Identification of stereoisomeric metabolites of meisoindigo in rat liver microsomes by achiral and chiral LC-MS/MS

Meng Huang, Lin Tang Goh, and Paul C. Ho

Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (M. H., P.C.H.); Market Development & Applications, Waters Asia Headquarter, Waters Asia Limited, Singapore (L.T.G.)
Running title: In vitro metabolism of meisoindigo

Address correspondence to: Paul C. Ho, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543 Tel: +(65) 65162651 Fax: +(65) 67791554 Email: phahocl@nus.edu.sg

Number of text pages: 29

Number of tables: 4

Number of figures: 9

Number of references: 15

Number of words in the Abstract: 178

Number of words in the Introduction: 662

Number of words in the Discussion: 1208

Abbreviations: CML, chronic myelogenous leukemia; HPLC, high performance liquid chromatography; UPLC, ultra performance liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ESI, electrospray ionization; QTRAP, hybrid triple quadrupole linear ion trap; QTOF, hybrid quadrupole time of flight; NMR, nuclear magnetic resonance; IR, infrared.
ABSTRACT:

N-methylisoindigotin, abbreviated as meisoindigo, has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vitro metabolism of meisoindigo is limited. In this study, in vitro stereoisomeric metabolites of meisoindigo in rat liver microsomes were identified for the first time, by achiral and chiral liquid chromatography / tandem mass spectrometry, together with proton NMR spectroscopy and synchrotron infrared spectroscopy. The major in vitro phase I metabolites of meisoindigo were tentatively identified as stereoselective reduced-meisoindigo, which comprised a pair of (3-R, 3’-R) and (3-S, 3’-S) enantiomers with lower abundance, as well as another pair of (3-R, 3’-S) and (3-S, 3’-R) enantiomers with higher abundance. One type of minor in vitro metabolites were tentatively identified as stereoselective N-demethyl-reduced-meisoindigo including a pair of (3-R, 3’-R) and (3-S, 3’-S) enantiomers, as well as one meso compound. Another type of minor in vitro metabolites were tentatively identified as both stereoselective and regioselective monohydroxyl-reduced-meisoindigo. Based on the metabolite profiling, three parallel metabolic pathways of meisoindigo in rat liver microsomes were proposed.
Introduction

Meisoindigo(3-(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)-1,3-dihydro-1-methyl-2H-indol-2-one), a synthetic derivative of indirubin from a traditional Chinese medicine recipe, has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia (CML) in China since 1980s (Cooperative Group of Clinical Therapy of Meisoindigo, 1988; Xiao et al., 2000; Xiao et al., 2002). A recent study indicated that the anti-angiogenesis effect of meisoindigo may contribute to the anti-leukemic effect of this drug (Xiao et al., 2006). Meisoindigo was equally efficient for both treated and previously treated CML patients. The hematological complete response (CR) and partial response (PR) rates were 45.0% and 39.3% for newly diagnosed patients and 35.9% and 41.4% for pretreated patients (Cooperative Group of Phase III Clinical Trial on Meisoindigo, 1997). In addition, based on retrospective analysis on the efficiency of different treatments for 274 CML patients followed over a period of 5 years, meisoindigo in combination with hydroxyurea significantly prolonged median duration of chronic phase and median survival, as well as reduced incidence of blast crisis compared with meisoindigo or hydroxyurea alone, which strongly indicated that meisoindigo has a synergistic effect with hydroxyurea (Liu et al., 2000; Xiao et al., 2000). Meisoindigo was generally well tolerated. The most frequent side effects were bone, joint and / or muscle pain of varying degrees when the dosage was more than the suitable dose. Approximately 30% of patients had mild nausea and vomiting.
In order to improve the understanding of its efficacy and safety characteristics, investigation of meisoindigo metabolism in animals or humans plays a critical role. However, few publications relevant to this topic have been reported so far. According to the literature survey information, only one individual study was highly relevant to meisoindigo metabolism (Peng and Wang, 1990). In that study, in vitro metabolism of meisoindigo in male rat liver microsomes was investigated by reversed-phase high performance liquid chromatography (RP-HPLC) with diode array detector (DAD). Based on the UV chromatogram comparison of control and sample with parallel preparation, it was proposed that ten chromatographic peaks were potential in vitro metabolites of meisoindigo. Among them, two major chromatographic peaks were purified by preparative thin layer chromatography (TLC) and predicted to be monohydroxy metabolites based on preliminary electron impact (EI) MS results. However, there are a few severe drawbacks with regard to its experimental design. The substrate concentration adopted in that study far exceeded the upper limit of the typical concentration range (10-50 μM) in metabolite identification experiments (Chen et al., 2007). In addition, liquid-liquid extraction (LLE) performed in that study was likely to cause the metabolites loss (Clarke et al. 2001), due to the fact that physicochemical properties of metabolites present
are unknown in a certain extraction solvent or a mixed extraction solvent system. Therefore, *in vitro* metabolism of meisoindigo in male rat liver microsomes still need to be investigated with an appropriate experimental design.

Diverse bioanalytical technologies have been applied in the field of drug metabolism, such as radioimmunoassay (RIA), gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) with UV, fluorescence, radioactivity or tandem mass spectrometry (MS/MS). Among these technologies, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has now become the most powerful tool owing to its superior specificity, sensitivity and efficiency (Kostiainen et al., 2003). However, LC-MS/MS alone does not always provide sufficient information for structural characterization of metabolites, particularly in the aspects of identifying the exact position of oxidation, differentiating isomers, or providing the precise structure of unusual and/or unstable metabolites (Prakash et al., 2007). In these cases, other analytical technologies such as nuclear magnetic resonance (NMR), infrared (IR) or even chiral chromatography analysis have to be utilized to supplement additional information.

In light of these considerations mentioned above, the purpose of the present study was to qualitatively identify the *in vitro* metabolites of meisoindigo in rat liver microsomes utilizing online LC-MS/MS and other relevant techniques if necessary.
Materials and Methods

Chemicals. All chemicals were of analytical grade and used without further purification. Meisoindigo was provided by Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Bradford reagent, bovine serum albumin (BSA), β-NADPH, Dimethyl sulfoxide (DMSO), ammonium acetate, palladium on carbon (Pd/C) and Deuterochloroform (CDCl₃) were purchased from Sigma Chemical Co. (St. Louis, Mo, USA). HPLC grade methanol and acetonitrile were purchased from Fisher Scientific Co. (Fair Lawn, NY, USA). Milli-Q water was obtained from a Millipore water purification system (Billerica, MA, USA) and used to prepare buffer solutions and other aqueous solutions.

Liver microsomal preparation. Pooled rat liver microsomes were prepared according to the method reported previously (Gibson and Skett, 1994). Male Sprague-Dawley (SD) rats were obtained from Animal Holding Unit, National University of Singapore. Three rats were euthanized with CO₂ after a 24-h fasting period. The pooled extracted liver microsomes were suspended in 0.1M Tris buffer (pH 7.4) and stored at -80°C before use. The microsomal protein contents were determined by Bradford assay method, using BSA as the standard protein (Bradford, 1976).

Liver microsomal incubations. Meisoindigo stock solution in DMSO was added to 0.1M Tris buffer (pH 7.4) with rat liver microsomes. The mixture was first shaken for 5min for equilibration in a shaking water bath at 37°C. The
incubation was then initiated by adding β-NADPH solution. The final concentrations of meisoindigo, NADPH and the microsomal protein were 50μM, 1mM and 1mg/mL, respectively in a typical incubation mixture (1mL). The percentage of DMSO in the incubation mixture was kept less than 0.2 % (v/v). Controls were prepared either by substituting microsomal protein previously heated to 70-100°C for 10 min or by replacing NAPDH with water. Samples were incubated for 60 min and the reaction was terminated with the same volume of ice-cold acetonitrile to precipitate proteins. Samples were subsequently centrifuged at 14000 rpm for 15 min. The supernatant was taken and analyzed by LC-MS/MS. All experiments were carried out in duplicate.

Achiral LC-MS/MS analysis.

HPLC-QTRAP. 5 μL of controls and samples were analyzed on a Q TRAP™ 2000 LC-MS/MS system from Applied Biosystems / MDS Sciex (Concord, Ontario, Canada) coupled to an Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, CA, USA). Separations were accomplished on an Agilent hypersil ODS column (100 ×2.1 mm, 5 μm) (Agilent Technologies, Palo Alto, CA, USA) with a guard cartridge at ambient temperature of about 22°C. The mobile phase consisted of 10mM ammonium acetate in water (solvent A) and methanol (solvent B) and was delivered at a flow rate of 0.2 mL/min. The linear gradient elution program was as follows: 30% to 100% B over 12 min, followed by an isocratic hold at 100% B for another 3 min. At 15 min, B was returned to 30% in 1 min and the column was equilibrated for 19 min before the
next injection. The total run time was 35 min. During LC-MS/MS analysis, up to 3 min of the initial flow was diverted away from the mass spectrometer before evaluation of metabolites. The mass spectrometer was operated in the positive ion mode with a TurboIonSpray source. The parameter conditions were optimized as follows: curtain gas (CUR), 30 (arbitrary units); ion source gas 1 (GS1), 50 (arbitrary units); ion source gas 2 (GS2), 60 (arbitrary units); source temperature (TEM), 300 °C; declustering potential (DP), 26V; collision energy (CE), 35eV; entrance potential (EP), 4.5V. Enhanced Q3 Single MS (EMS) and Enhanced Product Ion (EPI) were utilized to obtain structural information of the metabolites. The MS full scan range was set to m/z 50-350. The mass spectrometer and the HPLC system were controlled by Analyst 1.4.1 software from Applied Biosystems / MDS Sciex.

UPLC-QTOF. Accurate mass spectral data for the metabolites were obtained with a Q-TOF™ Premier mass spectrometer (Waters Micromass, Manchester, UK) coupled to an ACQUITY UPLC™ system (Waters Corporation, Milford, MA, USA). The separations were performed on an ACQUITY UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm). The column was maintained at 40 °C and eluted with a mobile phase consisting of 0.1% formic acid in water (solvent A) and 0.1% formic acid in methanol (solvent B) at 0.4 mL/min. The gradient elution program was as follows: 30% to 95 % B over 6 min, followed by increasing to 99 % B over 0.1 min. Then B was returned to 30 % in 0.1 min and the column was equilibrated for 1.8 min before the next injection. The total run
time was 8 min. The autosampler chamber was maintained at 10 °C and the injection volume was 4 μL. The column eluent was directed to the mass spectrometer for analysis. The mass spectrometer was equipped with an electrospray ionization source and operated in the positive ionization mode. Full-scan spectra were acquired from 50 to 1000 m/z with a scan time of 0.3 s. The capillary and cone voltages were 3.0 kV and 25 V, respectively. The source and desolvation temperatures were 90°C and 180°C, respectively. The desolvation gas flow rate was 400 L/h and the cone gas flow rate was 10 L/h. The collision energy was set at 4 eV. All analyses were acquired using an independent reference spray via the LockSpray™ interference to ensure accuracy and reproducibility. The [M+H]⁺ ion of sulfadimethoxine was employed as the lock mass (m/z 311.0814). The LockSpray frequency was set at 15 s. The accurate masses and compositions for the precursor ions were calculated using the MassLynx V4.0 software incorporated in the instrument.

Search for metabolites. The total ion chromatograms (TIC) of controls and samples for the EMS were first compared. The search for structure-related metabolites of meisoindigo was performed manually by interpretation of mass spectra and chromatograms. The possible molecular masses of metabolites were screened out based on known mass shift of metabolites such as +16 for hydroxylation. The corresponding EPI (MS/MS) of potential metabolites were subsequently compared with that of meisoindigo to investigate the fragmentation patterns and obtain information on the metabolite structures.
Besides, MS/MS/MS of certain product ions gave more evidence about the
deduction of fragmentation mechanism. QTOF data also provided the accurate
masses and potential formulae to further confirm the structures of metabolites.

Isolation of metabolites by preparative HPLC and MS/MS/MS. The major
metabolites were isolated from a large-scale phenobarbital-induced rat liver
microsomal incubation by Agilent 1100 preparative HPLC system (Agilent
Technologies, Palo Alto, CA, USA) on a Combi-A C18 column (50 × 20 mm, 5
μm) (Peeke Scientific, Redwood City, CA, USA) with a guard cartridge at
ambient temperature. The mobile phase consisted of water (solvent A) and
methanol (solvent B) and was delivered at a flow rate of 4 mL/min. The linear
gradient elution program was as follows: 30% to 100% B over 20 min, followed
by an isocratic hold at 100% B for another 5 min. At 25 min, B was returned to
30% in 1 min and the column was equilibrated for 4 min before the next
manual injection. The UV absorbance was monitored at 254 nm. All isolated
metabolites fractions were lyophilized and redissolved in 50% methanol/water
before chiral separation or direct infusion for MS/MS/MS analysis.

Chiral LC-MS/MS analysis. The rat liver microsomal samples and isolated
metabolite fractions were analyzed on a Q TRAP™ 3200 LC-MS/MS system
from Applied Biosystems / MDS Sciex (Concord, Ontario, Canada) coupled to
an Agilent 1200 HPLC system (Agilent Technologies, Palo Alto, CA, USA). The
volume of 20 μl was injected onto a Chiralcel OD-R column (250 × 4.6mm, 10
μm) (Daicel Chemical Industries, LTD., Japan) with a guard cartridge at
ambient temperature. The isocratic mobile phase consisted of 20% water (solvent A) and 80% methanol (solvent B) and was delivered at a flow rate of 0.4 mL/min. The total run time was 35 min. The mass spectrometer was operated in the positive ion mode with a TurbolonSpray source. The parameter conditions were optimized as follows: curtain gas (CUR), 20 (arbitrary units); ion source gas 1 (GS1), 30 (arbitrary units); ion source gas 2 (GS2), 40 (arbitrary units); source temperature (TEM), 450°C; declustering potential (DP), 35V; collision energy (CE), 30eV; entrance potential (EP), 10V. Enhanced Q3 Single MS (EMS) was utilized to scan the mass range of m/z 50-700. The mass spectrometer and the HPLC system were controlled by Analyst 1.4.2 software from Applied Biosystems / MDS Sciex.

Metabolite synthesis and purification. The starting material meisoindigo (50 mg) was dissolved in methanol (100 mL). After adding 10% palladium on carbon (10 mg), the mixture was placed on the hydrogenator apparatus and kept shaking at 40 psi for 2 h at room temperature. LC-MS was used to monitor the consumption of starting material. The reaction mixture was filtered through filter paper and the filter pad was washed with distilled water. The filtrate was evaporated under reduced pressure and the precipitate was purified by the same preparative HPLC and column described above. The isocratic mobile phase consisted of 50% water (solvent A) and 50% methanol (solvent B) and was delivered at a flow rate of 4 mL/min within 20 min. The UV absorbance was monitored at 254 nm. All isolated metabolites fractions were
evaporated under reduced pressure and stored under -20 °C before NMR measurement.

NMR spectroscopy. Proton NMR spectra of synthesized metabolites were recorded in CDCl₃ at room temperature on a Bruker DRX 500 MHz NMR spectrometer (Bruker BioSpin GmbH, Germany) using tetramethylsilane as an internal standard.

Synchrotron IR spectroscopy. IR Spectra were recorded through grazing incidence angle in reflection mode on a Bruker IFS 66v/S Fourier Transform Infrared spectrometer (FTIR) (Bruker Optics GmbH, Germany) with a synchrotron light source. The IR spectral range was from approximately 650 cm⁻¹ to 4000 cm⁻¹ with a resolution of 4cm⁻¹. A KBr beamsplitter and mid band MCT infrared detector cooled to 77K were used. The samples were dissolved in acetonitrile and subsequently coated on gold substrate after solvent evaporation. Spectra of thin film of samples on gold are directly acquired in the vacuum.

Comparative study on incubations under normoxic and hypoxic conditions. In normoxic incubation, meisoindigo stock solution in methanol was added to 0.1M Tris buffer (pH 7.4) with rat liver microsomes. The mixture was first shaken for 5 min for equilibration in a shaking water bath at 37°C. The incubation was then initiated by adding β-NADPH solution. The final concentrations of meisoindigo, NADPH and the microsomal protein were 10μM, 1mM and 1mg/mL, respectively in a typical incubation mixture (1mL).
The percentage of methanol in the incubation mixture was kept less than 1% (v/v). Aliquots of 100 µL of the incubation sample mixtures were collected at 5, 15, 30 and 60 minutes and the reaction was terminated with the same volume of ice-cold acetonitrile to precipitate proteins. Samples were subsequently centrifuged at 14000 rpm for 15 min. 5 µL of the supernatant was taken and analyzed by LC-MS/MS. In hypoxic incubation, meisoindigo and rat liver microsomes were preincubated at 37°C and bubbled with 100% nitrogen gas (the tip of the nitrogen gas supply was submerged approximately 2 mm in the solution) for 5 min. The incubation was then initiated by adding β-NADPH solution. The rest of the procedures for sample collection and preparation were the same as described above except the continuous nitrogen gas supply throughout the study. Negative controls were prepared either by substituting microsomal protein previously heated to 70-100°C for 10 min or by replacing NAPDH with water under both normoxic and hypoxic conditions.

The analysis was conducted on a Q TRAP™ 3200 MS/MS system from Applied Biosystems / MDS Sciex (Concord, Ontario, Canada) coupled to an Agilent 1200 HPLC system (Agilent Technologies, Palo Alto, CA, USA). Separations were accomplished on a Luna C18 column (150 × 2.0 mm, 5 µm) (Phenomenex, Torrance, CA, USA) with a guard cartridge at ambient temperature. The mobile phase consisted of 0.1 % formic acid in water (solvent A) and acetonitrile (solvent B) and was delivered at a flow rate of 0.2 mL/min. The linear gradient elution program was as follows: 30 % to 95 % B
over 13 min, followed by an isocratic hold at 95 % B for another 7 min. At 20 min, B was returned to 30 % in 1 min and the column was equilibrated for 19 min before the next injection. The total run time for each injection was 40 min. The mass spectrometer was operated in the positive ion mode with a TurboIonSpray source. Two multiple reaction monitoring (MRM) transitions i.e. 277.1→234.2 and 279.1→147.1 were used to determine meisoindigo and its metabolites at m/z 279, respectively. The declustering potential (DP) and collision energy (CE) values were 66 V and 45 eV for meisoindigo, 61 V and 30 eV for the metabolites. The other ionization parameters were as follows: curtain gas (CUR), 20 (arbitrary units); ion source gas 1 (GS1), 40 (arbitrary units); ion source gas 2 (GS2), 50 (arbitrary units); source temperature (TEM), 650 ºC; entrance potential (EP), 10 V. The dwell time of each MRM transition was 150 msec. The mass spectrometer and the HPLC system were controlled by Analyst 1.4.2 software from Applied Biosystems / MDS Sciex. The relative percentages of the components in incubations were estimated at different incubation time points based on the integrated peak areas of MRM chromatograms.
Results

The proposed fragmentation scheme and product ions of protonated meisoindigo (m/z 277) are shown in Fig. 1. It contains major product ions at m/z 249, 234, 218, 205, 190, 178, 132 and 104. Loss of CO (28 Da) following gain of one H generated the product ion at m/z 249. Loss of CONH (43 Da) following gain of one H generated the product ion at m/z 234. Loss of CONCH₃ (57 Da) following loss of one H generated the product ion at m/z 218. Loss of both CONH and CO generated the product ion at m/z 205. Loss of both CONCH₃ and CO following loss of one H generated the product ion at m/z 190, which was confirmed by MS/MS/MS (data not shown). Loss of both CONCH₃ and CONH following gain of two H generated the product ion at m/z 178, which was confirmed by MS/MS/MS (data not shown). Cleavage of the 3,3’ double bond of meisoindigo following gain of one H, and subsequent loss of CO at position 2’ following gain of one H, generated the product ions at m/z 132 and 104, respectively.

The reconstructed extracted ion chromatogram (XIC) from HPLC-QTRAP was shown in Fig. 2. It was found that the parent drug and its metabolites were detected as their protonated molecules. Meisoindigo was eluted at 14.99 min and showed a molecular ion (MH⁺) at m/z 277. Several metabolites were observed and eluted earlier than meisoindigo, between 7 and 13 min. Those metabolite peaks formed corresponding to masses of m/z 279 (11.19 min, 12.37 min), m/z 265 (9.30 min, 11.87 min), m/z 295 (7.97 min, 8.86 min, 9.37
min, 10.34 min, 11.59 min) (summarized in Table 1). From the relative peak areas in Fig. 2, meisoindigo remained the largest component, while two peaks corresponding to \(m/z \) 279 and one peak corresponding to \(m/z \) 295 were regarded as the major metabolites. The chromatographic profiles of meisoindigo and its metabolites from UPLC-QTOF showed a significant similarity as that from HPLC-QTRAP (data not shown). Table 2 showed the accurate masses and potential molecular formulae provided by UPLC-QTOF.

Protonated metabolites at \(m/z \) 279. Metabolites at \(m/z \) 279 had retention times of 11.19 min and 12.37 min on the HPLC system, respectively, and showed 2 Da increase of molecular weight compared with parent drug, suggesting they could be direct reduction products or N-demethylation followed by mono-oxidation products. The corresponding potential formulae of metabolites at \(m/z \) 279 based on their accurate masses was \(\text{C}_{17}\text{H}_{15}\text{N}_{2}\text{O}_{2} \) (Table 2), thus confirming the occurrence of direct reduction. Taking the identical molecular formulae with different retention times into account, these two metabolites could be isomers.

Both of the EPI (MS/MS) mass spectra on metabolites at \(m/z \) 279 of 11.19 min and 12.37 min were identical, indicating these two metabolites should be stereoisomers. The proposed fragmentation scheme and MS/MS spectrum of protonated metabolites at \(m/z \) 279 are shown in Fig. 3. Loss of \(\text{H}_2\text{O} \) (18 Da) generated the product ion at \(m/z \) 261. Loss of one or two CO generated the product ion at \(m/z \) 251 or \(m/z \) 223, which indicated that reduction had not
occurred on either of carbonyl groups. Loss of CONH generated the product ion at m/z 234. Cleavage of the 3,3’ bond generated the product ions at m/z 147, and m/z 133 which was 1 Da higher than the corresponding product ion of meisoindigo at m/z 132, thus indicating the presence of 3,3’ single bond. Subsequent loss of CO at position 2 after the cleavage of the 3,3’ bond generated the product ions at m/z 118, which was confirmed by MS/MS/MS (data not shown).

Since direct double bond reduction caused the generation of two chiral carbon centers located in position 3 and 3’, four stereoisomers i.e. M1, M2, M3, M4 at m/z 279 could exist with possible absolute configurations of (3-R, 3’-R), (3-S, 3’-S), (3-R, 3’-S), (3-S, 3’-R). Among them, M1 and M2, M3 and M4 were assumed as enantiomers of each other respectively. In addition, M1 was diastereomer of M3 or M4. M2 was diastereomer of M3 or M4. Considering enantiomers generally show the same chromatographic properties with the use of non-chiral column while diastereomers seldom do, as well as only two peaks were displayed on the TIC or XIC, the peak with retention time of 11.19 min was postulated to be a combination of M1 and M2, whereas the other peak with retention time of 12.37 min was postulated to be a combination of M3 and M4.

The chromatographic behaviors of metabolites at m/z 279 on the chiral column further confirmed this postulation. The two peaks with retention time of 11.19 min and 12.37 min on non-chiral column (Fig. 2) were split into four peaks on
chiral column, with retention times of 18.61 min, 21.44 min, 25.24 min and 27.69 min, respectively (Fig. 4 A). Interestingly, after separation of the two pairs of enantiomers through preparative HPLC, one pair of enantiomer (M1+M2) corresponded the leftmost and rightmost peaks with the retention times of 18.70 min and 27.68 min (Fig. 4 B), whereas the other pair (M3+M4) corresponded the two peaks in the middle with the retention times of 21.33 min and 24.96 min (Fig. 4 C), which suggesting the chiral structure difference between M1 and M2 was larger than that between M3 and M4. Furthermore, the isolated pair of enantiomer (M1+M2) showed two additional small peaks happening to correspond to the other pair (M3+M4) (Fig. 4 B), while the isolated (M3+M4) only showed two peaks (Fig. 4 C), which strongly indicated that (M1+M2) was unstable, automatically converting to (M3+M4). Hence the absolute configurations of (M1+M2) could be (3-R, 3’-R) and (3-S, 3’-S). Based on each stereoisomer’s chromatographic peak areas shown in Fig. 4 A, the reduction metabolism of meisoindigo was found to be stereoselective. One pair of enantiomer (M3+M4) showed a higher abundance than the other pair (M1+M2). Within both of these two pairs of enantiomers, the more polar stereoisomer eluted first was always of higher abundance than the less polar one (18.70 min versus 27.68 min, 21.33 min versus 24.96 min).

The hydrogenation of red meisoindigo generated colorless products in methanol solution. Diluted products showed the same retention times and fragmentation patterns on LC-MS/MS as the two metabolites at m/z 279 from
microsomal sample. After isolation by preparative HPLC and solvent evaporation, two white solids of metabolites were obtained. The proton NMR signals of meisoindigo, M1+M2, and M3+M4 were assigned in Table 3, respectively. The significant similarity in proton NMR signals of M1+M2 and M3+M4 further confirmed the diastereomer relationship between them. Compared with the chemical shift values of meisoindigo, the chemical shift values of both M1+M2 and M3+M4 more or less shifted to relatively high field region, due to the breakdown of long conjugation within the whole molecule caused by the forming of 3,3'-single bond. The synchrotron infrared absorption spectra of two isolated metabolites at m/z 279 were very similar and shown in Fig. 8 (A). The broad band around 3200-3400 cm⁻¹ was assigned to be NH stretching vibration. The band around 2800-2900 cm⁻¹ was assigned to be CH₃ stretching vibration. The band around 1600 cm⁻¹ was assigned to be C=O stretching vibration. These characteristic absorption bands further confirmed the presence of NH, CH₃ and C=O.

Therefore, M1+M2 was tentatively identified as a pair of (3-R, 3'-R) and (3-S, 3'-S) reduced-meisoindigo enantiomers with two hydrogens located at the same side of 3,3'-single bond, whereas M3+M4 as another pair of (3-R, 3'-S) and (3-S, 3'-R) enantiomers with two hydrogens located at the opposite sides.

Protonated metabolites at m/z 265. Metabolites at m/z 265 had retention times of 9.30 min and 11.87 min on the HPLC system, respectively, and showed 12 Da decrease of molecular weight compared with parent drug,
suggesting they could be direct reduction followed by N-demethylation products. The corresponding potential formulae of metabolites at m/z 265 based on their accurate masses was C$_{16}$H$_{13}$N$_2$O$_2$ (Table 2), thus confirming this postulation. Taking the identical molecular formulae with different retention times into account, these two metabolites could be isomers.

Both of the EPI (MS/MS) mass spectra on metabolites at m/z 265 of 9.30 min and 11.87 min were identical, indicating these two metabolites should be stereoisomers. The proposed fragmentation scheme and MS/MS spectrum of protonated metabolites at m/z 265 are shown in Fig. 5. Loss of H$_2$O generated the product ion at m/z 247, and subsequent loss of CO generated m/z 219. Loss of one or two CO generated the product ion at m/z 237 or m/z 209, which indicated that reduction had not occurred on either of carbonyl groups. Cleavage of the 3,3' bond generated the product ion at m/z 133 with the highest abundance, indicating the forming of a symmetric molecule after N-demethylation.

Due to the generation of two chiral carbon centers located in position 3 and 3', four stereoisomers i.e. M5, M6, M7, M8 at m/z 265 could exist with possible absolute configuration of (3-R, 3'-R), (3-S, 3'-S), (3-R, 3'-S), (3-S, 3'-R). Interestingly, reduction followed by N-demethylation led to the generation of the same segments on the both sides of 3-3' single bond. M5 (3-R, 3'-R), M6 (3-S, 3'-S) were enantiomers of each other so that they were combined into one peak on the TIC or XIC with retention times of 9.30 min. However, M7 (3-R,
3'-S), M8 (3-S, 3'-R) were actually the identical compound, due to the presence of an internal symmetrical center at the midpoint of 3-3' single bond. M7 (namely M8) was a meso compound with retention times of 11.87 min. Furthermore, M7 (M8) exhibited a higher abundance than the pair of enantiomer (M5+M6) (Fig. 2), suggesting metabolites of \(m/z \) 265 also showed stereoselective metabolism in this case.

Therefore, M5+M6 was tentatively identified as a pair of (3-R, 3'-R) and (3-S, 3'-S) N-demethyl-reduced-meisoindigo enantiomers with two hydrogens located at the same side of 3,3'-single bond, whereas M7 (M8) as one meso compound with two hydrogens located at the opposite sides.

Protonated metabolites at \(m/z \) 295. Metabolites at \(m/z \) 295 had retention times of 7.97 min, 8.86 min, 9.37 min, 10.34 min and 11.59 min on the HPLC system, respectively, and showed 18 Da increase of molecular weight compared with parent drug, suggesting they could be direct reduction followed by mono-oxidation products. The corresponding potential formulae of metabolites at \(m/z \) 295 based on their accurate masses was \(\text{C}_{17}\text{H}_{15}\text{N}_{2}\text{O}_{3} \) (Table 2), thus confirming this postulation. Taking the identical molecular formulae with different retention times into account, these five metabolites could be isomers.

There were two types of EPI (MS/MS) mass spectra on metabolites at \(m/z \) 295. One type was the identical EPI of metabolites with retention times of 9.37 min and 10.34 min, indicating these two metabolites should be stereoisomers. The
proposed fragmentation scheme and MS/MS spectrum of this type are shown in Fig. 6. Loss of \(\text{H}_2\text{O} \) generated the product ion at \(m/z \) 277. Loss of \(\text{CO} \) generated the product ion at \(m/z \) 267. Loss of \(\text{CONH} \) generated the product ion at \(m/z \) 251. Cleavage of the 3,3' bond generated the product ions at \(m/z \) 163 and \(m/z \) 133, of which only \(m/z \) 163 was 16 Da higher than the corresponding product ion of reduced-meisoindigo at \(m/z \) 147, thus indicating hydroxylation had occurred at one of the positions 4, 5, 6 and 7. Subsequent loss of \(\text{CO} \) at position 2 after the cleavage of the 3,3' bond generated the product ions at \(m/z \) 134. The other type was the identical EPI of metabolites with retention times of 7.97 min, 8.86 min and 11.59 min, indicating these three metabolites should be stereoisomers. The proposed fragmentation scheme and MS/MS spectrum of this type are shown in Fig. 7. Loss of both \(\text{H}_2\text{O} \) and \(\text{CO} \) generated the product ion at \(m/z \) 249. Cleavage of the 3,3' bond generated the product ions at \(m/z \) 147 and \(m/z \) 149, of which only \(m/z \) 149 was 16 Da higher than the corresponding product ion of reduced-meisoindigo at \(m/z \) 133, thus indicating hydroxylation had occurred at one of the positions 4', 5', 6' and 7'.

Reduction followed by phenyl single oxidation led to two different types of position isomers. Considering the generation of two chiral carbon centers located in position 3 and 3', the first type could involve M9 (3-R, 3'-R), M11 (3-S, 3'-S), M13 (3-R, 3'-S), M15 (3-S, 3'-R), with single hydroxyl group at position 4, 5, 6 or 7. The second type could involve M10 (3-R, 3'-R), M12 (3-S,
3'-S), M14 (3-R, 3'-S), M16 (3-S, 3'-R), with single hydroxyl group at position 4', 5', 6' or 7'. For each stereoisomer, there were four maximal possibilities regarding the specific positions of hydroxyl group on the phenyl ring. In addition, based on chromatographic peak areas shown in Fig. 2, the first type i.e. M9, M11, M13, M15 showed a higher abundance than the second type i.e. M10, M12, M14, M16, which suggested that the reduction followed by mono-oxidation metabolism of meisoindigo was regioselective.

The synchrotron IR absorption spectra of metabolites at \(m/z \) 295 isolated by analytical HPLC were very similar. The IR spectrum of the most concentrated one was shown in Fig. 8 (B). The intensity of broad band around 3000-3500 cm\(^{-1}\) relative to the band around 2800-2900 cm\(^{-1}\) was higher compared with Fig. 8 (A), indicating the presence of both OH and NH. The OH stretching vibration band was also found to be broad and slightly lower than NH stretching band. The band around 2800-2900 cm\(^{-1}\) was assigned to be CH\(_3\) stretching vibration. The band around 1600 cm\(^{-1}\) was assigned to be C=O stretching vibration. These characteristic absorption bands further confirmed the presence of NH, OH, CH\(_3\) and C=O.

Therefore, M9, M11, M13, M15 were within the bounds of (3-R, 3'-R), (3-S, 3'-S), (3-R, 3'-S), (3-S, 3'-R) monohydroxyl-reduced-meisoindigo isomers with single hydroxyl group located at position 4, 5, 6 or 7, whereas M10, M12, M14, M16 falling within another type of isomers with single hydroxyl group located at position 4', 5', 6' or 7'.
Incubations under normoxic and hypoxic conditions. The relative percentages of meisoindigo and its metabolites at m/z 279 in incubations with rat liver microsomes at various incubation time points are given in Table 4. The results showed that the difference of relative percentages between normoxic and hypoxic incubations was the most significant at 5 min. Approximately 95.81 % of meisoindigo, 1.92 % of M1+M2, and 2.27 % of M3+M4 were found in the 5-min incubation of meisoindigo under normoxic conditions, whereas 66.80 % of meisoindigo, 13.12 % of M1+M2, and 20.08 % of M3+M4 were observed in the 5-min incubation of meisoindigo under hypoxic conditions, thus indicating the occurrence of rapid reductive metabolism of meisoindigo (Table 4). The difference of relative percentages between normoxic and hypoxic incubations attenuated with time, until similar relative percentages were found in the both normoxic and hypoxic incubations at 60 min (data not shown). As a whole, a quicker onset of the metabolism under hypoxic conditions was obtained as compared to that under normoxic conditions, suggesting oxygen exposure strongly inhibits the in vitro reductive metabolism of meisoindigo in rat liver microsomes.
Discussion

This is the first investigation of the *in vitro* stereoisomeric metabolites of meisoindigo in rat liver microsomes, by achiral and chiral LC-MS/MS, as well as other relevant techniques. In the present study, rat liver microsomes were chosen because rats express two major cytochrome P450 isoforms that are oligomerically related to human CYP3A4, CYP3A1 and CYP3A2 (Nelson et al., 1996). Besides, rat liver microsomes are readily available though simple preparation. Although the metabolism study in human liver microsomes is not involved yet in this study, the relevant results obtained showed a qualitative similarity in metabolite profiles of meisoindigo between rat liver microsomes and human liver microsomes (data not shown). In addition, the metabolite profile of meisoindigo in rat liver microsomes is more comprehensive than that in human liver microsomes (data not shown). Thus the findings regarding metabolite profile in rat liver microsomes are of considerable importance.

The abundance of the minor metabolites is generally very low, especially in incubation with low substrate concentration, but is increased relative to other metabolites at higher substrate concentrations. Considering the typical concentration range (10-50 μM) in metabolite identification experiments (Chen et al., 2007), the upper limit concentration, i.e. 50 μM, was adopted. Furthermore, minimal sample cleanup was performed, because the nature, number, and concentrations of metabolites present were unknown, and it was
therefore impossible to determine if any would be lost during sample preparation (Clarke et al. 2001).

On the basis of molecular masses, fragmentation patterns, as well as potential formulae of the metabolites and meisoindigo, three metabolic pathways of meisoindigo in male rat liver microsomes were proposed as direct 3,3’ double bond reduction, reduction followed by N-demethylation, as well as reduction followed by phenyl mono-oxidation (Fig. 9). Among them, direct 3,3’ double bond reduction was one-step reaction and thus the predominant pathway. The other two parallel metabolic pathways were two-step reactions and thus secondary pathways. Interestingly, the first two metabolic pathways of meisoindigo were found to be stereoselective, while the third one was both stereoselective and regioselective. In the cases of either M3+M4 versus M1+M2 or M7(M8) versus M5+M6, the pair of (3-R, 3’-S) and (3-S, 3’-R) enantiomer with two hydrogens located at the opposite sides showed a much higher abundance than the other pair of (3-R, 3’-R) and (3-S, 3’-S) enantiomer with two hydrogens located at the same sides.

Proton NMR spectroscopy nuclear Overhauser effect (NOE) experiments were conducted to explore the NOE signal difference caused by distinct spatial distance between 3H and 3’H within the two pairs of synthetic enantiomers, namely M1+M2 and M3+M4. However, the results showed that there was no significant difference in the NOE spectra between synthetic M1+M2 and M3+M4, when 3H and 3’H were irradiated, respectively (data not shown).
Other methods such as optical rotary dispersion (ORD), circular dichroism (CD) or X-ray crystallography could be conducted to confirm the assignment of the absolute configurations of M1+M2 and M3+M4. However, further investigation on the specific absolute configurations of four stereoisomers i.e. M1, M2, M3, M4 could be very challenging due to the rapid enantiomer interconversion between M1 and M2, M3 and M4.

In terms of chiral chromatography analysis, a good separation of metabolite stereoisomers could not be achieved through gradient elution mobile phase, which is typically used for achiral chromatography analysis. Isocratic mobile phase was finally adopted to successfully separate the two pairs of enantiomers at m/z 279 simultaneously on a Daicel Chiralcel OD-R column. But this chiral column didn’t work well on the separation of stereoisomeric metabolites at m/z 265 and m/z 295, probably owing to their relatively low quantity. Another possible reason might be the specific packing material of Chiralcel OD-R column was only suitable for the chiral separation of stereoisomeric metabolites at m/z 279 rather than the other two. In this case, other different types of chiral columns could be considered.

Although the chromatographic peak at m/z 295 with retention time of 9.37 min was regarded as the major metabolite, another peak of the pair of enantiomers (M5+M6) with retention time of 9.30 min was almost co-eluted with it (Fig. 2). More sensitive scan type multiple reactions monitoring (MRM) couple with UPLC showed that this peak at 9.37 min in Fig. 2 was actually more than one
component and combined with three individual peaks showing m/z 295 (data not shown). Due to the chromatographic complexity and trace amount of these minor metabolites, microsomal incubation samples had been directly tried on the online LC-NMR 600 MHz equipped with a cryoprobe from Bruker BioSpin. Unfortunately, injection volume was limited by the bulk concentration of microsomal matrix contaminants in the first 5 minutes, which thus diluted the eluted components entering into the NMR detection region. Analytical HPLC was subsequently tried to isolate and accumulate the minor metabolites at m/z 295 and m/z 265 for further characterization by 1.7 mm Micro-CryoProbe NMR 600 MHz from Bruker BioSpin. However, the accumulated quantity was still unable to meet the minimal requirement of this special NMR measurement with the lowest detection of limit at present. Therefore, chemical synthesis has to be the last resort. Further work would be needed to synthesize the possible minor metabolites and isolate the stereoisomers by chiral chromatography followed by NMR structural characterization. In particular, the specific position of OH group in stereoisomeric monohydroxyl-reduced-meisoindigo is a vital aspect to be investigated. Since both NCH$_3$ at position 8 and NH at position 8' donate electrons into the two phenyl ring systems, the highest electron density should be located at ortho positions (i.e. 7 or 7') and para positions (i.e. 5 or 5'). In view of the offset by steric hindrance of OH group at ortho positions, it could be predicted that para positions (i.e. 5 or 5') would be thus the most reactive towards perferryl oxygen complex $[\text{FeO}]^{3+}$ from the perspective of CYP450
oxidation mechanism.

Considering synchrotron IR spectroscopy provided a much greater detection of limit than conventional IR technique due to the high brightness of synchrotron IR source, it was employed for the first time to further confirm the structures of metabolite within mg level after isolation and accumulation by analytical HPLC. The IR measurement was performed in the vacuum to remove the signals caused by H₂O and CO₂ from the air as much as possible, thus achieving a satisfactory signal to noise ratio. It should be noted that synchrotron IR is only applicable for those limited instances, in which the structural difference between metabolite and parent drug is due to characteristic IR functional groups, such as hydroxyl group, carbonyl group, amino group etc. Hence, synchrotron IR can only be a supplementary tool to conventional structural identification approaches, i.e., MS and NMR.

The comparative metabolite profiling using rat liver microsomes in the normoxic and hypoxic incubations further confirmed the occurrence of reductive metabolism of meisoindigo. Based on a report on the reductive metabolism of meisoindigo analogues (Kohno et al., 2005), it is possible to speculate that NADPH-cytochrome P450 reductase (P450R) in rat liver microsomes could be the enzyme responsible for the initiation of reductive activation of meisoindigo through the formation of a superoxide radical by transferring one electron from the electron donor i.e. NADPH. This proposed mechanism can be confirmed by investigating the metabolism of meisoindigo...
after incubation with purified recombinant P450R in the presence of NADPH.
Acknowledgements. We thank Dr Mohammed Bahou, from Singapore Synchrotron Light Source, National University of Singapore, for his kind assistance with synchrotron IR experiments.
References

Legends for Figures

FIG. 1. MS/MS spectrum of protonated meisoindigo at m/z 277 and the proposed origin of key product ions.

FIG. 2. Reconstructed extract ion chromatogram for meisoindigo and its metabolites in rat liver microsomes.

FIG. 3. MS/MS spectrum of protonated M1+M2, M3+M4 at m/z 279 and the proposed origin of key product ions.

FIG. 4. Extracted ion chromatograms on the chiral column corresponding to M1+M2+M3+M4 (A), M1+M2 (B) and M3+M4 (C) at m/z 279.

FIG. 5. MS/MS spectrum of protonated M5+M6, M7(M8) at m/z 265 and the proposed origin of key product ions.

FIG. 6. MS/MS spectrum of protonated M9,M11,M13,M15 at m/z 295 and the proposed origin of key product ions.

FIG. 7. MS/MS spectrum of protonated M10,M12,M14,M16 at m/z 295 and the proposed origin of key product ions.
FIG. 8. Infrared absorption spectra of mesoindigo metabolites at m/z 279 (A) and m/z 295 (B).

FIG. 9. Proposed metabolic pathway of meisoindigo in rat liver microsomes.
TABLE 1
HPLC-QTAP retention times and mass spectra properties for meisoindigo and its *in vitro* metabolites

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Retention time (min)</th>
<th>MH⁺</th>
<th>m/z of major product ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>meisoindigo</td>
<td>14.99</td>
<td>277</td>
<td>249, 234, 218, 205, 190, 178, 165, 132, 104</td>
</tr>
<tr>
<td>M1+M2</td>
<td>11.19</td>
<td>279</td>
<td>261, 251, 234, 223, 147, 133, 118</td>
</tr>
<tr>
<td>M3+M4</td>
<td>12.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5+M6</td>
<td>9.30</td>
<td>265</td>
<td>247, 237, 219, 209, 133</td>
</tr>
<tr>
<td>M7(M8)</td>
<td>11.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M9,M11,M13,M15</td>
<td>9.37, 10.34</td>
<td>295</td>
<td>277, 267, 251, 163, 134, 133</td>
</tr>
<tr>
<td>M10,M12,M14,M16</td>
<td>7.97, 8.86, 11.59</td>
<td></td>
<td>277, 267, 249, 158, 149, 147</td>
</tr>
</tbody>
</table>
TABLE 2

UPLC-QTOF retention times, potential formula and accurate masses for meisoindigo and its *in vitro* metabolites

<table>
<thead>
<tr>
<th></th>
<th>Retention time (min)</th>
<th>Molecular Formula (1+)</th>
<th>m/z (1+)</th>
<th>Del M (Da)</th>
<th>Measured m/z (1+)</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>meisoindigo</td>
<td>3.42</td>
<td>C_{17}H_{13}N_{2}O_{2}</td>
<td>277.0977</td>
<td>-0.0001</td>
<td>277.0976</td>
<td>-0.4</td>
</tr>
<tr>
<td>M1+M2</td>
<td>2.07</td>
<td>C_{17}H_{15}N_{2}O_{2}</td>
<td>279.1134</td>
<td>2.0162</td>
<td>279.1139</td>
<td>1.8</td>
</tr>
<tr>
<td>M3+M4</td>
<td>2.43</td>
<td></td>
<td></td>
<td>2.0153</td>
<td>279.1130</td>
<td>-1.4</td>
</tr>
<tr>
<td>M5+M6</td>
<td>1.65</td>
<td>C_{16}H_{13}N_{2}O_{2}</td>
<td>265.0977</td>
<td>-12.0005</td>
<td>265.0972</td>
<td>-1.9</td>
</tr>
<tr>
<td>M7(M8)</td>
<td>2.26</td>
<td></td>
<td></td>
<td>-11.9996</td>
<td>265.0981</td>
<td>1.5</td>
</tr>
<tr>
<td>M9,M11,M13,M15</td>
<td>1.66</td>
<td></td>
<td></td>
<td>18.0104</td>
<td>295.1081</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td>1.74</td>
<td></td>
<td></td>
<td>18.0111</td>
<td>295.1088</td>
<td>1.7</td>
</tr>
<tr>
<td>M10,M12,M14,M16</td>
<td>1.45</td>
<td>C_{17}H_{15}N_{2}O_{3}</td>
<td>295.1083</td>
<td>18.0111</td>
<td>295.1088</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td></td>
<td></td>
<td>18.0113</td>
<td>295.1090</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>2.17</td>
<td></td>
<td></td>
<td>18.0101</td>
<td>295.1078</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
TABLE 3

1H-NMR data for meisoindigo, M1+M2, and M3+M4

<table>
<thead>
<tr>
<th>Position</th>
<th>Meisoindigo</th>
<th>M1+M2</th>
<th>M3+M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9.13 (1H, d, 8.0Hz)</td>
<td>7.26 (1H, t, 8.0Hz)</td>
<td>7.23 (1H, t, 8.0Hz)</td>
</tr>
<tr>
<td>5</td>
<td>7.08 (1H, m)</td>
<td>6.98 (1H, m)</td>
<td>6.95 (1H, m)</td>
</tr>
<tr>
<td>6</td>
<td>7.38 (1H, t, 7.5Hz)</td>
<td>7.15 (1H, m)</td>
<td>7.12 (1H, m)</td>
</tr>
<tr>
<td>7</td>
<td>6.79 (1H, m)</td>
<td>6.74 (1H, m)</td>
<td>6.72 (1H, m)</td>
</tr>
<tr>
<td>4'</td>
<td>9.20 (1H, d, 8.0Hz)</td>
<td>7.33 (1H, t, 8.0Hz)</td>
<td>7.30 (1H, t, 8.0Hz)</td>
</tr>
<tr>
<td>5'</td>
<td>7.05 (1H, m)</td>
<td>6.95 (1H, m)</td>
<td>6.92 (1H, m)</td>
</tr>
<tr>
<td>6'</td>
<td>7.32 (1H, t, 7.5Hz)</td>
<td>7.08 (1H, t, 8.0Hz)</td>
<td>7.05 (1H, t, 8.0Hz)</td>
</tr>
<tr>
<td>7'</td>
<td>6.81 (1H, m)</td>
<td>6.81 (1H, t, 8.5Hz)</td>
<td>6.78 (1H, m)</td>
</tr>
<tr>
<td>NCH₃</td>
<td>3.30 (3H, s)</td>
<td>3.17 (3H, s)</td>
<td>3.14 (3H, s)</td>
</tr>
<tr>
<td>NH</td>
<td>7.81 (1H, br.s)</td>
<td>7.58 (1H, br.s)</td>
<td>7.48 (1H, br.s)</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>4.23 (1H, dd, 3.5Hz, 24.0Hz)</td>
<td>4.20 (1H, dd, 3.5Hz, 24.0Hz)</td>
</tr>
<tr>
<td>3'</td>
<td>—</td>
<td>4.32 (1H, dd, 3.5Hz, 26.0Hz)</td>
<td>4.30 (1H, dd, 3.5Hz, 27.0Hz)</td>
</tr>
</tbody>
</table>
TABLE 4
Relative percentages of identified components in incubations of meisoindigo with rat liver microsomes under normoxic and hypoxic conditions

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Normoxic (%)</th>
<th>Hypoxic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meisoindigo</td>
<td>M1+M2</td>
</tr>
<tr>
<td>5</td>
<td>95.81</td>
<td>1.92</td>
</tr>
<tr>
<td>15</td>
<td>60.24</td>
<td>15.54</td>
</tr>
<tr>
<td>30</td>
<td>48.30</td>
<td>22.54</td>
</tr>
</tbody>
</table>
FIG. 1.
FIG. 3.
[M+H-H₂O]⁺ = 247
[M+H-CO]⁺ = 237
[M+H-H₂O-CO]⁺ = 219
[M+H-CO-CO]⁺ = 209

FIG. 5.
FIG. 6.

\[[\text{M+H-H}_2\text{O}]^+=277 \]
\[[\text{M+H-CO}]^+=267 \]
FIG. 7.
FIG. 8.
FIG. 9.