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Abstract 

Fluoxetine [±-N-methyl-3-phenyl-3-[(α, α, α -trifluoro-p-tolyl)oxy]propylamine)] a 

selective serotonin reuptake inhibitor, is widely used in treating depression and other 

serotonin-dependent disease conditions.  Racemic, (R)- and (S)- fluoxetine are potent 

reversible inhibitors of CYP2D6 and the racemate has been shown to be a mechanism-

based inhibitor of CYP3A4.  Racemic fluoxetine also demonstrates time- and 

concentration-dependent inhibition of CYP2C19 catalytic activity in vitro.  In this study, 

we compared fluoxetine, its (R)- and (S)-enantiomers, ticlopidine and S-benzylnirvanol 

as potential time-dependent inhibitors of human liver microsomal CYP2C19.  In a 

reversible inhibition protocol (30 min preincubation with liver microsomes without 

NADPH), we found (R)-, (S)- and racemic fluoxetine to be moderate inhibitors with IC50 

values of 21, 93 and 27 µM, respectively.  However, when the preincubation was 

supplemented with NADPH, IC50 values shifted to 4.0, 3.4 and 3.0 µM, respectively 

resulting in IC50 shifts of 5.2, 28 and 9.3-fold.  Ticlopidine showed a 1.8-fold shift in 

IC50-value and S-benzylnirvanol shifted right (0.41-fold shift). Follow up KI and kinact 

determinations with fluoxetine confirmed time-dependent inhibition [KI values of 6.5, 47 

and 14 µM; kinact values of 0.023, 0.085, 0.030 min-1 for (R)-, (S)- and racemate, 

respectively].  Although the (S)-isomer exhibits a much lower affinity for CYP2C19 

inactivation relative to the (R)-enantiomer, it exhibits a more rapid rate of inactivation.  

Racemic norfluoxetine exhibited an 11-fold shift (18 to 1.5 µM) in IC50 value suggesting 

conversion of fluoxetine to this metabolite represents a metabolic pathway leading to 

time-dependent inhibition. These data provide an improved understanding of the drug-

interaction potential of fluoxetine.
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Introduction 

Fluoxetine [±-N-methyl-3-phenyl-3-[(α, α, α -trifluoro-p-tolyl)oxy]propylamine)] is a 

widely used selective serotonin reuptake inhibitor, with more than 23 million 

prescriptions filled for the generic drug within the United States in 2006 

(Drugtopics.com).   Racemic fluoxetine and its (R)- and (S)- enantiomers are metabolized 

by N-demethylation to the pharmacologically active metabolite norfluoxetine by 

CYP2D6 and other P450 isoforms (Margolis et al, 2000; Mandrioli et al, 2006; refer to 

latter for chemical structure).  Fluoxetine also undergoes CYP2C19-mediated O-

dealkylation to the p-trifluoromethylphenol metabolite (Liu et al, 2001).   In addition, 

racemic fluoxetine and/or its enantiomers have been shown to be reversible inhibitors of 

CYP2D6 (Brosen K and Skjelbo, 1991; Stevens and Wrighton, 1993), CYP2C19 

(Kobayashi et al., 1995; Foti and Wahlstrom, 2008), CYP3A4 (von Moltke et al., 1994; 

Ring et al., 1995), and CYP2C9 (Schmider et al., 1997; Hemeryck et al., 1999).  Fewer 

studies have been conducted examining the potential for fluoxetine to be a mechanism-

based inhibitor of cytochrome P450.   Mayhew et al (2000) showed fluoxetine to be a 

mechanism-based inhibitor of CYP3A4 and McGinnity et al (2006) recently 

demonstrated time- and concentration-dependent inhibition of CYP3A4 and also 

CYP2C19 in multiple in vitro systems, including hepatocytes.  With heightened 

awareness of links between mechanism-based inhibitors, covalent binding and 

idiosyncratic toxicity (Ulrich, 2007) as well as the appearance of regulatory guidance for 

drug-drug interaction testing (USFDA, 2006), many laboratories are establishing or 

revisiting their procedures for conducting time-dependent CYP inhibition testing.  In the 

process of augmenting our laboratory’s CYP2C19 time-dependent inhibition assay, we 
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tested model compounds intended to serve as reference inhibitors.  In many laboratories, 

ticlopidine is used as a positive control inhibitor in this assay (Ha-Duong et al 2001), but 

we and others have found it to be only weakly inhibitory (Stresser et al, 2008), and is 

therefore unsatisfactory as a potent acting benchmark.  In this report, we confirm the 

findings of McGinnity et al (2006) with racemic fluoxetine and show that the 

enantiomers of fluoxetine are effective, but kinetically different, time-dependent 

inhibitors of CYP2C19.   
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Methods 

Materials. Pooled human liver microsomes, S-benzylnirvanol, (S)-mephenytoin, (±)4’-

OH- mephenytoin, stable-isotope labeled (±)4´-hydroxy mephenytoin-D3, were obtained 

from BD Biosciences (Woburn, MA).  All other chemicals, including (±)-fluoxetine, (R)-

fluoxetine, (S)-fluoxetine, (±)-norfluoxetine and ticlopidine were obtained from Sigma-

Aldrich (St Louis, MO).    

S-Mephenytoin 4’-hydroxylase IC50 shift assays. Inhibition by test chemicals was 

determined using seven concentrations of inhibitor, separated by 0.5 log spacing, in a 

final volume 0.4 ml.  Reactions contained 40 µM S-mephenytoin (approximately the KM), 

0.3 mg pooled HLM, 1.3 mM NADP+, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-

phosphate dehydrogenase, 3.3 mM MgCl2 and 100 mM potassium phosphate buffer, pH 

7.4.  Reactions containing 5X HLM protein (e.g. 1.5 mg/ml) were incubated for 30 min 

with or without an NADPH regenerating system prior transfer of an aliquot into a 

secondary reaction mix containing the S-mephenytoin substrate.  Incubations were 

terminated after 10 min by transferring a 200 µL aliquot to a 50 µL 0.1% formic acid in 

acetonitrile containing 0.5 µM stable-labeled isotope internal standard.  After stopping 

the reactions, incubations were subjected to centrifugation at 4000 rpm for 20 minutes to 

compress the precipitated protein into a pellet and the supernatants were retained for 

HPLC/MS analysis. 

S-Mephenytoin 4’-hydroxylase KI and kinact assays.  Incubations were performed in 

0.1M potassium phosphate (pH 7.4) with 0.3 mg/ml HLM protein with an NADPH 

generating system (as described above). Solvent only and 5 concentrations of inhibitor (3, 

10, 30, 100 and 300 µM) were tested in duplicate.  After various incubation times (2, 6, 
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11, 17, 23 and 30 min), 80 µL was removed and added to 320 µL of a secondary S-

mephenytoin assay mixture (0.1 M potassium phosphate with 1.3 mM NADP+, 3.3 mM 

glucose-6-phosphate, 0.4 U/ml glucose-6-phosphate dehydrogenase, 3.3 mM magnesium 

chloride and 200 µM S-mephenytoin). Unless otherwise indicated, after 10 minutes of 

incubation, the reaction was stopped and processed for LC/MS analysis as above. 

Analytical methods. 

The 4’-hydroxy (S)-mephenytoin metabolite was quantified using a 4000 Q-trap 

LC/MS/MS system (Applied Biosystems, Foster City, CA) equipped with a dual pump 

system (Perkin-Elmer, Wellesley, MA) and a LEAP CTC HTS PAL autosampler as 

previously described (Perloff et al, 2009).  Mass transitions were 235.1 → 150.0 for 4’-

hydroxy (S)-mephenytoin metabolite and 238.1→ 150.0 for the internal standard 4-

hydroxy-S-mephenytoin-D3.   

 

Data analysis. 

The IC50 values were calculated by linear interpolation. IC50 shifts were calculated by 

dividing the IC50 value in the absence of NADPH by the IC50 values in the presence of 

NADPH.  For KI/kinact assays, the natural logarithm of percent remaining activity 

(corrected for decrease in metabolism over time in absence of inhibitor) was plotted 

against preincubation time for each concentration of inhibitor tested. The slopes of the 

linear portion of each plot were determined, and the -slope vs. inhibitor concentration 

data set was fitted to a Michaelis-Menten model, k = (kinact × I)/(I +KI), to obtain kinact 

(maximum rate of inactivation) and KI (inhibitor concentration associated with half 

maximal inactivation rate) values. The KI and kinact values were determined by nonlinear 
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regression using SigmaPlot software, v. 8.0, equipped with Enzyme Kinetic module v. 

1.1 (SPSS, Chicago).  Data for the 300 µM (R)- (S)- and racemic fluoxetine were 

excluded for analysis as maximal rate of inactivation was consistently found at the 100 

µM concentration. 
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Results and Discussion 

Results for IC50 shifts, kinact and KI determinations for the inhibition of human liver 

microsomal CYP2C19-catalyzed S-mephenytoin 4’-hydroxylation are shown table 1.   

Obach et al (2007) demonstrated the utility of IC50 shift assays as an effective and 

simplified means for assessing the potential for drugs to inactivate cytochrome P450.  

Indeed, testing for time- and concentration-dependent inhibition after a preincubation in 

the presence of NADPH has been advocated in recent FDA guidance (USFDA, 2006).  In 

the present study, we found (S)-fluoxetine exhibited a mean 28-fold IC50 shift, whereas 

(R)-fluoxetine or racemic fluoxetine exhibited lower shifts of approximately 5- and 9-

fold, respectively (Fig. 1).  Follow up studies demonstrated that (S)-, (R)- and (±) 

fluoxetine exhibited mean kinact values of 0.085 min-1, 0.023 min-1 and 0.030 min-1, 

respectively.  Mean KI values were 47, 7 and 14 µM for (S)-, (R)- and (±), respectively.  

Figure 2 shows representative plots of data used to obtain KI and kinact values.  Although 

the (S)-isomer exhibits an approximately 4-fold more rapid rate of inactivation, the lower 

affinity for CYP2C19 inactivation makes the (S)-isomer less efficient relative to the (R)-

isomer.  The kinact and KI values for racemic fluoxetine agree well with the kinact and 

apparent KI values of 0.03 min-1 and 8 µM reported by McGinnity et al (2006), 

respectively.   Values were not corrected for non-specific binding which can be 

substantial for fluoxetine (Margolis and Obach, 2003).  Correcting for unbound 

fluoxetine, the estimates of KI values would be ~ 10-fold lower (MgGinnity et al, 2006) 

and are within steady state total plasma levels of fluoxetine (ranging from 0.15 to 1.5 µM) 

found after therapeutic dosing of fluoxetine (Orsulak et al., 1988).  Obach et al (2007) has 

suggested a relationship between the magnitude of drug interactions, I/KI and kdeg/kinact 
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where kdeg is the in vivo degradation rate of the CYP under investigation.   Using an 

estimate of kdeg of 0.0008 min-1 (Mayhew et al, 2000), we would estimate kinact/kdeg ratios 

of 25 to 150 and I/KI ratios ranging from approximately 0.1 to 1 for fluoxetine and its 

isomers.  These data indicate the likelihood of drug interactions of fluoxetine and drug 

cleared predominantly by CYP2C19 may be significant based on the contour plot model 

suggested by Obach et al (2007).   Indeed there have been several reports of drugs 

interactions and/or inhibition by fluoxetine of CYP2C19 mediated metabolism in vivo 

(Harvey and Preskorn, 2001; Flockhart, 1995; Dingemanse et al, 1998). Consistent with 

CYP2C19 inactivation is the previous finding that both (R)- and (S)-isomers of fluoxetine 

are substrates for this enzyme (as well as CYP3A4, CYP2D6 and CYP2C9), with (S)-

isomer having marginally higher intrinsic clearance (Margolis et al, 2000).   

The mechanism of time-dependent inhibition was investigated by assessing the 

IC50 shift of a major fluoxetine metabolite, norfluoxetine racemate.  We found an 11-fold 

shift, suggesting that metabolic conversion to this metabolite represents one pathway 

leading to time-dependent inhibition. Alternate metabolites may be responsible for the 

time dependent inhibition found here.  Indeed, a recent report suggests that the primary 

fluoxetine metabolites (S)- and (R)- N-hydroxyfluoxetine exhibit time-dependent 

inhibition in CYP2C19 Supersomes® and are capable of forming a metabolite 

intermediate complex (Vandenbrink et al, 2008).   

In our hands, the CYP2C19 mechanism-based inhibitor ticlopidine exhibited a 

relatively weak but reproducible IC50 shift of 1.8 ± 0.53 and was consistent with previous 

reports (Obach et al, 2007).   In the IC50 shift assay, compounds that are metabolically 

depleted or cause very rapid inactivation may have little or no shift or even shift in a 
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reverse direction. The latter occurred when we tested the competitive inhibitor (S)-

benzylnirvanol (0.41-fold shift), and was probably due to metabolic depletion. 

In summary, we have shown that enantiomers of fluoxetine exhibit time-

dependent inhibition of human liver microsomal CYP2C19 and differ in both affinity and 

rate of inactivation. These data should help in our understanding of potential drug-drug 

interactions elicited by fluoxetine.  From a practical viewpoint, due to its large IC50 shift 

value, (S)-fluoxetine appears to be a highly robust reference inhibitor for use in the 

routine measurement of time-dependent inhibition of liver microsomal CYP2C19. 
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Legends for Figures 

Figure 1.  Representative plots of IC50 curves for S-fluoxetine (A), R-fluoxetine (B) and 

racemic fluoxetine (C). Data points represent means of duplicate incubations.  Calculated 

IC50 shifts for each plot were 33, 5.5 and 9.4 respectively. 

 

Figure 2. Representative plots of inactivation rate constant (k) and inhibitor concentration 

for S-fluoxetine (A), R-fluoxetine (B) and racemic fluoxetine (C).  The data were 

generated in pooled human liver microsomes by monitoring the natural log of percent S-

mephenytoin 4’-hydroxylase activity remaining after preincubation times of 2, 6, 11, 17, 

23 and 30 min and correction for fluoxetine-independent loss of enzyme activity.  

Nonlinear regression analysis using the equation k = (kinact × I)/(I +KI) was applied to 

determine values of kinact and KI. 
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Table 1.  Summary of CYP2C19 IC50 shift, Ki and kinact values for ticlopidine, (S)-benzylnirvanol, racemic, (S)-, (R)- 

fluoxetine and racemic norfluoxetine in human liver microsomes. Values shown are results from experiments conducted in 

duplicate on independent days 

Compound IC50 - NADPH IC50 + NADPH IC50 shift kinact (min-1) KI (µM) 

(±)-fluoxetine 22, 37, 22 3.3, 3.9, 1.8 6.6, 9.4, 12 0.031, 0.029, 0.031 17, 11, 13 

(S)-fluoxetine 91, 79, 109 2.8, 3.3, 4.0 33, 24, 28 0.075, 0.115, 0.064 40, 54, 46 

(R)-fluoxetine 20, 22, 21 3.5, 3.9, 4.7 5.6, 5.5, 4.4 0.026, 0.024, 0.018 7.5, 6.8, 5.3 

(±)-norfluoxetine 18 1.5 11 N.D. N.D. 

(S)-benzylnirvanol 0.19, 0.16, 0.17 0.41, 0.43, 0.44 0.46, 0.38, 0.38 N.A. N.A. 

ticlopidine 1.14, 1.20, 1.43 0.81, 0.76, 0.59 1.4, 1.6, 2.4 N.D. N.D. 

N.A – Not applicable 

N.D. – Not done. 
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Figure 2 
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