine and faeces

Radioactivity was excreted almost completely via the biliary/faecal route, with only 0.6% of the radioactive dose recovered in urine (Table 2; Figure 3). The majority of faecal excretion of radioactivity (approximately 80% of dose) occurred within 72 h of dosing. Total excretion (mass balance) over the 168 h collection period was 91.5±4.5% of dose, with moderate interindividual variability (range 85–95%). Unchanged aliskiren accounted for 0.4% of dose in urine (approximately 70% of the recovered radioactivity) and for 77.5% of dose in faeces (probably >85% of radioactivity); overall, the sum of oxidized metabolites in excreta amounted to approximately 1.4% of the radioactive dose.

Metabolism of aliskiren

Plasma

Metabolite patterns in plasma were determined only at \(t_{\text{max}}\) due to the low levels of radioactivity in plasma. At \(t_{\text{max}}\), unchanged aliskiren accounted for most of the radioactivity (Figure 4a). In addition, minor proportions of metabolites M2 (carboxylic acid, oxidized side chain; \(\leq 1\%\) of aliskiren C\(_{\text{max}}\)) and M3 (alcohol, O-demethylated; 1–5% of aliskiren C\(_{\text{max}}\)), and trace levels of M1 (phenol, O-demethylated) were detected. These data are semiquantitative due to incomplete \(^{14}\)C-extraction recovery (88%). AUC fractions represented by these metabolites in plasma
could not be determined accurately due to the low radioactivity at time points after \(t_{\text{max}} \).

Urine

Urine samples containing sufficient radioactivity were analyzed for metabolic patterns; thus, one to four urine samples per volunteer were measured and the sum of the urinary metabolites was calculated. Unchanged \([^{14}\text{C}]\text{aliskiren}\) accounted for the major part of radioactivity (approximately 70%) in all analyzed urine samples (Figure 4b). Using a sensitive, validated HPLC-MS-MS assay for aliskiren, the amount of unchanged aliskiren excreted in urine was determined to be 0.4% of dose.

In addition, trace amounts of the metabolites \(\text{M2, M3, M4} \) (phenol, O-dealkylated) and \(\text{M6} \) (O-glucuronide conjugate of \(\text{M4} \)) were detected in urine (Figure 4b, 4c). The unlabelled metabolite \(\text{M9} \) (lactone) was also detected by LC-MS. Due to low radioactivity levels, only early urine fractions could be analyzed and the results extrapolated to total amounts excreted in 7 days; in total, \(\text{M3} \) amounted to <0.1% of the dose and all other metabolites to trace amounts (Table 2).

Faeces

The major proportion of the administered radioactive dose was excreted with the faeces. For metabolite analysis, a single faeces pool was prepared for each volunteer containing at least 78% of the applied radioactivity dose, and by solvent extraction 90% of the radioactivity was extracted for HPLC analysis. No major differences in faecal metabolite pattern were observed between individual subjects. Unchanged \([^{14}\text{C}]\text{aliskiren}\) was the predominant compound in the faeces; metabolites \(\text{M2} \) and \(\text{M3} \)}
were found typically in amounts of 0.7–1.2% of the dose (Figure 4d). Additionally, traces of M1 (0.1%) and other peaks were detected (Table 2). LC-MS also detected M4 and the unlabeled metabolite M9 in faeces extracts.

Faeces extracts contained an additional distinct peak close to the aliskiren peak, designated P62, which accounted for approximately 1% of the dose. LC-MS runs under chromatographic conditions identified three separate peaks within P62, corresponding to metabolites M12 (N-acetylated), M13 and M14 (structural isomers containing an additional C3H4O2 moiety in the central part of the molecule). The fact that P62 was only observed in faeces extracts suggested that the components of P62 were not systemic metabolites but were formed in gut or faeces. This hypothesis was supported by the observation that 14C-plasma concentrations in subject 5101 were distinctly lower than in the other three volunteers, but the faeces extract contained the same proportion of P62 (i.e. 1% of dose) as the other subjects.

Metabolite structure elucidation

The chemical structures of the metabolites were elucidated essentially based on LC-MS data (Table 3), although in some cases, for complete elucidation, analysis by 1H-NMR was required. However, 1H-NMR analysis of the human samples was not feasible due to low metabolite concentrations. Therefore, 1H-NMR analysis was performed with urinary metabolites which had been obtained from a parallel rabbit study and which, based on LC-MS data, were identical with the respective human metabolites (Table 4). The combined data provided unambiguous metabolite identification.
The mass spectrum of the parent compound aliskiren and its proposed interpretation are provided in Figure 5. Major signals observed were the protonated intact molecule M+H⁺ (m/z 552) and four key fragments (m/z 436, 209, 137, 117; Figure 5a). These ions or the mass difference between them can be related to several substructures of the molecule (Figure 5b). The fragment ions m/z 436 and m/z 117 were formed after cleavage of the central amide bond, whereas the fragment ions m/z 209 and m/z 137 represent substructures of the fragment ion m/z 436 and comprise the 1-methoxy-2-(3-methoxypropoxy)-4-methylene benzene moiety or parts of it. Fragment ions of the metabolites analogous to those of the parent compound allowed biotransformations to be assigned to these substructures as described below.

The mass spectra of metabolites M1 and M3 showed molecular ions M+H⁺ at m/z 538, indicating that they are demethylated metabolites. O-demethylation was assigned to the region of fragment C (mass difference 209–14=195). The mass spectra did not allow further differentiation between the two possible positions for O-demethylations (methoxy groups). ¹H-NMR analysis of metabolite M1 showed absence of the signal at approx. 3.7 ppm. Comparison of ¹H-NMR data of aliskiren with metabolites (Table 4) had shown that the signal at 3.7 ppm was due to the phenolic methoxy group (C-11, scheme in Table 4), whereas the signal of the propoxy-methyl group (C-10) was at approx. 3.2 ppm. Hence, metabolite M3 was concluded to be O-demethylated at the phenyl-propoxy side chain.

Metabolite M2 was isobaric to the parent drug (M+H⁺ at m/z 552). Based on exact mass measurements of the protonated molecular ion and key fragment ions, and hydrogen/deuterium exchange, it was considered that M2 is most likely formed by
demethylation of the 3-methoxy-propoxy group and further oxidation of the resulting hydroxyl group to a carboxylic acid.

The mass spectrum of metabolite M4 showed a molecular ion M+H⁺ at m/z 480. O-dealkylation was assigned to the region of fragment C (mass difference 209−72=137) indicating oxidation of M2 or M3 or aliskiren, with loss of the propoxy side chain. It was therefore concluded that M4 was the methoxy phenol derivative. Metabolite M6 was identified as a glucuronic acid conjugate of M4. ¹H-NMR analysis of M6 showed presence of the C-11 methoxy group (see scheme in Table 4), and a typical chemical shift for the anomeric 1'-proton. Thus the glucuronic acid moiety was concluded to be attached to the phenol 1-O position (Table 4).

The unlabeled metabolite M9 eluted at 62.0 min, relative to a retention time for aliskiren of 53.4 min (metabolite analysis by HPLC radiometry). M9 was identified as the lactone derivative of aliskiren, based on the mass spectral data, chromatographic retention time and comparison with synthetic reference compound. Lactone formation occurs after cleavage of the central amide bond.

A further trace metabolite was observed in several metabolite patterns as a front peak. It was not unambiguously identified, but is likely to represent 3-amino-2,2-dimethylpropanamidine (β-amino-isobutyramide), or a hydrolysis or oxidation product thereof. It is assumed to be formed, in addition to M9, as a second product of hydrolysis at the central amide bond in aliskiren.

As described above, radiochromatograms of faecal extracts showed a peak P62
eluting on the tail edge of the parent drug. LC-MS runs performed under different chromatographic conditions revealed three chromatographic peaks (M12, M13 and M14) accounting for 1% of the dose. The ratios of the three components varied as follows: M12, 0–0.2% of dose; M13, 0.2–0.7% of dose; M14, 0.3–0.7% of dose. The mass spectra of M12 indicated either an O- or N-acetylation of aliskiren, as deduced from the proposed elemental composition of the protonated molecular ion M+H⁺ at m/z 594, the fragment ions 478, 209 and 117 and the number of exchangeable protons (6). A comparison of retention time and mass spectral data with the reference standard ATG045 confirmed the presence of an N-acetylated metabolite (M12) in the faeces extracts of subjects 5102, 5103 and 5104.

The two other metabolites M13 and M14 showed identical mass spectra, exhibiting the same protonated molecular ions at m/z 624 and key fragment ions A–D (see Figure 5b). The proposed elemental composition and the number of labile protons determined by hydrogen/deuterium exchange experiments were also identical. As the fragment ions C (m/z 209) and A (m/z 117) remained unchanged in comparison with the mass spectrum of aliskiren, the metabolites are proposed to be structural isomers containing an additional C₃H₄O₂ moiety in the central part of the molecule; however, final structure elucidation was not achieved due to the low amounts available for analysis.

A proposed scheme of the biotransformation pathways for aliskiren is provided in Figure 6a, and a detailed metabolic pathway for aliskiren is presented in Figure 6b. For metabolites M12–M14, which appear to be formed in the gut, see Figure 6c.
Discussion

A single 300 mg oral dose of \(^{14}\text{C}\)aliskiren was well tolerated, with no adverse events reported during the course of the study. Following oral administration of \(^{14}\text{C}\)aliskiren as the hemifumarate salt in an aqueous drink solution, peak plasma concentrations of both aliskiren and radioactivity were reached between 2 and 5 hours after dosing. Unchanged aliskiren accounted for 81% of plasma radioactivity, indicating very low exposure to metabolites. The concentration-time curves for \(^{14}\text{C}\) radioactivity and aliskiren were approximately parallel, and terminal half-lives of radioactivity and aliskiren were 49 h and 44 h respectively.

Radioactivity was detectable using conventional LSC for up to 12 h. At later time points, analysis required the highly sensitive AMS technique. Single samples were analysed both with LSC and AMS, with AMS giving 10–20% higher values. Therefore, aliskiren accounted for approximately 86% of the plasma radioactivity \(\text{AUC}_{0-10\text{h}}\), vs. 81% of radioactivity \(\text{AUC}_{0-\infty}\). The difference between LSC and AMS was within common analytical accuracy ranges and thus was not significant. Since AMS has been validated as a quantitative method for \(^{14}\text{C}\)-radioactivity (Garner et al., 2000), no systematic method cross-check was performed.

The low levels of metabolites of aliskiren in the plasma, urine and faeces suggest a minor role for metabolism in the elimination of aliskiren, but the observed metabolite profile indicates that oxidative processes represent the major pathway for the proportion of aliskiren that is metabolised. The two major metabolites, the oxidized derivatives \(\text{M3}\) (O-demethylated alcohol derivative) and \(\text{M2}\) (carboxylic acid derivative) accounted for approximately 3% and 1%, respectively, of the radioactivity in the plasma (at \(t_{\text{max}}\)). An additional oxidized metabolite, \(\text{M1}\), was also detected in
plasma, and M1–M3 plus a further oxidized metabolite M4 and traces of its glucuronic acid conjugate (M6), and an unlabelled hydrolysis product (lactone derivative M9) were observed in the urine. With the exception of M6, all of these metabolites were also detected in the faeces. Further Phase II conjugation was only observed for the oxidized metabolite M4 (by glucuronic acid conjugation to M6), and there was no evidence for direct glucuronic acid conjugation of aliskiren.

The terminal metabolites M1–M4 accounted for 1.4% of the excreted dose, and were all formed by oxidation at the side chain by O-demethylation, O-dealkylation and/or alcohol oxidation, probably by CYP3A4 (Novartis, data on file). It is not known whether any aliskiren metabolites exhibit pharmacological activity. However, the very low concentration levels of metabolites as compared with unchanged aliskiren suggest that the metabolites are unlikely to contribute to the biological activity of aliskiren.

The trace metabolites M12 (N-acetyl derivative), M13 and M14 (which could be characterised only partially) were found only in the faeces (in peak P62). Taken together with the observation that the proportions of these metabolites found in the faeces were similar in all four subjects (despite notably lower 14C-plasma concentrations in one subject), it seems likely that M12, M13 and M14 are a faecal artifact produced from unabsorbed aliskiren, probably by the intestinal microflora. Indeed, acetylation (which would produce M12) is a metabolic pathway that is known to occur under the anaerobic conditions of the gut (Goldin, 1990).

Aliskiren undergoes oxidative metabolism by CYP isoenzymes to a low degree. Aliskiren is not an inhibitor of CYP activity and is unlikely to exhibit pharmacokinetic interactions with drugs that are CYP isoenzyme substrates. An in
vitrō study showed no notable effects of aliskiren at a concentration of 20 µmol/L (approximately 5-fold higher than the mean C_{max} of aliskiren observed in the present study) on the activity of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 or CYP3A4 (Vaidyanathan et al., 2005). Moreover, studies in healthy volunteers have demonstrated no drug interactions between aliskiren and celecoxib, cimetidine, digoxin, lovastatin or warfarin, all of which are known to interact with CYP isoenzymes (Dieterle et al., 2004; Dieterle et al., 2005; Dieterich et al., 2006).

Apart from detailed investigation of pathways for metabolism, the major objectives of a human ADME study are assessment of the extent of absorption and identification of the key elimination processes. The minimal extent of absorption after oral dosing can be estimated as the radioactivity dose proportion excreted in urine, plus the dose proportion excreted in the form of metabolites in faeces. However, in the present case this is not adequate since renal excretion and metabolism are minor, and biliary elimination of unchanged drug is neglected. Therefore, other available data on aliskiren should be considered: i) in an absolute bioavailability study in humans (Azizi et al., 2006), based on plasma AUC, the oral bioavailability of aliskiren was determined to be 2.6%; ii) in the same study, the renal excretion of unchanged aliskiren following an intravenous dose of 20 mg was 7.5% of dose. Thus elimination occurred predominantly via non-renal processes (ratio non-renal:renal approximately 12), including transport with bile and possibly through gut wall, and/or metabolism; iii) in ADME studies in rats and marmosets with oral and intravenous dosing (Novartis data on file), biliary/faecal dose elimination was predominant; e.g. up to 90% and 78% of intravenous doses were recovered in the faeces of rat and marmoset, respectively, largely in the form of unchanged aliskiren. Further, aliskiren has been
found to be a substrate for P-glycoprotein, thus intestinal P-glycoprotein might contribute to elimination. Based on the absolute bioavailability study, the oral absorption in humans would be at least 2.6% of dose. In the present oral human ADME study, the renal excretion of aliskiren, determined using a sensitive method, was 0.4% of dose, approximately 20 time less than after an intravenous dose. Combined with the results of the intravenous study, an extent of absorption of approximately 5% can be estimated.

In the present human ADME study, metabolites accounted for 0.2% of dose in urine. The amount of metabolites formed after absorption and excreted in faeces (excluding the faecal metabolite P62, which appears to be formed from unabsorbed aliskiren in the intestine) appears to be at least 1.3% of dose. With various unidentified trace peaks in the faecal metabolite pattern (near detection limit), the total amount of metabolites may have been in the range 1.5–3%. Thus only part of the absorbed aliskiren was eliminated through metabolism. A similar or larger dose fraction, recovered in the faeces in unchanged form, must have been due to aliskiren elimination via the hepatobiliary route, and thus hepatobiliary elimination is concluded to be a main elimination process. Nevertheless, it should be noted that the bulk of the dose excreted in faeces is due to unabsorbed drug.

Consistent with our findings regarding the elimination of absorbed aliskiren, the pharmacokinetics of aliskiren are not significantly altered by renal impairment (Vaidyanathan et al., 2007a). No significant effect on aliskiren pharmacokinetics was found in patients with impaired hepatic function, thus no dosage adjustment for aliskiren is required (Vaidyanathan et al., 2007b).
In the present study the pharmacokinetics of [14C] radioactivity and aliskiren showed large inter-individual variability. Indeed, one subject (5101) exhibited a considerably lower exposure to aliskiren than the other three subjects. The reason is unknown.

High variability in aliskiren pharmacokinetic parameters has also been described in clinical studies with solid drug administration (Vaidyanathan et al., 2006b). Since aliskiren is a substrate for P-glycoprotein, inter-individual variations in intestinal P-glycoprotein expression might contribute to the observed variability in pharmacokinetics (Cascorbi, 2006).

In summary, aliskiren is absorbed to a low extent following an oral dose. Excretion of aliskiren is nearly complete within 168 hours, with the majority of an oral dose of aliskiren excreted unchanged in the faeces. Parent drug represented the principal circulating species in plasma. Absorbed drug appears to be eliminated via the hepatobiliary route and to some degree through oxidative metabolism.
Acknowledgements

The authors are grateful for the excellent technical assistance by Robert Nufer, Daniel Pierroz, Ronald Freiburghaus, and Matthias Frommherz. Further, we like to acknowledge the important contributions by Drs I. Ottinger and B. Leboulangner (Pharmaceutical Development Novartis), Dr. R. Rhys (Isotope Laboratory), Prof. R.C. Garner (Xceleron Ltd), and Dr R. Burri (RCC Ltd). The authors also thank Dr R. White for editorial assistance in the preparation and submission of the final manuscript.
References

Footnotes

Financial support: This study was supported by Novartis Pharma AG, Basel, Switzerland.

Author for correspondence: Felix Waldmeier, Novartis Pharma AG, WSJ-210.4.20, Lichtstrasse 35, CH-4056 Basel, Switzerland. E-mail: felix.waldmeier@novartis.com
Figure legends

Figure 1. Structure of [14C]aliskiren

Figure 2. Individual plasma concentration-time profiles for (a) radioactivity and (b) aliskiren in each subject, and (c) semi-logarithmic plot of plasma concentration-time profile for radioactivity and aliskiren
Values are presented as absolute concentration in (a) and (b), and as mean±SD (n=4) in (c).

Figure 3. Cumulative excretion of radioactivity in human urine and faeces
Values are presented as mean±SD.

Figure 4. Representative aliskiren metabolite patterns in (a) plasma, (b, c) urine and (d) faeces under HPLC analysis with radiodetection
Metabolite patterns under HPLC analysis with off-line radiodetection were determined as follows: (a) plasma sample at t_{max} (3 h) from subject 5103; (b) urine fractions 0–6 h (0.39% of dose) from subject 5103; (c) urine fractions 6–12 h (0.12% of dose) from subject 5102; (d) faeces fraction pool 24–72 h (91.1% of dose) from subject 5104.

Figure 5. Electrospray mass spectrum of aliskiren; (a) averaged spectrum and (b) proposed interpretation
(a) shows averaged and background subtracted spectrum following electrospray ionization carried out in positive ion mode, with up-front collision offset (APICID) 40 V and 80 V. Proposed interpretation of the spectrum in (b) is in agreement with
exact mass measurements: difference between measured and calculated masses was \(\leq 4.8 \) mDa for all fragments with a given interpretation. Asterisks indicate positions of \(^{14}\)C-labels.

Figure 6. Metabolism of aliskiren in humans; (a) condensed scheme of metabolism, (b) detailed metabolism pathways and metabolite structures, (c) proposed derivatives of aliskiren presumably formed in intestine

Dotted arrows indicate potential alternative pathways leading to formation of metabolites M2 and M4.
Table 1. Pharmacokinetic parameters for aliskiren in plasma and total radioactivity concentrations in blood and plasma

Values are shown as mean±SD (n=4) with the exception of t_{max} values, which are presented as the median (range).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Plasma aliskiren</th>
<th>Blood total radioactivity</th>
<th>Plasma total radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{max}, h</td>
<td>3 (2–5)</td>
<td>2.5 (2–5)</td>
<td>3 (2–5)</td>
</tr>
<tr>
<td>C_{max}, ng/mL<sup>a</sup></td>
<td>254±163</td>
<td>171±88</td>
<td>305±193</td>
</tr>
<tr>
<td>$t_{\frac{1}{2},1}$, h</td>
<td>2.1±0.8</td>
<td>1.9±0.3<sup>b</sup></td>
<td>1.8±0.4</td>
</tr>
<tr>
<td>AUC<sub>0–t</sub>, ng.h/mL<sup>c</sup></td>
<td>1051±547</td>
<td>427±226</td>
<td>1310±614</td>
</tr>
<tr>
<td>$t_{\frac{1}{2},2}$, h</td>
<td>48.7±6.9</td>
<td>N/A</td>
<td>44.3±9.4</td>
</tr>
<tr>
<td>AUC<sub>0–∞</sub>, ng.h/mL<sup>c</sup></td>
<td>1108±546</td>
<td>591±93<sup>b</sup></td>
<td>1374±638</td>
</tr>
<tr>
<td>% of 14C-AUC<sub>0–∞</sub> plasma</td>
<td>81±2</td>
<td>61±12<sup>b</sup></td>
<td>(100)</td>
</tr>
<tr>
<td>Cl/F, L/h</td>
<td>380±310</td>
<td>520±860<sup>b</sup></td>
<td>290±210</td>
</tr>
</tbody>
</table>

^a ng-eq/mL for radioactivity
^b n=3
^c ng-eq.h/mL for radioactivity
N/A, not applicable.

AUC_{0–t} was calculated using the linear trapezoidal rule. $t (= t_{\text{last}})$ was 96–168 h for plasma aliskiren, 4–12 h for blood radioactivity and 144 h for plasma total radioactivity. AUC_{0–∞} was calculated as AUC_{0–t} + AUC_{t–∞}, where AUC_{t–∞} = $C_t x t_{\frac{1}{2}} / \ln(2)$.
Table 2. Metabolite balance in urine and faeces

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Functional group/metabolic change</th>
<th>Urine</th>
<th>Faeces</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front peak</td>
<td>Not identified<sup>a</sup></td>
<td><0.1</td>
<td>0.1</td>
<td>0.1±0.1</td>
</tr>
<tr>
<td>M1</td>
<td>Phenol, O-demethylated</td>
<td></td>
<td>0.1±0.1</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Carboxylic acid (oxidized side chain)</td>
<td><0.1</td>
<td>0.5±0.5</td>
<td>0.6±0.5</td>
</tr>
<tr>
<td>M3</td>
<td>Alcohol, O-demethylated</td>
<td><0.1</td>
<td>0.6±0.4</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>Phenol, O-dealkylated</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>O-glucuronide of M4</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Aliskiren (Parent compound)</td>
<td></td>
<td>0.4</td>
<td>77.5</td>
<td>79.8±3.0</td>
</tr>
<tr>
<td>P62</td>
<td>M12: N-acetyl derivative</td>
<td></td>
<td>1.0±0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M13, M14: partly characterized (+C₃H₄O₂)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traces</td>
<td>Unidentified</td>
<td><0.1</td>
<td>1.5±0.7</td>
<td>1.6±0.7</td>
</tr>
<tr>
<td>Not analyzed</td>
<td></td>
<td>9.7</td>
<td>9.7±3.1</td>
<td></td>
</tr>
<tr>
<td>Total ¹⁴C</td>
<td></td>
<td>0.6</td>
<td>90.9</td>
<td>91.5±4.5</td>
</tr>
</tbody>
</table>

Values are shown as the percentage of dose (mean±SD, n=4)

^a Not unambiguously identified; possible 3-amino-2,2-dimethylpropionamide, or a hydrolysis or oxidation product thereof
<table>
<thead>
<tr>
<th>Component</th>
<th>Proposed formula</th>
<th>Proposed structure</th>
<th>Mass</th>
<th>M+H⁺</th>
<th>M+H⁺ –H₂O</th>
<th>A⁻</th>
<th>B⁻</th>
<th>C⁻</th>
<th>D⁻</th>
<th>Additional major signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliskiren</td>
<td>C₃₀H₅₄N₃O₆</td>
<td></td>
<td>+7</td>
<td>552</td>
<td>534</td>
<td>117</td>
<td>436</td>
<td>418</td>
<td>209</td>
<td>137</td>
</tr>
<tr>
<td>M1</td>
<td>C₂₉H₅₂N₃O₆</td>
<td></td>
<td>+8</td>
<td>538</td>
<td>520</td>
<td>117</td>
<td>422</td>
<td>404</td>
<td>195</td>
<td>576 (M+K⁺), 560 (M+Na⁺), 73</td>
</tr>
<tr>
<td>M2</td>
<td>C₂₉H₅₀N₃O₇</td>
<td></td>
<td>+8</td>
<td>552</td>
<td>534</td>
<td>117</td>
<td>436</td>
<td>418</td>
<td>209</td>
<td>137</td>
</tr>
<tr>
<td>M3</td>
<td>C₂₉H₅₂N₃O₆</td>
<td></td>
<td>+8</td>
<td>538</td>
<td>520</td>
<td>117</td>
<td>422</td>
<td>404</td>
<td>195</td>
<td>576 (M+K⁺), 560 (M+Na⁺)</td>
</tr>
</tbody>
</table>
M4 \(C_{26}H_{46}N_3O_5 \)
\[+8 \quad 480 \quad 462 \quad 117 \quad 364 \quad 346 \quad 137 \quad 137 \quad 518 (M+K^+), 141 \]

M6 \(C_{32}H_{54}N_3O_{11} \)
\[+11 \quad 656 \quad 638 \quad 364^b \quad 480 (M+H^+-C_6H_8O_6), \]
\[462 (M+H^+-C_6H_5O_3-H_2O) \]

M9 \(C_{25}H_{42}NO_5 \)
\[+3 \quad 436 \quad 436 \quad 209 \quad 137 \quad 419 (M+H^+-NH_3), 346, 285, 268, \]
\[163, 73 \]

M12 \(C_{32}H_{56}N_3O_7 \)
\[+6 \quad 594 \quad 576 \quad 478 \quad 209 \quad 632 (M+K^+), 616 (M+Na^+), 559 \]
\[(M+H^+-H_2O-NH_3), 500, 472, 418, \]
\[401, 373, 317, 285, 100, 73 \]

M13 \(C_{33}H_{58}N_3O_8 \)
\[+7 \quad 624 \quad 606 \quad 117 \quad 508 \quad 490 \quad 209 \quad 137 \quad 662 (M+K^+), 646 (M+Na^+), 589 \]
\[(M+H^+-H_2O-NH_3), 588 (M+H^+-2H_2O), 571 (M+H^+-2H_2O-NH_3), \]
\[562, 500, 472, 265, 177, 163, 73 \]
Table presents summarized data from LC-MS runs (electrospray ionization, positive ion mode) of urine and faeces extracts following an oral dose of 300 mg [14C]aliskiren.

a of [M+H+] after H/D exchange

b fragment was formed after loss of glucuronic acid moiety (C6H8O6)

c Figure 5b describes the formation of fragment ions A, B, C and D
Chemical shifts of characteristic signals in 1H-NMR spectra collected from aliskiren and from metabolites M1 and M6 obtained from a parallel rabbit study. The metabolites were identical with the respective human metabolites based on LC-MS. For carbon atom numbers see structure of aliskiren below. The signals of protons attached to carbon atoms 8, 12, 13, 14, 17, 20, 21, and 22 were in the chemical shift range 1.3–2.6 ppm. The signals of the protons 1’ – 5’ refer to the glucuronic acid moiety in M6, where the 1’-signal is due to the anomic proton.

<table>
<thead>
<tr>
<th>Index Carbon atom</th>
<th>1H-shift (ppm)</th>
<th>Aliskiren</th>
<th>M1</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6.84</td>
<td>6.71</td>
<td>6.96</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.72</td>
<td>6.62</td>
<td>6.91</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.77</td>
<td>6.75</td>
<td>6.93</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.97</td>
<td>3.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.48</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.22</td>
<td>3.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.69</td>
<td></td>
<td>3.79</td>
<td></td>
</tr>
<tr>
<td>15,16</td>
<td>0.77</td>
<td>0.77</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>a</td>
<td>a</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.14</td>
<td>3.14</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>23,24</td>
<td>0.77</td>
<td>0.77</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.18, 3.25</td>
<td>3.18, 3.25</td>
<td>3.32, 3.33</td>
<td></td>
</tr>
<tr>
<td>29, 30</td>
<td>1.04, 1.05</td>
<td>1.04, 1.05</td>
<td>1.11, 1.12</td>
<td></td>
</tr>
<tr>
<td>1’</td>
<td></td>
<td></td>
<td>5.07</td>
<td></td>
</tr>
<tr>
<td>2’,3’,4’</td>
<td></td>
<td></td>
<td>3.59, 3.57</td>
<td></td>
</tr>
</tbody>
</table>
3.57

5' 4.03

Broad or overlapping signal, not assigned
Figure 2

(a)

14C plasma

- 5101
- 5102
- 5103
- 5104

Concentration (ng-eq/mL) vs. Time (hours)

(b)

Aliskiren plasma

- 5101
- 5102
- 5103
- 5104

Concentration (ng/mL) vs. Time (hours)

(c)

- Aliskiren plasma mean
- 14C plasma mean
- 14C AMS mean

Concentration (ng-eq/mL) vs. Time (hours)

$T_{1/2} = 1.8 \pm 0.4 \text{ h}$

$T_{1/2} = 2.1 \pm 0.8 \text{ h}$

$T_{1/2} = 44 \pm 9 \text{ h}$

$T_{1/2} = 49 \pm 7 \text{ h}$
Figure 3

Percentage of dose vs. Time (hours)

- ▲ Total
- ○ Feces
- □ Urine
Figure 4

(a) Plasma, 3 h
(b) Urine, 0–6 h
(c) Urine, 6–12 h
(d) Feces, 24–72 h

Radioactivity (cpm)
Retention time (min)
Figure 6

This article has not been copyedited and formatted. The final version may differ from this version.

a) Oxidation to carboxylic acid (M2)
O-Dealkylation (M4)

O-Demethylation (M3) (M1)

Hydrolysis followed by ring closure to lactone (M9)

b) Aliskiren

M3

M6

M2

M1

M4

M9

Front peak

M12 (ATG045)

M13, M14

Gluc-O