Altered human CYP3A4 activity caused by Antley-Bixler Syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust *in vitro* system

Daniela Moutinho, Christopher C. Marohnic, Satya P. Panda, José Rueff, Bettie Sue Masters and Michel Kranendonk

Department of Genetics, Faculty of Medical Sciences, CIGMH, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, PORTUGAL (DM, JR, MK)

Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229 USA (CCM, SPP, BSM)
Running Title Page

Running Title:
Altered human CYP3A4 activity by ABS-related CYPOR variants

Corresponding author:
Michel Kranendonk, Department of Genetics, Faculty of Medical Sciences, CIGMH, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, PORTUGAL
Tel.: +351 21 361 0290; Fax: +351 21 362 2018; Email: michel.kranendonk@fcm.unl.pt

Text Pages: 27
Tables: 3
Figures: 1
References: 40
Number of words:
 Abstract: 250
 Introduction: 735
 Discussion: 1496

Abbreviations:
ABS: Antley-Bixler Syndrome
CYP: Cytochrome P450
CYPOR: NADPH Cytochrome P450 Oxidoreductase
BOMCC: Benzyl-O-methyl-cyanocoumarin
DBF: Di-benzylfluorescein
DBOMF: Di-[benzyl-O-methyl]-fluorescein
WT: wild type
Abstract

NADPH-cytochrome P450 oxidoreductase (CYPOR) variants have been described in patients with perturbed steroidogenesis and sexual differentiation, related to Antley-Bixler Syndrome (ABS). It is important to determine the effect of these variants on CYP3A4, the major drug-metabolizing cytochrome P450 (CYP) in humans. In this study, 12 CYPOR_ABS variants were separately co-expressed with CYP3A4, in a robust in vitro system to evaluate the effects of these variants on CYP3A4 activity in a milieu that recapitulates the stoichiometry of the mammalian systems. Full-length CYPOR variants were co-expressed with CYP3A4, resulting in relative expression levels comparable to those found in hepatic tissue. Di-benzylfluorescein (DBF), a CYP3A-specific reporter substrate (Ghosal et al., 2003), was used to compare the variants and wild type (WT) CYPOR activities with that of human liver microsomes. CYP3A4, combined with WT CYPOR, demonstrated kinetic parameters (k_{cat}, K_m) equal to those for pooled human liver microsomes. CYPOR variants Y181D, Y459H, V492E, L565P and R616X all demonstrated maximal loss of CYP3A4 catalytic efficiency, while R457H and G539R retained ~10% and 30% activities, respectively. Conversely, variants P228L, M263V, A287P and G413S each showed WT-like capacity (k_{cat}/K_m), with A287P variant being formerly reported to exhibit substantially lower catalytic efficiency. Additionally, Q153R exhibited 60% of WT CYPOR capacity to support the DBF O-debenzylation reaction, contradicting increased catalytic efficiency (k_{cat}/K_m) relative to WT, reported previously. Our data indicate the importance of using simulated, validated in vitro systems, employing full-length proteins with appropriate stoichiometric incorporation of protein partners, when pharmacogenetic predictions are to be made for CYP-mediated biotransformation.
Introduction

Cytochrome P450s (CYP) are members of a large super-family of heme proteins, playing an important role in xenobiotic biotransformation, as well as in the endobiotic biosynthesis and catabolism of steroid hormones, bile acids, lipid-soluble vitamins and fatty acids (Guengerich, 2005). There are more than four dozen human microsomal CYPs (Guengerich, 2005) (www.cypalleles.ki.se/), activities of which are supported by electron transfer from NADPH-cytochrome P450 oxidoreductase (CYPOR). This reductase, encoded by the POR gene, is a ~78 kDa microsomal flavoprotein, containing three distinct domains for binding its cofactors NADPH, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) (Porter et al., 1990; Porter and Kasper, 1986; Wang et al., 1997). The fourth CYPOR domain is the connecting domain, containing a flexible hinge region, which is involved in the recently established transition between its closed and open conformations (Aigrain et al., 2009; Ellis et al., 2009; Hamdane et al., 2009). Moreover, CYPOR has a hydrophobic N-terminal transmembrane segment (25-30 amino acids), responsible for its orientation in the endoplasmic reticulum and for the interaction of CYPOR with CYPs, as its deletion leads to loss of its CYP reductase activity (Black and Coon, 1982).

More than 50 different haplotypes of the human POR gene have been described so far (http://www.cypalleles.ki.se/por.htm). Considerable numbers of these haplotypes have been found in patients with Antley-Bixler syndrome (ABS, OMIM #201750), a disorder characterized by severe developmental abnormalities (Antley and Bixler, 1975). The majority of these ABS-related POR mutations cause a reduction of CYPOR activity, such as Y181D, involved in FMN binding (Arlt et al., 2004; Huang et al., 2005; Marohnic et al., 2010), Y459H and V492E, in FAD binding (Kranendonk et al., 2008; Marohnic et al., 2006), and G539R, positioned in the NADPH binding-domain (Huang et al., 2005). Interestingly, some mutant proteins such as variant Q153R, were reported to support increased CYP activity, when compared to wild-type enzyme (Agrawal et al., 2010; Agrawal et al., 2008; Flück et al., 2010; Sandee et al., 2010). Variant A287P has been described as having differential behavior with different CYPs (Dhir et al., 2007; Fukami et al., 2005). Many of these studies were performed with in vitro (reconstituted) systems, using N-terminal end-deleted CYPOR and extreme CYPOR:CYP ratios in favor of CYPOR (>1), the
opposite of those found in vivo, estimated to be 1:3-10 (CYPOR:CYP) (Paine et al., 1997; Shephard et al., 1992; Venkatakrishnan et al., 2000) in favor of CYP. These in vivo CYPOR:CYP ratios implicate a highly dynamic process in which CYP (as well as other redox partners, vide supra) must compete for CYPOR.

While the majority of studies on these CYPOR variants were initially focused on steroidogenesis, studies of our group (Kranendonk et al., 2008; Marohnic et al., 2010) and of others (Agrawal et al., 2008; Gomes et al., 2009; Hart et al., 2008) have attempted to evaluate the effects of these CYPOR variants on drug metabolizing CYPs. Two very recent studies (Agrawal et al., 2010; Flück et al., 2010) described the effect of ABS-related CYPOR variants on the major drug metabolizing enzyme in humans, CYP3A4, which together with CYP3A5 is estimated to be involved in the metabolism of more than 50% of the currently prescribed drugs (Guengerich, 2005).

In this current report, we have studied 12 different CYPOR_ABS variants in a robust in vitro Escherichia coli expression system designed to evaluate the effect of these CYPOR variants on CYP3A4 activity. In order to draw conclusions regarding the effect of CYPOR mutants on drug metabolism, it is important to maintain the physiological ratios of CYPOR to CYP as practically as possible. We have employed the system used in our former studies of ABS-related CYPOR variants in combination with human CYP, namely the bacterial cell model BTC_CYP (Kranendonk et al., 2008; Marohnic et al., 2010). This E. coli model contains a bi-plasmid expression system, allowing the co-expression of full length CYPOR variants with human CYPs, at physiologically relevant stoichiometries of the CYP and CYPOR proteins (Duarte et al., 2005). We combined the different CYPOR variants separately with human CYP3A4 in this BTC_CYP strain. Dibenzylfluorescein (DBF) was used for kinetic measurements of CYP3A4 activities, which is a highly specific substrate for CYP3A (Ghosal et al., 2003), permitting a rigorous validation of our system against human liver microsomes at saturating concentrations not achievable with other fluorescent substrates. Our data demonstrate substantial differences when compared with the outcomes of recently published reports on ABS-related CYPOR variants and their effect on CYP3A4.
Methods

Reagents

L-Arginine, δ-aminolevulinic acid, ampicillin, kanamycin sulfate, chloramphenicol, tetracycline HCl (Tet), cytochrome c, isopropyl β-D-thiogalactoside (dioxane-free) (IPTG), thiamine, glucose-6-phosphate, NADPH, and NADP⁺ were obtained from Sigma Chemical Co. (St Louis, MO). Bacto agar, bacto peptone, bacto tryptone and bacto yeast extract were obtained from Difco (Detroit, MI). Pooled (N=200) human liver microsomes (XTreme 200) were obtained from XenoTech (Lenexa KS; Lot No. 0910251, with the following characteristics: total protein: 20 mg/ml; CYP content: 391 pmol/mg; cytochrome b₅: 346 pmol/mg; activity in NADPH-cytochrome c reduction: 153 ± 9 nmol/mg protein/min). Dibenzylfluorescein was obtained from BD Biosciences (Bedford MA) and fluorescein from Molecular Probes_Invitrogen (Oregon, USA). The Vivid® CYP450 substrates BOMCC and DBOMF were purchased from Invitrogen, Life Technologies (Carlsbad, CA). A polyclonal antibody purified by Protein-A Sepharose from rabbit serum raised against recombinant rat CYPOR was used for CYPOR immuno-detection (Kranendonk et al., 2008)

Expression Plasmids

The expression of human CYPOR variants in strain BTC-CYP (Duarte et al., 2005) was accomplished with plasmid pLCM_PORwt (Kranendonk et al., 2008), containing human WT POR cDNA, based on NCBI sequence NM_000941, encoding the CYPOR consensus protein sequence NP_000932. The POR cDNA of pLCM_PORwt was adapted to encode the different CYPOR_ABS variants. The POR cDNA of all pLCM_POR plasmids was confirmed by extensive sequencing of the POR cDNA. Plasmid pLCM (Kranendonk et al., 1998) was used as the POR mock plasmid. The expression plasmid for human CYP3A4 (pCWh3A4) was described previously (Kranendonk et al., 1999). Each of the pLCM_POR plasmids was co-transformed with pCWh3A4 to strain PD301 [mother strain of BTC_CYP (Duarte et al., 2005)] by electroporation.
Cultures and Membrane Preparations and Their CYP3A4/CYPOR Content

Cultures and membrane fractions of the different strains were prepared as previously described (Kranendonk et al., 2008). Membranes were characterized for their protein content, according to the method described by Bradford, following the manufacturer’s protocol (BioRad, San Francisco CA), using bovine serum albumin as standard. The CYP3A4 content of membranes was determined using the CO-difference spectral technique as previously reported (Kranendonk et al., 2008). CYPOR content of membrane fractions was quantified by immunoblotting against a standard curve of purified human, full-length WT CYPOR, using polyclonal rabbit anti-CYPOR primary antibody and biotin-goat anti-rabbit antibody in combination with the fluorescent streptavidin conjugate (WesternDot™ 625 Western Blot Kit, Invitrogen, Carlsbad, CA). Western blot signals were analyzed with LabWorks™ 4.6 software.

Enzyme Assays

The electron transfer capacity of the CYPOR variants was measured using the NADPH-cytochrome c reduction assay as described previously (Kranendonk et al., 2008).

Catalytic activity of CYP3A4, sustained by the different CYPOR variants was evaluated by its capacity to mediate the O-debenzylation of dibenzylfluorescein (DBF), which has been used as a CYP3A-specific reporter reaction (Ghosal et al., 2003). The debenzylation activity was measured as the rate of the increase in fluorescein fluorescence (Ex: 485 nm; Em: 535 nm). All measurements were carried out in triplicate, in a 96-well format using a Zenyth 3100 micro-plate reader (Anthos, Austria), and rates (pmol fluorescein formed/[pmol CYP3A4.min]) were calculated by using a standard curve of the product fluorescein. The reaction was performed with either bacterial membranes or pooled human liver microsomes (N= 200) in 100 mM KPi buffer, pH 7.6, with 3 mM MgCl₂, 200 μM NADPH in a total volume of 200 μL, using a final well concentration of 25 nM CYP3A4 (for liver microsomes: assuming that ~30% of total human liver CYP is CYP3A (Shimada et al., 1994)). Stock solutions of DBF were prepared in acetonitrile (ACN), with the solvent maintained at a final concentration of 0.1% (v/v) throughout the experiment, to prevent CYP3A4 inhibition by the solvent (Busby et al., 1999). The reaction was followed for 30 minutes at
37°C and rates were derived from the linear part of the kinetic traces. To maintain a constant NADPH concentration, an NADPH-generating system was used, which consisted of 0.5 mM glucose-6-phosphate and 40 mUnits/mL of G-6-P-dehydrogenase. Initial assays with human liver microsomes and BTC3A4_PORWT membranes were performed with DBF gradients up to 1.25 \(\mu \)M. Subsequent assays with bacterial membranes were performed with a DBF gradient up to 5 \(\mu \)M, except for membranes containing the Q153R variant for which a maximum DBF concentration of 10 \(\mu \)M was applied. Plots of velocity traces versus DBF concentration were fitted according to the Michaelis-Menten equation in order to determine kinetic parameters \(k_{cat} \) and \(K_m \). BTC3A4 membranes containing CYPOR variants WT, Q153R or A287P were also tested with the Vivid® CYP450 substrates BOMCC and DBOMF with assay conditions as described above, adapted according to indications of manufacturer. The substrate BOMCC was used up to 100 \(\mu \)M, copying conditions described in the study of Flück et al. (2010). Due to low solubility, the concentration gradient of BOMCC could only be performed with final solvent (ACN) concentrations above 2%, thus inhibiting CYP3A4 well above 30% (Busby et al., 1999). Therefore a different Vivid® CYP450 substrate (DBOMF) was used in the present studies, with a concentration gradient up to 10 \(\mu \)M, keeping the final ACN concentration at 0.5%. The final CYP concentration for this assay was 37.5 nM. Velocity traces were plotted and Michaelis-Menten parameters could be derived appropriately.
Results

Human CYP3A4 and CYPOR Contents in the BTC3A4_POR Membrane Fractions

All membrane fractions of the BTC3A4_POR strains were characterized with respect to CYPOR and CYP3A4 contents (see Table 1). Human CYP3A4 expression levels range from 50 to 127 pmol/mg protein, as determined by CO-difference spectrophotometry. CYPOR protein contents were determined by immuno-detection (see Supplemental Data file). All membrane fractions demonstrated a major signal around 77 kDa except that derived from the POR mock strain (BTC3A4_PORNull: no CYPOR specific signal) and the one containing the CYPOR variant R616X (Supplementary Data file Figure 1). This latter variant was expressed in a truncated form as demonstrated by its CYPOR-specific signal at a lower molecular weight (approximately 70 kDa).

Densitometry analysis using a standard curve of purified full-length wild type protein allowed the quantification of CYPOR protein in the membrane fractions. The CYPOR_ABS variants all demonstrated similar contents of CYPOR protein when compared to WT (Table 1), indicating that the respective mutations did not affect protein expression and stability in the BTC3A4_POR cell-model, except for variants L565P and R616X. These variants showed lower levels, namely 8 and 7 pmol/mg membrane protein, respectively, indicating lower efficiency in expression or protein stability, as was already noted for the R616X variant (vide supra).

These results indicate that the ABS-related CYPOR alleles were co-expressed with CYP3A4 in stoichiometries approximating those of the wild-type CYPOR (ratio CYPOR:CYP3A4 = 1:3) (Table 1) in the BTC3A4_PORWT system and the one observed in human liver microsomes (average = 1:3; range = 1:2 – 1:13) (Paine et al., 1997; Venkatakrishnan et al., 2000) (Table 1). Exceptions to these ratios were observed in membrane fractions derived from BTC3A4_PORL565P and BTC3A4_PORR616X, which demonstrated substantially lower ratios as a result of the lower expression levels of their CYPOR variants (vide supra) but not due to altered CYP3A4 levels.
Electron Transfer Capacities of CYPOR Alleles in BTC3A4_POR Membranes

Initial studies of the electron transfer capacity of the CYPOR variants in the different BTC3A4_POR membrane fractions were performed, measured as the maximum velocity of NADPH-cytochrome c reduction, taking into account the expression level of the CYPOR variants (Table 1). This capacity was considerably different among mutants. Several were apparently capable of reducing cytochrome c with a wild type capability (Q153R, M263V, and G413S). Other variants had very low or almost no capacity for this reaction, such as Y181D, Y459H, V492E, G539H, L565P, and R616X. Variant A287P seemed not to be severely hampered (~85% residual) and variants P228L and R457H demonstrated around 55% and 30% of wild-type capacity, respectively (Table 1).

CYPOR Variants Sustaining CYP3A4-Mediated Debenzylation of Dibenzylfluorescein

The fluorogenic substrate, dibenzylfluorescein (DBF) (Stresser et al., 2000), was selected for the purpose of determining the effects of the ABS-related CYPOR variants on CYP3A4 activity. DBF was previously shown to be debenzylated by CYP3A4/5 and 2C8, but when applied in low concentrations (<2 μM) it can be used as a CYP3A-specific substrate (Ghosal et al., 2003). In our first experimental set-up using DBF concentrations up to 2.5 μM DBF, the human liver microsomes showed non-Michaelis-Menten velocity traces (data not shown), probably due to interference by CYP2C8-mediated metabolism (supra vide). Therefore, the use of the BTC3A4_POR membranes was validated against human liver microsomes (pooled, N=200) using a restricted substrate gradient with a maximum of 1.25 μM. The velocities obtained for the BTC3A4_POR WT membranes and human liver microsomes were very similar (Figure 1A) and could be plotted according to the Michaelis-Menten equation, with high confidence (r²= 0.97 and 0.99, respectively). The results demonstrated equal debenzylation activities of the BTC3A4_POR WT membranes when compared with the liver microsomes, with kcat (0.34 ± 0.04 vs. 0.47 ± 0.04 min⁻¹) and Km (1.0 ± 0.2 vs. 1.4 ± 0.2 μM) values, respectively. Although these parameters were derived using a sub-optimal concentration-range of the substrate DBF (0 -1.25 μM) to prevent CYP2C8 interference in the human liver microsomes, the velocity trace and kinetic parameters of the BTC3A4_POR system...
very closely resembled those of human liver microsomes in the CYP3A4-mediated DBF biotransformation. Subsequently, velocity traces of the bacterial CYP3A4 membranes containing ABS-CYPOR variants were measured. For several membrane preparations, in particular, those containing debilitated CYPORs, it was necessary to use a substrate concentration variation up to 5 μM to be able to plot the velocity traces with high confidence (Figure 1B). Results are presented in Table 2, including those for the WT-variant under these conditions.

For the BTC3A4_POR membranes containing the severely debilitated CYPOR forms Y181D, Y459H or V492E, no activity parameters could be determined. This was also the case for the CYPOR forms L565P or R616X, which were expressed in very low quantities relative to CYP3A4 (vide supra). The catalytic efficiency (k_{cat}/K_{m}) of CYP3A4 was substantially compromised when supported by CYPOR variants R457H or G539R, demonstrating 10% or 30%, respectively, of the efficiency calculated for the wild type CYPOR. This was mainly due to a severe drop in maximum velocities (k_{cat}), but maintaining a wild type-like apparent affinity (K_{m}) for DBF, for these two variants (Table 2). The domain perturbations producing these lowered activities have been reported in x-ray structures for R457H and V492E in collaborative studies between the Kim and Masters laboratories (Xia et al., 2011). Membrane fractions containing variants P228L, M263V, A287P and G413S showed WT capacity in sustaining CYP3A4, all of which demonstrated similar maximum reaction velocities and similar apparent affinities for DBF. The velocity plot of the O-debenzylation of DBF by CYP3A4, when supported by the CYPOR variant Q153R demonstrated a substantially different trace when compared to the one supported by the wild type enzyme (see Figure 1B). For this variant it was necessary to extend the gradient to 10 μM to obtain a velocity trace with high confidence (see Figure 1C). The maximum velocity showed an increase of about 2-fold relative to the wild type CYPOR. However the apparent K_{m} for DBF increased 3 times, leading to a decrease of 40% in catalytic efficiency (k_{cat}/K_{m}). The effect of several of the CYPOR variants on CYP3A4 investigated here were described in two recent studies, with several variants demonstrating substantially different efficacy outcomes (see Table 3). In particular, opposing results were obtained for the effects of variants Q153R and A287P on CYP3A4 (highlighted in grey). For clarification of these discrepancies, the WT, Q153R and A287P variants were tested
with the Vivid® CYP450 substrate BOMCC, the substrate used by the Flück et al., (2010) study. When applying their concentration gradient up to 100 µM, serious BOMCC solubility problems were encountered, which could be surpassed only by using final solvent (ACN) concentrations above 2%. Such high solvent concentrations are known to inhibit CYPs substantially, in particular with CYP3A4, in which case 2% ACN inhibited activity is well above 30% (Busby et al., 1999). This level of inhibition is incompatible with the objective of accurately determining effects of ABS-related CYPOR variants on CYP3A4 activity. Still, persisting in seeking clarifications for the described discrepancy, a different Vivid® CYP450 substrate was used, specifically DBOMF, for variants WT, Q153R and AP278P, using a final ACN concentration of 0.5%. Accurate velocity traces for the BTC3A4 membranes of these CYPOR variants could be plotted (see Figure 1D). Maximum velocities were 1.2 ± 0.1, 1.8 ± 0.2, and 1.2 ± 0.1 min⁻¹, for WT, Q153R and A278P, respectively. The corresponding apparent affinities (Kₘ) were 2.9 ± 0.6, 5.6 ± 1.0 and 2.9 ± 0.7 µM, respectively. The efficacies (kₐₑₙ/Kₘ) relative to CYPOR_WT could thus be calculated, demonstrating an almost 25% drop for CYP3A4 when sustained by variant Q153R and an equal (WT) efficacy when supported by variant A287P.
Discussion

Variation in CYP3A-mediated drug metabolism is considered to be one of the main reasons for observed differences in the therapeutic efficacy and toxicity of drugs (Evans and McLeod, 2003). The current study explored the importance of POR variation in CYP3A4 metabolism, particularly of haplotypes encountered in individuals with perturbed steroidogenesis, by evaluating the influence of 12 different CYPOR variants on CYP3A4 activity, using an engineered bacterial cell model. The CYPOR:CYP3A4 ratios of the variants approximated those found in human liver (1:3 to 1:5; see Table 1) (Paine et al., 1997; Venkatakrishnan et al., 2000), except for variants L565P and R616X, which expressed in substantially lower amounts, due to apparent instability. Characterization of the membranes (Table 1) demonstrated the expression of full-length CYPOR variants in the BTC3A4_POR model system, except that R616X was expressed in a truncated form, ascribed previously to a truncation of the C-terminal end (Huang et al., 2005).

Dibenzylfluorescein (DBF) was shown previously to be a CYP3A-specific model substrate when used in low micromolar concentrations (Ghosal et al., 2003) and was used for detailed analysis of the CYPOR variants to determine their capacities to sustain CYP3A4-mediated activity. Under these conditions CYP3A4, and its congener CYP3A5, debenzylate DBF with very similar k_{cat} and K_m values (Ghosal et al., 2003). Our bacterial membrane fractions, combining CYP3A4 with wild type CYPOR demonstrated: (i) almost identical kinetic parameters as those previously described for (recombinant) CYP3A4 ($k_{cat}: 0.55 \pm 0.08$ min$^{-1}$, $K_m: 1.03 \pm 0.42$ µM, Ghosal et al., 2003) and (ii) very similar parameters compared to pooled human liver microsomes (Figure 1A). These data validate the BTC3A4_POR system for in vitro studies to evaluate of CYP3A4-mediated biotransformation.

Based on DBF debenzylation catalytic efficiencies (k_{cat}/K_m), the BTC3A4_PORABS membranes may be grouped (Table 2). One group comprises CYPOR variants containing mutations directly involved in the binding of the prosthetic flavins (Y181D, Y459H or V492E), for which no CYP3A4 activity could be detected. These results correlate with their severe decline in electron transfer efficiency to background levels, measured as cytochrome c reductase activity (Table 1). In previous studies we described the deficiency of these variants in sustaining CYP1A2 activity, which
could be substantially recovered by exogenous FMN (Y181D) or FAD (Y459H and V492E) (Kranendonk et al., 2008; Marohnic et al., 2006). The second group P228L, M263V, A287P and G413S, metabolized DBF similarly to WT CYPOR, reflected by their k_{cat} and K_m parameters (Table 2). This is corroborated by their wild type-like cytochrome c reduction efficiency (Table 1), except for variant P228L, which demonstrated 45% loss of this activity. Variants classified in this second group have been identified in individuals with altered steroidogenesis (catalyzed by CYP17A1, CY19A1 and CYP21A1) (Dhir et al., 2007; Huang et al., 2005; Pandey et al., 2007). Our results with these variants indicate that these mutations may produce CYP-dependent effects, explainable by the location of the P228L mutation (interaction domain with protein redox partners) but to a lesser extent for the M263V, A287P and G413S mutations (hinge region/connecting domain).

Previously, variant A287P was found to influence differentially CYP17A1 (decreased activity) relative to CYP19A1 and CYP21A1 (normal activity) (Dhir et al., 2007; Pandey et al., 2007). Both the k_{cat} and K_m values for this mutant CYPOR were lower (Table 2, present study), resulting in only slightly lower catalytic efficiency. The third group is composed of variants R457H and G539R. These variants demonstrated low CYP3A4 catalytic efficiencies, i.e., 10% and 30% relative to WT, respectively, mainly due to a severe drop in their maximum velocities (Table 2). These low k_{cat} values correlated with low cytochrome c reduction capacities, 30% and 4%, respectively (Table 1).

The R457H and the G539R mutations are located in the FAD- and NADPH-binding domains, respectively, explaining their effects on electron transfer and CYP3A4 maximum velocity. Variant Q153R demonstrated quite different kinetics compared to CYP3A4 sustained by WT CYPOR (Figure 1C), with a 40% drop in DBF debenzylation catalytic efficiency (Table 2). Interestingly, there was not a corresponding drop in electron transfer capability to cytochrome c, which was equal (100%) relative to WT (Table 1). The Q153R mutation is located in the FMN binding domain which forms the interface for interaction with CYPOR’s redox partners, including cytochrome c (Vermillion and J.Coon, 1978), suggesting that protein:protein interactions and/or electron transfer in CYPOR:CYP3A4 or CYPOR:cytochrome c complexes occur differentially. No DBF metabolism could be detected with variants L565P or R616X, precluding conclusions concerning their effects on CYP3A4 DBF biotransformation.
Recent studies have been published describing the effects of ABS_CYPOR variants on CYP3A4 activity (Agrawal et al., 2010; Flück et al., 2010). Many of the ABS_CYPOR variants we presented here were included in these reports, most noteworthy were those obtained for the Q153R and A287P variants. Neither the Flück nor the Agrawal studies indicated decreases in CYP3A4 efficiency (k_{cat}/K_m) for variant Q153R versus the ~40% loss we describe here when using DBF. In addition, variant A287P was described in these two studies to produce a very severe defect in CYP3A4 efficiency, contradicting our data in which this variant sustained CYP3A4 activity similar to WT CYPOR, with the interesting exception of erythromycin, a sterically large 3A4-substrate (Table 3). Some discrepancies between our data and these earlier studies can be expected for particular ABS_CYPOR variants on CYP3A4 when using different substrates. However, results of the second CYP3A4 substrate DBOMF herein, confirm our data for variants Q153R and A287P. Moreover, our observation that substrate BOMCC used in the study of Flück et al., (2010) can only be used with high acetonitrile concentrations leading to severe inhibition of CYP3A4, suggests some compromise of their CYP3A4 activity data due to solvent effects. Although not clinically used, its CYP3A4 specificity defines DBF as a drug-like compound.

We have employed full-length constructs of CYPOR in our studies to recapitulate the activities observed in human liver microsomes, and based our calculations on the generally accepted turnover of 3000 to 3200 min$^{-1}$ (Guengerich et al., 2009; Parikh et al., 1997) for CYPOR-catalyzed cytochrome c reduction. The Agrawal and Flück studies however, made use of N-terminally truncated CYPOR variants in their CYP3A4/ABS_CYPOR in vitro systems. Comparison of the electron-transfer efficiency of the full-length variants (Table 1) with the same variants expressed in the N(27)-deleted form (values in parentheses), reveals substantial differences.

A second possibility concerns the CYPOR:CYP stoichiometry in these two studies. Their experiments used ratios strongly favoring CYPOR (five-fold excess). Although empirical comparisons can be made using higher CYPOR to CYP ratios, non-physiological ratios in favor of CYPOR could produce protein:protein interactions via non-physiological equilibria. This was demonstrated for CYP3A biotransformation, producing different results, depending on the relative ratio of CYPOR over CYP3A4/5 (Emoto et al., 2008) (Christensen et al., 2011).
Differences could also result from the *in vitro* systems applied in the Flück *et al.* (2010) and Agrawal *et al.* (2010) studies compared to the present system. These former studies involved *in vitro* reconstitution combining purified and membrane-bound proteins, specific phospholipids and a detergent with the objective of forming artificial lipid vesicles. This method requires specific procedures to ensure their proper application, including size exclusion chromatography, to remove adventitious non-incorporated proteins and the subsequent analysis of lipid vesicles to obtain their actual CYPOR/CYP stoichiometry. Such characterization of the lipid vesicles as well as a rigorous validation of their use for a detailed study of the effect of these variants on CYP3A4 were not performed in the Flück *et al.* 2010 and Agrawal *et al.*, 2010 studies. Interestingly, in a former study of the Flück *et al.* group (Pandey *et al.*, 2007) in which ABS related variants were expressed as full length proteins, using more *in vivo* like CYPOR:CYP stoichiometries, variant A287P showed no diminished efficiency to sustain CYP19A1 activity.

In conclusion, we have evaluated the effect of 12 CYPOR variants on human CYP3A4, using an engineered bacterial model-system, validated as a robust *in vitro* system for the purpose of CYP3A4-mediated metabolism studies. Substantial differences were found for several CYPOR variants, when comparing our data with two previous studies. Comparison of experimental approaches of the current study with the previous ones highlights the importance of the use of well-defined, validated *in vitro* systems, using full-length proteins simulating *in vivo*-like stoichiometric quantities of protein partners for enzymatic evaluations to assist in making pharmacogenetic predictions in biotransformation. It is tempting to predict that each CYPOR variant will differentially affect interactions with various redox partners. Evidence derived from studies performed in our laboratories with various redox partners (Kranendonk *et al.*, 2008; Marohnic *et al.*, 2011), as well as those of Flück *et al.* (2010), Agrawal *et al.* (2010) and Dhir *et al.* (2007), have strongly suggested these differences. Finally, although there is no *perfect* system that recapitulates the *in vivo* environment, it is important to maintain biochemical principles in measuring catalytic parameters and to attempt to mimic the *in vivo* system to the extent possible. Proper validation of *in vitro* systems remains an imperative control for their correct application, such as the use of pooled human microsomes in the present study.
Authorship Contribution

Participated in research design: Moutinho, Marohnic, Panda, Kranendonk

Conducted experiments: Moutinho, Marohnic, Panda, Kranendonk

Performed data analysis: Moutinho, Marohnic, Panda, Masters, Rueff, Kranendonk

Wrote or Contributed to the writing of the manuscript: Moutinho, Marohnic, Panda, Masters, Rueff, Kranendonk
References

Escherichia coli BTC, a human cytochrome P450 competent tester strain with a high sensitivity
towards alkylating agents: involvement of alkyltransferases in the repair of DNA damage
induced by aromatic amines. Mutagenesis 20, 199-208.

Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and

hydroxylation activity catalyzed by recombinant cytochrome P450 3A4 in combination with
NADPH-cytochrome P450 reductase. Drug Metab Lett 2, 190-192.

Evans, W.E., and McLeod, H.L. (2003). Pharmacogenomics--drug disposition, drug targets, and

CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with

Fukami, M., Horikawa, R., Nagai, T., Tanaka, T., Naiki, Y., Sato, N., Okuyama, T., Nakai, H.,
Soneda, S., Tachibana, K., et al. (2005). Cytochrome P450 oxidoreductase gene mutations and
Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and

Rapid determination of enzyme activities of recombinant human cytochromes P450, human liver

Gomes, A.M., Winter, S., Klein, K., Turpeinen, M., Schaeffeler, E., Schwab, M., and Zanger, U.M.
(2009). Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial
analysis and impact on microsomal drug oxidation. Pharmacogenomics 10, 579-599.

Mechanism and Biochemistry, P.R. Ortiz de Montellano, ed. (New Youk, Plenum Publishers),
pp. 377-530.

Venkatakrishnan, K., von Moltke, L.L., Court, M.H., Harmatz, J.S., Crespi, C.L., and Greenblatt, D.J. (2000). Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 28, 1493-1504.

Footnotes

This work was supported in part by the NIH National Institute of General Medical Sciences [Grant GM081568] (to B.S.M.); the Robert A. Welch Foundation [Endowed Chair AQ-0012] (to B.S.M.); and the Fundação para a Ciência e a Tecnologia (Portugal) [Grant PTDC/SAU-GMG/71911/2006] (to DM, RF and MK).

Reprint requests: Michel Kranendonk, Department of Genetics, Faculty of Medical Sciences, CIGMH, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, PORTUGAL
Tel.: +351 21 361 0290; Fax: +351 21 362 2018; Email: michel.kranendonk@fcm.unl.pt

Footnote to title:

Current address of CCM: Abbott Laboratories, Abbott Park, IL USA
Legends for figures

Figure 1. Reaction velocity plots of BTC3A4_POR membranes

(A): Velocity plots of human liver microsomes versus BTC3A4_POR^{WT} membranes with DBF up to 1.25 \(\mu \text{M} \); (B): Velocity plots of BTC3A4_POR membranes containing CYPOR variants WT, Q153R, Y181D, M263V or A287P with DBF up to 5 \(\mu \text{M} \); (C): Velocity plots of BTC3A4_POR membranes containing CYPOR variants WT or Q153R, using DBF gradient up to 10 \(\mu \text{M} \); (D): Velocity plots of BTC3A4 membranes containing CYPOR variants WT, Q153R or A287P with DBOMF.
Table 1. CYP3A4 and CYPOR contents and NADPH-cytochrome c reductase activities of BTC3A4_POR membrane fractions.

<table>
<thead>
<tr>
<th>BTC3A4_POR</th>
<th>CYP3A4 (pmol/mg protein)</th>
<th>CYPOR* (pmol/mg protein)</th>
<th>Ratio CYPOR/CYP3A4</th>
<th>V_{max} cyt.c^{red} (nmol/min/mg protein)</th>
<th>Electrontransfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>129 ± 2</td>
<td>0</td>
<td>-</td>
<td>2.1 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>WT</td>
<td>77 ± 3</td>
<td>30.3 ± 1.5</td>
<td>1:3</td>
<td>97.1 ± 5.1</td>
<td>100</td>
</tr>
<tr>
<td>P228L</td>
<td>105 ± 28</td>
<td>37.8 ± 2.6</td>
<td>1:3</td>
<td>68.9 ± 2.9</td>
<td>55 (76)</td>
</tr>
<tr>
<td>M263V</td>
<td>111 ± 11</td>
<td>24.4 ± 1.4</td>
<td>1:5</td>
<td>84.0 ± 0.4</td>
<td>105 (104)</td>
</tr>
<tr>
<td>A287P</td>
<td>77 ± 8</td>
<td>16.3 ± 1.2</td>
<td>1:5</td>
<td>44.4 ± 5.3</td>
<td>85 (41)</td>
</tr>
<tr>
<td>G413S</td>
<td>85 ± 13</td>
<td>24.0 ± 1.1</td>
<td>1:4</td>
<td>84.5 ± 5.2</td>
<td>108 (71)</td>
</tr>
<tr>
<td>Q153R</td>
<td>58 ± 3</td>
<td>26.0 ± 2.7</td>
<td>1:2</td>
<td>84.2 ± 1.9</td>
<td>100 (23)</td>
</tr>
<tr>
<td>R457H</td>
<td>53 ± 6</td>
<td>26.9 ± 1.3</td>
<td>1:2</td>
<td>27.1 ± 1.0</td>
<td>30 (8)</td>
</tr>
<tr>
<td>G539R</td>
<td>127 ± 11</td>
<td>24.5 ± 1.0</td>
<td>1:5</td>
<td>5.0 ± 0.4</td>
<td>4 (41)</td>
</tr>
<tr>
<td>Y181D</td>
<td>81 ± 6</td>
<td>36.2 ± 0.1</td>
<td>1:2</td>
<td>4.1 ± 0.7</td>
<td>2 (0)</td>
</tr>
<tr>
<td>Y459H</td>
<td>75 ± 6</td>
<td>21.2 ± 0.7</td>
<td>1:4</td>
<td>10.1 ± 2.5</td>
<td>12 (7)</td>
</tr>
<tr>
<td>V492E</td>
<td>50 ± 9</td>
<td>24.8 ± 1.6</td>
<td>1:2</td>
<td>3.5 ± 0.1</td>
<td>2 (7)</td>
</tr>
<tr>
<td>L565P</td>
<td>120 ± 12</td>
<td>8.1 ± 0.6</td>
<td>1:14</td>
<td>3.0 ± 0.2</td>
<td>4 (29)</td>
</tr>
<tr>
<td>R616X</td>
<td>104 ± 9</td>
<td>6.9 ± 0.3</td>
<td>1:14</td>
<td>2.5 ± 0.2</td>
<td>3 (0)</td>
</tr>
<tr>
<td>Human Liver Micros.</td>
<td>-</td>
<td>-</td>
<td>1:3 [1:2 - 1:13]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* CYPOR content of membranes, based on immuno-blot analysis

a CYPOR:CYP3A ratio (average and interval) (Venkatakrishnan et al., 2000), assuming a ~30% CYP3A content of human liver (Guengerich, 2005)

b Percentage in electron-transfer measured as NADPH cytochrome c reduction (V_{max}) relatively to the expected, calculated reduction activity based on the CYPOR protein content (immuno detection) using K_{cat} of 3200 min^{-1} (Parikh et al., 1997); (): same percentage, calculated by using the V_{max} values, reported by Huang et al. (2005), when using N-term (27 amino acids) deleted CYPOR expression relatively to their CYPOR_WT form;
Table 2. Dibenzylfluorescein O-debenzylation activities

<table>
<thead>
<tr>
<th>BTC3A4_POR (*)</th>
<th>k_{cat} (F** pmol/min/pmol CYP3A4)</th>
<th>K_m (µM)</th>
<th>R^2</th>
<th>k_{cat} / K_m (% WT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WT</td>
<td>0.43 ± 0.03</td>
<td>1.37 ± 0.22</td>
<td>0.97</td>
<td>0.32 (100)</td>
</tr>
<tr>
<td>P228L</td>
<td>0.23 ± 0.01</td>
<td>0.78 ± 0.14</td>
<td>0.95</td>
<td>0.30 (95)</td>
</tr>
<tr>
<td>M263V</td>
<td>0.28 ± 0.02</td>
<td>0.76 ± 0.12</td>
<td>0.95</td>
<td>0.38 (119)</td>
</tr>
<tr>
<td>A287P</td>
<td>0.25 ± 0.01</td>
<td>0.84 ± 0.10</td>
<td>0.97</td>
<td>0.29 (93)</td>
</tr>
<tr>
<td>G413S</td>
<td>0.33 ± 0.02</td>
<td>0.89 ± 0.15</td>
<td>0.96</td>
<td>0.37 (115)</td>
</tr>
<tr>
<td>Q153R</td>
<td>0.80 ± 0.04</td>
<td>4.24 ± 0.45</td>
<td>0.99</td>
<td>0.19 (60)</td>
</tr>
<tr>
<td>R457H</td>
<td>0.052 ± 0.001</td>
<td>1.70 ± 0.07</td>
<td>0.99</td>
<td>0.03 (10)</td>
</tr>
<tr>
<td>G539R</td>
<td>0.059 ± 0.002</td>
<td>0.62 ± 0.06</td>
<td>0.98</td>
<td>0.10 (30)</td>
</tr>
<tr>
<td>Y181D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y459H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V492E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L565P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R616X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Human liver microsomes</td>
<td>0.47 ± 0.04</td>
<td>1.36 ± 0.17</td>
<td>0.99</td>
<td>0.34 (108)</td>
</tr>
</tbody>
</table>

(*) : velocity parameters obtained using DBF gradient up to 5 µM, except for human liver microsomes for which a gradient up to 1.25 µM was applied to prevent interference with DBF metabolism by CYP2C8 (Ghosal et al., 2003) and for CYPOR variant Q153R for which a gradient up to 10 µM was applied.

(-) : not measurable

(F**) : fluorescein formed
Table 3. Comparison of CYP3A4 efficiency when sustained by ABS-CYPORs, using different *in vitro* systems and substrates

<table>
<thead>
<tr>
<th>BTC3A4_POR</th>
<th>debenzylolation DBF (b)</th>
<th>debenzylolation BOMCC (c)</th>
<th>6β-hydroxylation testosterone (d)</th>
<th>1-hydroxylation midazolam (d)</th>
<th>4-hydroxylation midazolam (d)</th>
<th>3-hydroxylation quinidine (d)</th>
<th>N-demethylation erythromycin (d)</th>
<th>kcat/Km (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Q153R</td>
<td>60</td>
<td>119</td>
<td>129</td>
<td>94</td>
<td>92</td>
<td>150</td>
<td>76</td>
<td>100</td>
</tr>
<tr>
<td>Y181D</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D211N</td>
<td>107</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P228L</td>
<td>95</td>
<td>101</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M263V</td>
<td>119</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A287P</td>
<td>93</td>
<td>26</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>3</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>G413S</td>
<td>115</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R457H</td>
<td>10</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Y459H</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V492E</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G539R</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L565P</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R616X</td>
<td>nd</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(\(^{a}\)): percentage kcat/Km values relative to WT
(\(^{b}\)): present study
(\(^{c}\)): from Flück et al., 2010
(\(^{d}\)): from Agrawal et al., 2010
(-): CYPOR variant not evaluated
(nd): no activity detected
SUPPLEMENTAL DATA FILE

Daniela Moutinho, Christopher C. Marohnic, Satya P. Panda, José Rueff, Bettie Sue Masters and Michel Kranendonk

Altered human CYP3A4 activity caused by Antley-Bixler Syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system

Drug Metabolism and Disposition

Supplementary Figure 1. Immuno-detection of CYPOR wild-type and variants in membrane fractions of the different BTC3A4_POR strains.

A. WT=wild-type, QR=Q153R, VM=V164M, YD=181D. B. WT.=wild-type, DN=D211N, PL=P228L, MV=M263V and AP=A287P. C. WT=wild-type, GS=G413S, RH=R457H, YH=Y459H and VE=V492E. D. WT=wild-type GR=G539R, LP=L565P and RX=R616X. All lanes contained 10 µg of membrane protein, except for C1, C2, C3 and C4 which contains 5, 10, 20 and 30 ng of pure holo-CYPOR enzyme, respectively. (*): CYPOR_WT in immuno-detection C and D demonstrated some degradation. The quantification of WT CYPOR was performed with immuno-selective signals of blot A (non-degraded);