N-Isopropyl-\(p\)-iodoamphetamine hydrochloride (IMP) is predominantly metabolized by CYP2C19

Ken-ichi Fujita, Minako Sugiyama, Yuko Akiyama, Kazuhito Hioki, Munetaka Kunishima, Kodai Nishi, Masato Kobayashi, Keiichi Kawai, Yasutsuna Sasaki

Department of Medical Oncology, International Medical Center-Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka, 350-1298, Japan (K.F., M.S., Y.A., Y.S.); Project Research Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Hidaka 350-1241, Japan (K.F., M.S., Y.A., Y.S.); Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan (K.H.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan (M.Ku.); Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan (K.N., M.Ko., K.K.).
Running title: IMP is predominantly metabolized by CYP2C19

To whom correspondence should be addressed:

Dr. Ken-ichi Fujita, Department of Medical Oncology, International Medical Center-Comprehensive Cancer Center, Saitama Medical University,

1397-1 Yamane, Hidaka, Saitama 350-1298, Japan,

Tel +81-42-984-4733, Fax +81-42-984-4679, E-mail fujitak@saitama-med.ac.jp

Number of text pages: 13 (including references and footnotes)

Number of figures: 2

Number of references: 5

Number of words in Abstract: 242

Number of words in Introduction: 281

Number of words in Results and discussion: 682

Abbreviations used are: CYP, individual forms of P450; HLM, human liver microsomes; HPLC, high-performance liquid chromatography; 123I-IMP, 123I-N-isopropyl-p-iodoamphetamine hydrochloride; LC-MSI-MS, liquid chromatography-electrospray ionization mass spectrometry; P450, general term for cytochrome P450
Abstract

123I-N-isopropyl-p-iodoamphetamine hydrochloride (123I-IMP) is clinically used to evaluate blood flow in the brain on single-photon-emission computed tomography. This is a rare radiopharmaceutical that undergoes metabolism. The first step is reported to be 123I-p-iodoamphetamine formation. The drug-metabolizing enzyme(s) involved remain(s) unclear. This study examined the roles of human cytochrome P450 (CYP) in the metabolism of non-radio-labeled IMP with the use of human liver microsomes (HLM) and recombinant human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. Disappearance of IMP was examined, since p-iodoamphetamine was not available. IMP (0.5 µM) time-dependently disappeared when HLM and NADPH-generating system were added to the reaction mixture. (S)-Mephenytoin (1 mM) inhibited the IMP disappearance by approximately 90%. The disappearance of IMP was predominantly catalyzed by recombinant CYP2C19, with K_m and V_{max} of 8.6 µM and 9.7 nmol/min/nmol CYP, respectively. CYP2C19-deficient HLM ($CYP2C19^{*2/*2}$) was approximately 30% of that in the presence of HLM harboring wild type $CYP2C19$, indicating that IMP is polymorphically metabolized by CYP2C19. High-performance liquid chromatography of the incubation mixture of IMP and CYP2C19 revealed an unidentified peak. As the area of the IMP peak decreased, the area of this unidentified peak increased in a time-dependent fashion. The peak was also detectable on incubation of IMP with HLM. Mass spectrometry revealed that the
molecular weight of a compound in this unidentified peak was the same as that of
\(p \)-iodoamphetamine. We thus demonstrated that IMP was predominantly
metabolized by CYP2C19 to form \(p \)-iodoamphetamine.
Introduction

123I-N-isopropyl-p-iodoamphetamine hydrochloride (123I-IMP) is a radiopharmaceutical used clinically to evaluate blood flow in the brain on single-photon-emission computed tomography (chemical structure in (Baldwin and Wu, 1988). This radiopharmaceutical has been amply demonstrated to be distributed in brain tissue in a clinically useful fashion. Pharmacokinetic analysis, applying nuclear medicine techniques used in the 1980s, revealed uptake of 123I-IMP by the liver after a high uptake by lung during the first pass (Moretti et al., 1983). Subsequently, 123I-IMP was found to undergo biotransformation in the body (Baldwin and Wu, 1988), although few imaging diagnostics are thought to be metabolized. Analyses of human or rat plasma and urine samples obtained after 123I-IMP administration have revealed that the first step in metabolism was the formation of 123I-p-iodoamphetamine, followed by sequential generation of 123I-p-iodobenzoic acid and 123I-p-iodohippuric acid (Baldwin and Wu, 1988). The biotransformation of 123I-IMP to metabolite(s) with lower lipid solubility could practically impair penetration of 123I to the brain. Therefore, to accurately evaluate blood flow in the brain, radioactivity derived from the water-soluble metabolite(s), which cannot reach the brain, has to be subtracted from the total radioactivity of all components with 123I. To date, drug-metabolizing enzyme(s) involved in the metabolism of non-radio-labeled IMP remain(s) unclear, although one study has demonstrated binding of IMP and its initial metabolism to rat cytochrome P450.
(P450 or CYP), suggesting that P450 plays a role in the metabolism of IMP (Joulin et al., 1992).

This study first examined whether or not non-radio-labeled IMP is metabolized by drug-metabolizing enzyme(s) in human liver microsomes (HLM) and then attempted to elucidate human CYP isoform(s) responsible for the biotransformation of IMP. Since the first metabolite p-iodoamphetamine was not available, IMP disappearance was examined.

Materials and methods

Detailed descriptions of the methods are given in the Supplemental Data (Detailed information on methods).

Human liver microsomes and recombinant human CYP isoforms. Pooled HLM (wild type *CYP2C19*) and HLM harboring *CYP2C19*/*2/*2 (*CYP2C19*/*2/*2 HLM) were obtained from BD Biosciences (Woburn, MA). Twelve recombinant CYP isoforms (i.e., *CYP1A1*, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9.1, 2C19, 2D6.1, 2E1, 3A4, and 3A5) were purchased from BD Biosciences.

IMP metabolism by pooled human liver microsomes. NADPH-dependent IMP metabolism by pooled HLM was examined in the presence or absence of an NADPH-generating system. The mixture without the addition of the pooled HLM and NADPH-generating system served as the control. IMP metabolism was monitored on the basis of the disappearance of IMP. When the inhibition of IMP disappearance
by (S)-mephenytoin was examined, the inhibitor was added 5 min prior to the initiation of metabolism. IMP was analyzed with a high-performance liquid chromatography (HPLC) system.

IMP metabolism by CYP isoforms. IMP metabolism by 12 recombinant CYP isoforms was examined on basis of the disappearance of IMP. IMP disappearance in the absence of the NADPH-generating system for each CYP served as the control.

Enzyme kinetics of IMP metabolism. Substrate disappearance velocity (v) was calculated as \[
\frac{(C_{s,\text{initial}} - C_{s,t})}{\text{incubation time}/\text{CYP concentration}},
\]
where \(C_{s,\text{initial}}\) was the substrate concentration at time 0, and \(C_{s,t}\) was the substrate concentration after t-min incubation with each CYP (Li et al., 2007). Kinetic constants (\(K_m\) and \(V_{max}\)) are reported as the means ± standard error.

IMP metabolism by human liver microsomes harboring CYP2C19*2/*2. IMP metabolism was monitored on the basis of the disappearance of IMP. The incubation period of 0.5 \(\mu\)M IMP was 60 min. IMP disappearance velocity (v) was calculated as \[
\frac{(C_{s,\text{initial}} - C_{s,60}) \times \text{volume of reaction mixture}}{60 \text{ min}}.
\]

Analysis of IMP metabolite by liquid chromatography-electrospray ionization mass spectrometry. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) was performed with a micrOTOF-Q II mass spectrometer (Bruker Daltonics, Billerica, MA) to identify the IMP metabolite produced by CYP2C19.
Results and discussion

IMP time-dependently disappeared when pooled HLM and an NADPH-generating system were contained in the reaction mixture (Fig. 1A). Among 12 recombinant CYP forms, CYP2C19 was demonstrated to predominantly catalyze the reaction (Fig. 1B). The effects of substrate concentrations on IMP disappearance in the presence of CYP2C19 or CYP1A1 are shown in Supplemental Figure 1. The apparent K_m and V_{max} were respectively calculated to be $8.6 \pm 0.8 \mu M$ and $9.7 \pm 0.4 \text{ nmol/min/nmol CYP}$ for CYP2C19 and $18 \pm 5.0 \mu M$ and $7.3 \pm 1.0 \text{ nmol/min/nmol CYP}$ for CYP1A1. The intrinsic metabolic clearance calculated with the K_m and V_{max} values obtained for CYP2C19 was approximately 2.5 fold higher than that for CYP1A1. We could not determine these apparent enzyme kinetic parameters for CYP1A2 because of a slight decrease in IMP at concentrations higher than $8.0 \mu M$, where IMP disappearance was not saturated. (S)-Mephenytoin, a specific CYP2C19 substrate (Wrighton et al., 1993), inhibited IMP disappearance catalyzed by pooled HLM in a concentration-dependent manner (Fig. 1C). IMP disappearance was inhibited by 1 mM (S)-mephenytoin by approximately 90%. IMP disappearance activities seen in CYP2C19*2/*2 HLM for respective concentrations of microsomal protein were approximately 30% as compared with those seen in the pooled HLM (wild type CYP2C19) (Fig. 1D). These results indicate that IMP is predominantly metabolized polymorphically by CYP2C19.
During the HPLC analyses of the IMP disappearance by CYP2C19, an unidentified peak was found on HPLC chromatograms (Fig. 2A, B, and C). As the area of the IMP peak decreased, the area of this unidentified peak increased in a time-dependent fashion (Fig. 2D). The unidentified peak was also detectable when IMP was incubated with pooled HLM (wild type CYP2C19) (Supplemental Fig. 2A). Ultraviolet spectra of both peaks seen with pooled HLM and recombinant CYP2C19 were nearly the same (Supplemental Fig. 2B and C). The unidentified peak was fractionated and analyzed with LC-ESI-MS (Supplemental Fig. 3 and Fig. 2E). A major peak at 232 nm was detected at 11.2 min (Supplemental Fig. 3), and a parent mass ([M+H]^+) was observed at 262.0085 m/z (Fig. 2E). High-resolution mass spectrometry (electrospray ionization) calculated for C_9H_12IN [M+H]^+: (262.0087) was found at 262.0085. The fragments at 244.98 and 216.95 m/z can be assigned as successive neutral losses of NH_3 (Δm= 17.0265) and C_2H_2 (Δm= 28.0313), both determined with mass accuracies below 3 mDa (Fig. 2E). These results suggest that the unknown metabolite is p-iodoamphetamine (1-(4-iodophenyl)-propan-2-amine).

In clinical practice, the metabolism of lipid soluble ^123^I-IMP to water-soluble metabolites, most likely ^123^I-p-iodobenzoic acid and ^123^I-p-iodohippuric acid, can impair penetration of ^123^I to the brain. Therefore, to accurately evaluate blood flow in the brain, radioactivity derived from water-soluble metabolites must be subtracted from the total radioactivity derived from all components labeled with ^123^I. The water-soluble metabolites are usually separated by octanol/water extraction of blood.
samples collected after 123I-IMP injection, and the radioactivity in the water phase is subsequently quantified. If the formation of water-soluble metabolites in vivo is predominantly determined by CYP2C19 activity, radioactivity in the water phase might parallel CYP2C19 activity. The quantification of water-soluble metabolites of 123I-IMP might be applied to CYP2C19 phenotyping to identify poor metabolizers.

Our CYP2C19 phenotyping method might facilitate patient selection or dose adjustment for medicines that are substrates of polymorphic CYP2C19 (http://www.cypalleles.ki.se/cyp2c19.htm). However, future studies are necessary to put our idea into clinical practice. First, the role(s) of CYP2C19 in the different steps of IMP metabolism should be comprehensively clarified. We are synthesizing p-iodoamphetamine to examine secondary metabolism in more detail. Second, whether 123I-IMP is predominantly metabolized by CYP2C19 should be confirmed with a variety of recombinant human CYPs and pooled HLM at concentrations similar to those in human plasma, which are much lower than the concentrations used in this study. Our preliminary study using radio-labeled IMP and HPLC equipped with a radioactivity detector indicated that recombinant CYP2C19 and pooled HLM mediated metabolism of labeled IMP. Third, after comprehensive in vitro studies of metabolism, in vivo correlations between CYP2C19 phenotyping as measured by the proposed methods and CYP2C19 genotyping should be examined.

In conclusion, our results showed that IMP metabolism was mainly
polymorphically catalyzed by CYP2C19.

Authorship contributions

Participated in research design: Fujita, Kunishima, and Kawai.

Conducted experiments: Sugiyama, Akiyama, Hioki, and Nishi.

Performed data analysis: Sugiyama, Fujita, Hioki, and Kunishima.

Wrote or contributed to the writing of the manuscript: Fujita, Kunishima, Kobayashi, Kawai, and Sasaki.

Acquired funding for the research: Fujita and Sasaki.
References

Footnotes

This study was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan [21S-8-1], in part by a Grant-in-Aid for Scientific Research (C) [23590198] from Japan Society for the Promotion of Science (JSPS), and in part by a Grant-in-Aid for “Support Project of Strategic Research Center in Private Universities” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to Saitama Medical University Research Center for Genomic Medicine.

Reprint requests: Dr. Ken-ichi Fujita, Department of Medical Oncology, International Medical Center-Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan, Tel +81-42-984-4733, Fax +81-42-984-4679, E-mail fujitak@saitama-med.ac.jp
Legends for figures

Fig. 1. Disappearance of IMP in the presence of both pooled HLM and NADPH-generating system (A), catalyzed predominantly by recombinant CYP2C19 (B), showing inhibition of HLM-catalyzed IMP disappearance by (S)-mephenytoin (C), and demonstrating polymorphic metabolism of IMP by CYP2C19 (D).

The IMP concentration used was 0.5 µM. A, Open bars, presence of pooled HLM and absence of NADPH-generating system; closed bars, presence of both pooled HLM and NADPH-generating system; D, Open bars, CYP2C19*2/*2 HLM; closed bars, pooled HLM (wild type CYP2C19). Each point shows the mean of three independent analyses with standard deviation bars.

Fig. 2. HPLC chromatograms of IMP and unidentified peak obtained by the incubation of IMP with CYP2C19 for reaction times of 0 (A), 10 (B), and 20 min (C), showing a reaction-time-dependent decrease in IMP (◆) and an increase in the unidentified peak (●) (D), and demonstrating total mass spectra between 11.1 and 11.5 min and assignment of fragmentations (E).

Ratio of peak area was calculated by dividing the peak area of IMP or unidentified peak by that of internal standard (D). Each data point in (D) represents the mean of triplicate determinations and is shown with standard deviation bars.