Excretion and Metabolism of Milnacipran in Humans Following Oral Administration of Milnacipran Hydrochloride

Fanying Li, Christina Chin, Julie Wangsa and John Ho

Forest Research Institute, 220 Sea Lane, Farmingdale, NY 11735, USA.
Running Title: Excretion and Metabolism of Milnacipran in Humans

Corresponding author: John Ho, Forest Research Institute, 220 Sea Lane, Farmingdale, NY 11735. Phone number: (631) 501-5377. E-mail: john.ho@frx.com

Text pages: 27
Tables: 5
Figures: 9
References: 14
Abstract: 236 words
Introduction: 202 words
Discussion: 1245 words

Abbreviations: APCI, atmosphere pressure chemical ionization; AUC, area under the curve; BLOD, below limit of detection; C_{max}, maximum plasma concentration; cpm, counts-per-minute; dpm, disintegrations-per-minute; EDTA, ethylenediaminetetraacetic acid; HPLC, high-performance liquid chromatography; LC-HRMS, liquid chromatography-high resolution mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LSC, liquid scintillation counting; MRM, multiple reaction monitoring; N/A, not applicable; ppm, parts per million; SRM, selected reaction monitoring; $T_{1/2}$, terminal elimination half-life; T_{max}, time to maximum plasma concentration; UDPGA, uridine 5’-diphosphoglucuronic acid; uv, ultraviolet.
Abstract

The pharmacokinetics, excretion, and metabolism of milnacipran were evaluated following oral administration of a 100 mg dose of [14C] milnacipran hydrochloride to healthy male subjects. The peak plasma concentration of unchanged milnacipran (~240 ng/mL) was attained at 3.5 hours and was lower than the peak plasma concentration of radioactivity (~679 ng equivalent of milnacipran/mL) observed at 4.3 hours, indicating substantial metabolism of milnacipran upon oral administration. Milnacipran has two chiral centers and is a racemic mixture of the cis isomers: d-milnacipran (1S, 2R) and l-milnacipran (1R, 2S). Following oral administration, the radioactivity of almost the entire dose was excreted rapidly in urine (approximately 93% of the dose). Approximately 55% of the dose was excreted in urine as unchanged milnacipran, which contained a slightly higher proportion of d-milnacipran (~31% of the dose). In addition to the excretion of milnacipran carbamoyl O-glucuronide metabolite in urine (~19% of the dose), predominantly as the l-milnacipran carbamoyl O-glucuronide metabolite (~17% of the dose), approximately 8% of the dose was excreted in urine as the N-desethyl milnacipran metabolite. No additional metabolites of significant quantity were excreted in urine. Similar plasma concentrations of milnacipran and the l-milnacipran carbamoyl O-glucuronide metabolite were observed after dosing, and the maximum plasma concentration of l-milnacipran carbamoyl O-glucuronide metabolite at 4 hours after dosing was 234 ng equivalent of milnacipran/mL. Lower plasma concentrations (<25 ng equivalent of milnacipran/mL) of N-desethyl milnacipran and d-milnacipran carbamoyl O-glucuronide metabolites were observed.
Introduction

Milnacipran is a serotonin and norepinephrine reuptake inhibitor, and milnacipran hydrochloride is approved in the United States for management of fibromyalgia (Savella®, Forest Laboratories, Inc., 2009) and in other countries for the treatment of depression (Puech et al., 1997). Milnacipran (Z-2-aminomethyl-1-phenyl-N,N-diethylcyclopropane carboxamide) has two chiral centers and is a racemic mixture of cis isomers: d-milnacipran (1S, 2R) and l-milnacipran (1R, 2S). Results from previous pharmacokinetic studies in humans (Puozzo and Leonard, 1996; Puozzo et al., 2002) have shown that milnacipran is rapidly absorbed from the gastrointestinal tract with a median T_{max} of 2 hours. The absolute oral bioavailability of milnacipran is high (~85%) and absorption is not affected by food intake. The plasma half-life of milnacipran is approximately 8 hours and approximately 50-60% of the dose is excreted in urine as unchanged milnacipran.

The objective of this study was to investigate the metabolism of milnacipran in humans following the oral administration of a 100 mg dose of 14C milnacipran hydrochloride to healthy male subjects. In addition to determining the pharmacokinetics of milnacipran and radioactivity, the plasma concentrations of milnacipran metabolites were measured. The excretion of radioactivity, milnacipran and its metabolites were also measured. Furthermore, the chemical structures of milnacipran metabolites were identified.
Materials and Methods

Chemicals. \([^{14}C]\) Milnacipran hydrochloride with radiochemical purity of 99.0% was synthesized in Amersham Biosciences UK Limited (Buckinghamshire, UK). Milnacipran, \(d\)- and \(l\)-milnacipran, and N-desethyl milnacipran standards were obtained from Forest Research Institute (Commack, NY). Glusulase\textregistered containing 90,000 units/mL of \(\beta\)-glucuronidase and 19,000 units/mL of sulfatase was purchased from PerkinElmer (formerly New England Nuclear Corporation, NEN, Waltham, MA). Magnesium chloride hexahydrate, L-\(\alpha\)-phosphatidylcholine, D-saccharic acid 1,4-lactone, and uridine 5'-diphosphoglucuronic acid (UDPGA) trisodium salt were purchased from Sigma Chemical Company (St. Louis, MO). Acetonitrile, deionized water, glacial acetic acid, 12 N hydrochloric acid, methanol, potassium phosphate monobasic and 10 N sodium hydroxide were purchased from Fisher Scientific Company (Pittsburg, PA). Anhydrous sodium acetate and sodium phosphate dibasic were purchased from Mallinckrodt (Phillipsburg, NJ). Ammonium acetate and ammonium formate were purchased from Fluka Chemica (St. Louis, MO). Human hepatic microsomes were purchased from BD Biosciences Company (formerly Gentest Inc., Woburn, MA). Carbon dioxide was purchased from the BOC Group, Inc. (Murray Hill, NJ). All chemicals were analytical grade or better, unless stated otherwise.

Human Mass Balance Study. In this single-center open-label study, six healthy male subjects received a single oral dose of 100 mg of \([^{14}C]\) milnacipran hydrochloride solution (5 mL of 20 mg/mL) at 0800 hours following breakfast at 0730 hours. The specific activity of the dose was 1 \(\mu\)Ci/mg of milnacipran hydrochloride. Following oral administration of \([^{14}C]\) milnacipran hydrochloride to pigmented mice, rats, and monkeys, radioactivity (milnacipran and/or metabolites) was distributed into the tissues of the animals (data on file, company study reports). Although radioactivity was observed in the uveal tract (a melanin-rich tissue) of the pigmented...
mice, and monkeys, the elimination of radioactivity from the uveal tract of the animals’ eyes indicated that a metabolism study could be safely conducted in humans using a 100 μCi dose of $[^{14}\text{C}]$ milnacipran hydrochloride.

Blood samples were collected in pre-chilled tubes containing tri-potassium EDTA before dosing and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 18, 24, 48, 72, 96, and 120 hours post-dose. Within 30 minutes from time of collection, plasma was harvested following the centrifugation of blood samples at $\geq 2,500 \text{ g}$ for 10 minutes at 4°C. Urine samples were collected and pooled from -2 to 0 hours pre-dose and at 0-4, 4-8, 8-12, 12-24, 24-48, 48-72, 72-96, and 96-120 hours post-dose. Feces samples were collected from Day -1 to Day 6 and were pooled into 24-hour samples (0-24, 24-48, 48-72, 72-96, and 96-120 hours); pre-dose feces sample was collected and pooled from -12 to 0 hours. After collection, all samples (plasma, urine and feces) were kept frozen at -80°C until analysis. Subjects were released from the study on Day 6 after one of the following criteria had been met: 1) two consecutive urine and feces samples contained <3 times the radioactivity of the background; or 2) the radioactivity excreted in a day was <1% of the radioactivity in the dose (expressed simply as % of the dose).

Following oral administration of $[^{14}\text{C}]$ milnacipran hydrochloride, two of the six subjects vomited (data on file, company study report). Pharmacokinetic analysis and the evaluation of mass balance and metabolite profile were conducted on samples collected from the remaining four subjects. However, the metabolite profile in feces was not evaluated because <4% of the dose was excreted in feces.

All subjects completed an informed consent form at pre-screening of the study. The study was approved by the Heartland Institutional Review Board and conducted at Quintiles Inc. (Kansas
City, MO) in accordance with the International Conference on Harmonisation (ICH) Guidance on General Considerations for Clinical Trials (62 FR 66113, December 17, 1997), Nonclinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals (62 FR 62922, November 25, 1997), and Good Clinical Practice: Consolidated Guidance (62 FR 25692, May 9, 1997).

Radioactivity Analysis of Plasma, Urine, and Feces Samples. After mixing an aliquot of plasma or urine sample with 10 mL of Ultima-Gold® scintillant (Perkin Elmer, formerly Packard Instrumentation Co., Downers Grove, IL), the radioactivity concentration of the sample was measured for 5 minutes using a Packard Tricarb 3100 TR Liquid Scintillation Analyzer (Perkin Elmer). The radioactivity concentration was converted to milnacipran concentration (ng equivalent of milnacipran/mL) based on the specific activity of the dose. Feces samples were homogenized in water using a Tekmar lab blender. Weighed aliquots, in triplicate, of each homogenized feces sample (simply expressed as feces samples unless stated otherwise) were combusted in a Packard Sample Oxidizer Model 307 (Perkin Elmer). After the addition of Carbo-Sorb E and Permafluor E scintillant (Perkin Elmer, 10 mL each) to the combustion products of the feces samples, radioactivity concentration of the feces samples was measured over a 5-minute period using the Packard Tricarb 3100 TR Liquid Scintillation Analyzer (Perkin Elmer), and then converted to milnacipran concentration (ng equivalent of milnacipran/g) based on the specific activity of the dose. The oxidizer recovery was determined by combustion of [¹⁴C] standards in an identical manner. The amounts of radioactivity (expressed in milnacipran) excreted in urine and feces were determined, and used to evaluate mass balance of the dose.

Analysis of Unchanged Milnacipran. The plasma concentration of unchanged milnacipran was determined by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS)
method. After mixing the supernatant of the plasma sample (or standard) with the [\(^2\text{H}_{10}\) milnacipran internal standard and mobile phase [120 mM formic acid-water-methanol (200:1200:600, v/v/v)], the components in the mixture were separated using a Symmetry C8 column (100 x 2.1 mm, 3.5 µm particle size; Waters Corporation, Milford, MA) with an isocratic elution of mobile phase at 0.25 mL/min. Temperatures of the autosampler and the high-performance liquid chromatography (HPLC) column were kept at 15°C and 30°C, respectively. The LC system (Agilent 1100; Agilent Technologies, Waldbronn, Germany) was interfaced to an API 3000™ triple quadruple mass spectrometer (AB Sciex, Toronto, Canada). Electrospray ionization of the mass spectrometer was set to positive ion multiple reaction monitoring (MRM) mode (precursor ion → product ion) as follows: milnacipran, m/z 247.1 → 230.2; internal standard, m/z 257.1 → 240.2. Protonated molecular ions of milnacipran and the internal standard were the precursor ions for this analysis. The ratio of milnacipran product ion peak area to that of its internal standard (peak area ratio of milnacipran) was the response used for quantification. The method was linear over a milnacipran concentration range of 5 to 2000 ng/mL with a lower limit of quantification of 5 ng/mL in 25 µL of human plasma. Quality control samples containing 15, 500, and 1600 ng/mL of milnacipran were also analyzed. Unless stated otherwise, the concentration of milnacipran determined by LC-MS/MS analysis is expressed as the amount of milnacipran free base per unit volume.

Metabolite Profile Analysis. To acquire sufficient volumes for qualitative and quantitative analyses of the plasma metabolites, samples from the four subjects who did not vomit were used to prepare 14 plasma pools according to time of collection (0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 18, and 24 hours post-dose). One mL of plasma from each subject was used to prepare the pool. Unless stated otherwise, the analysis of the plasma pools was simply described as the analysis of.
the plasma. Urine samples (0-4, 4-8, 8-12, 12-24, 24-48, 48-72, and 72-96 hours post-dose) from the four subjects were also analyzed to establish metabolite profile. For the chiral liquid chromatography-selected reaction monitoring (LC-SRM) analysis of milnacipran enantiomers, a 0-96 hour urine pool was prepared for each subject by mixing 0.1% (by volume) of each urine samples of the subject collected in 96 hours after dosing.

Sample preparation. After mixing 3 mL of acetonitrile with 1 mL of plasma sample by vortex for approximately 30 seconds, the mixture was kept at room temperature for approximately 10 minutes and then centrifuged at 14,000 rpm for 15 minutes. The supernatant was transferred to a clean test tube and evaporated to dryness in a TurboVap under a gentle flow of nitrogen. The sample residue was reconstituted in 400 μL of 1 M ammonium acetate at pH 5-water-methanol (2:62.4:35.6, v/v/v) to become the processed plasma sample for analysis. Urine samples were analyzed directly without sample preparation.

Sample analysis. After injection of the urine or processed plasma sample (in 200-μL aliquots) into an Alliance 2690 Separations Module HPLC system (Waters Corporation), the components of the sample were separated on a Luna Phenyl-Hexyl column (250 x 4.6 mm, 5 μm particle size; Phenomenex Inc., Torrance, CA) with an Eclipse XDB-C18 guard column (12.5 x 4.6 mm, 5 μm particle size; Agilent Technologies). Temperatures of the autosampler and HPLC column were kept at 10°C and 35°C, respectively. The analysis used a gradient elution with flow rate of mobile phase set at 1 mL/min. Mobile phase A was 1 M ammonium acetate at pH 5-water-methanol (20:930:50, v/v/v); mobile phase B was 1 M ammonium acetate at pH 5-water-methanol (20:30:950, v/v/v). The gradient elution was initiated at 34% of mobile phase B for 29 minutes, ramped to 90% over 11 minutes, maintained at 90% for 5 minutes, and returned to initial condition over 1 minute. The column was equilibrated for 9 minutes at the initial condition
between injections. Following injection of the processed plasma sample onto the HPLC column, the HPLC eluent was collected in 0.5-minute fractions over a period of 54 minutes, totaling 108 fractions collected from each sample. The radioactivity of each fraction was determined by LSC. The HPLC eluent from analysis of urine sample was monitored by a radioactivity flow detector with a detection cell that contained solid scintillant (high pressure lithium glass packed, 150 µL; IN/US, Tampa, FL). The radioactivity detector was set at 6 seconds for dwell time, and 9 seconds for time of flight. The HPLC eluent was also monitored by an ultraviolet (uv) detector. The wavelength of the uv detector was set at 220 nm with filter of 1 second. The non-radioactive standards were monitored by the uv detector.

Identification of Metabolites. Five chromatographic peaks with measurable radioactivity were found in the plasma and urine metabolite profiles. The metabolites eluted in these peaks were identified using LC-MS/MS, LC-SRM, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) methods. Biosynthetic standards were prepared as described below.

Biosynthesis of d- and l-milnacipran carbamoyl O-glucuronide. Based on modifications of a published method (Delbressine et al., 1990), d-milnacipran and l-milnacipran were incubated with carbon dioxide, human hepatic microsomes, and UDPGA. The resulting d- and l-milnacipran carbamoyl O-glucuronides were purified by HPLC separation and became the biosynthetic standards. The glucuronides were not produced in the absence of carbon dioxide, microsomes, or UDPGA from the incubation. The chemical structures of the biosynthetic standards were characterized by LC-MS/MS, LC-HRMS, and hydrolysis.

LC-MS/MS. Identification of metabolites was conducted on an Alliance 2795 Separations Module system (Waters Corporation) set at the HPLC conditions described above for the
metabolite profile analysis. The LC system was interfaced to a TSQ 7000 triple quadruple mass spectrometer (Thermo Fisher Scientific Inc., formerly Finnigan, San Jose, CA) with the atmosphere pressure chemical ionization (APCI) source set at positive ion mode. Metabolites were initially characterized by comparing pre-dose to post-dose samples using full scan (from \(m/z\) 100 to 650) and profile mode set at 1 second of scan time. Vaporization and capillary temperature were maintained at 500° and 200°C, respectively. Sheath gas (nitrogen) was 60 psi and corona discharge was 5 μA. The electron multiplier was adjusted to obtain the optimum signals. Structural information of the metabolites was further generated from the product ion spectra of their respective protonated molecular ions.

LC-SRM. To improve sensitivity, identification of plasma metabolites was conducted by selected reaction monitoring (SRM) of the metabolites based on their product ion spectra. The SRM was set to positive ion mode (precursor ion \(\rightarrow\) product ion) as follows: milnacipran carbamoyl O-glucuronide, \(m/z\) 467 \(\rightarrow\) 230; milnacipran, \(m/z\) 247 \(\rightarrow\) 230. Protonated molecular ions of milnacipran carbamoyl O-glucuronide and milnacipran were the precursor ions for this analysis. The purpose of measuring milnacipran was to evaluate the potential degradation of the glucuronide to milnacipran in the ionization source of the mass spectrometer (i.e., in-source degradation).

Chiral LC-SRM analysis, conducted on an Alliance 2795 Separations Module (Waters Corporation), was used to analyze milnacipran enantiomers in plasma and urine samples. The milnacipran enantiomers were separated on a Chirobiotic V column (150 x 4.6 mm, 5 μm particle size; Advanced Separation Technologies, Inc., Whippany, NJ) with a Chirobiotic V guard column (20 x 4.0 mm; Advanced Separation Technologies, Inc.); the column was eluted with a mobile phase of 1 M ammonium formate-methanol (1:799, v/v) at a flow rate of 1 mL/min.
Temperatures of the autosampler and HPLC column were kept at 10°C and 20°C, respectively. The SRM setting of milnacipran described above was used for the SRM of milnacipran enantiomers (m/z 247 → 230).

LC-HRMS. Structure characterization of metabolites was conducted using an Agilent HPLC system of 1100 series (Agilent Technologies) set at the HPLC conditions described above for the metabolite profile analysis. The LC system was interfaced to a QSTARXL mass spectrometer (AB Sciex). Mobile phases were modified as follows to minimize ion suppression: mobile phase A, 1 M ammonium acetate at pH 5-water-methanol (5:945:50, v/v/v); mobile phase B, 1 M ammonium acetate at pH 5-water-methanol (5:45:950, v/v/v). Post-column flow was split such that the mobile phase was introduced into the mass spectrometer via an electrospray interface at a rate of 100 µL/min; the remaining flow was diverted as waste. The protonated molecular ion of the metabolite was obtained by time-of-flight (TOF) scan (m/z 100 to 1000 at accumulation time of 1 second). The source temperature was maintained at 220°C and the IonSpray voltage was set at 5500 V. Curtain gas, ion source gas 1, and ion source gas 2 were set at 20, 30, and 10, respectively. Declustering potential 1, declustering potential 2, and focusing potential were set at 30, 15, and 80 V, respectively. Both ion release delay and ion release width were set at 10. The electron multiplier was adjusted to obtain optimum signals.

Hydrolysis of Urine Metabolites. Following isolation of Peak 3 and Peak 4 from the 0-4 hour urine samples of two subjects, the hydrolytic properties of the metabolites eluted in these peaks were established to support the structures of the milnacipran metabolites.

Isolation. Peak 3 and Peak 4 in 1 mL of the 0-4 hour urine sample collected from Subject #1 was isolated following HPLC analysis of the urine sample as five 200-µL aliquots. The HPLC eluent
collected between 22 to 25 minutes was evaporated to dryness in a TurboVap under a gentle flow of nitrogen at 30°C, and the dry residue was then reconstituted by sonification in 250 µL of water and 20 µL of acetonitrile to produce the Isolated Peak 3 of Subject #1. The HPLC eluent collected between 26.5 to 28.5 minutes was also processed to produce the Isolated Peak 4 of Subject #1. Similarly, the Isolated Peak 3 and Isolated Peak 4 of Subject #3 were prepared.

Acid Hydrolysis. After mixing the sample (40 µL of Isolated Peak 3 or Peak 4) or biosynthetic standard with 40 µL of 2 N hydrochloric acid in a glass test tube, the test tube was capped tightly and kept on a heating block at 70°C for 1 hour. The samples were then cooled to ambient room temperature and partially neutralized by adding 24 µL of 2 N sodium hydroxide. These partially neutralized samples were mixed gently by vortex for approximately 30 seconds, transferred to HPLC vials, and mixed with 24 µL of water and 52 µL of 1 M ammonium acetate at pH 5-water-methanol (2:62.4:35.6, v/v/v). Following centrifugation of the HPLC vials for approximately 5 minutes, 20 µL of the clear supernatant (hydrolyzed samples) were analyzed by LC-SRM. A non-hydrolyzed control sample (40 µL of sample, 52 µL of 1 M ammonium acetate at pH 5-water-methanol [2:62.4:35.6, v/v/v], 24 µL of water, and 64 µL of a reagent containing 40 µL of 2 N hydrochloric acid and 24 µL of 2 N sodium hydroxide) was similarly analyzed.

Enzyme Hydrolysis. After mixing the sample (40 µL of Isolated Peak 3 or Peak 4) or biosynthetic standard with 60 µL of 0.2 M sodium acetate buffer at pH 5, 10 µL of water, and 10 µL of Glusulase® in a glass test tube, the sample was incubated in a water bath at 37°C for 1 hour. The samples were then cooled to ambient room temperature, transferred to HPLC vials, and mixed with 8 µL of water and 52 µL of 1 M ammonium acetate at pH 5-water-methanol (2:62.4:35.6, v/v/v). Following centrifugation of the HPLC vials for approximately 5 minutes, 20 µL of the clear supernatant (hydrolyzed samples) were analyzed by LC-SRM. A control
sample without hydrolysis by Glusulase® was analyzed similarly. The inhibition of hydrolysis was evaluated by replacing the water in the enzyme hydrolysis procedure with 100 mg/mL of D-saccharic acid 1,4-lactone.

Data Analysis

Pharmacokinetics and Mass Balance. Radioactivity concentrations in plasma, urine, and feces samples were determined at the clinical site using LSC, with combustion as necessary. Raw data (weight/volume and radioactivity concentration) of urine and feces samples collected from each subject were captured in the Debra® data capture system (LabLogic Systems, Inc., Sheffield, UK). Descriptive statistics were used to analyze the excretion of radioactivity in urine and feces (% of the dose), as well as the pharmacokinetic parameters of milnacipran and radioactivity.

Pharmacokinetic assessments (area under the plasma concentration-time curve from time zero up to the last measurable concentration [AUC₀₋₄], AUC from time zero up to infinity [AUC₀₋∞], maximum plasma concentration [Cₘₐₓ], time to maximum plasma concentration [Tₘₐₓ], terminal elimination half-life [T₁/₂], and terminal rate constant [λ₁]) were derived using non-compartmental analysis (Gibaldi and Perrier, 1975) with the WinNonlin® software (version 4.1 or higher; Pharsight Corp., St. Louis, MO, USA). Plasma concentrations below the limit of quantification were treated as zero for pharmacokinetic calculations with actual sampling times.

The amount of radioactivity excreted in a sample (dpm) was calculated by multiplying the radioactivity concentration of the sample (dpm/mL, urine; dpm/g, feces) by the amount of the sample (mL, urine; g, feces). The amount of the radioactivity excreted in a sample (% of the dose) was calculated by the following equation:
Amount of radioactivity excreted in a sample (% of the dose) = \frac{\text{Amount of radioactivity excreted in a sample (dpm)}}{\text{Amount of radioactivity in the dose (dpm)}} \times 100\%

The cumulative excretion in urine and the cumulative excretion in feces for each subject were determined by summing up the excretion at each time interval. Mass balance (the total recovery of radioactivity in the dose) of milnacipran in each subject was the sum of the cumulative excretions in urine and in feces (% of the dose) for that subject.

Metabolite Profile. The chromatograms of urine samples were recorded and processed by Laura 3 software (version 3.096.119; Lablogic Systems Ltd., Sheffield, UK) to obtain retention times and maximum signals of the chromatographic peaks (peak area in cpm). The background radioactivity was estimated from a blank region of the chromatogram selected arbitrarily after the elution of all chromatographic peaks. The net amount of radioactivity in chromatographic peak was calculated by subtracting the background radioactivity from the radioactivity in the chromatographic peak. Similarly, the net amount of radioactivity in a HPLC fraction of a plasma sample was calculated by subtracting the background radioactivity of a blank HPLC fraction from the radioactivity in the fraction.

Plasma metabolite profiles. The plasma concentration of a metabolite eluted as a chromatographic peak in the metabolite profile of a plasma sample pool was calculated as follows:

\[
\text{Plasma concentration of the metabolite in the plasma sample pool (ng equivalent of milnacipran/mL)} = \frac{\text{Net amount of radioactivity in chromatographic peak of a metabolite}}{\text{Concentration of radioactivity in the plasma sample pool (ng equivalent of milnacipran/mL)}}
\]
The concentration of radioactivity in the plasma sample pool (ng equivalent of milnacipran/mL) was calculated based on the concentration of radioactivity in the plasma samples (data on file, company study report) used for the preparation of the pool. The net amount of radioactivity in chromatographic peak of the metabolite is expressed as a percentage of total radioactivity found in the chromatogram.

Urine metabolite profile. The excretion (% of the dose) of a metabolite eluted as a chromatographic peak in the metabolite profile of a urine sample was calculated as follows:

\[
\text{Amount of the metabolite excreted in the urine sample (% of the dose)} = \text{Net amount of radioactivity in chromatographic peak of a metabolite (% of total radioactivity in the chromatogram)} \times \text{Amount of radioactivity excreted in the urine sample* (% of the dose)}
\]

*Data on file, company study report

The net amount of radioactivity in chromatographic peak of the metabolite is expressed as a percentage of total radioactivity found in the chromatogram.

Enantiomer composition of milnacipran in urine sample. After chiral LC-SRM analysis of the 0-96 hour urine pool or urine standard, detector output was recorded and analyzed using Xcalibur software (Version 1.1; Thermo Electron Corporation, San Jose, CA). Each chromatogram was analyzed to obtain retention times and maximum signals (peak areas) for \(d\)- and \(l\)-milnacipran. The amount of milnacipran enantiomer (\(d\)- or \(l\)-milnacipran) excreted in the 0-96 hour urine pool (% of the dose) of an individual subject was calculated as follows:
The proportion of milnacipran enantiomer (\(d\)- and \(l\)-milnacipran) in the 0-96 h urine pool (% of milnacipran in the urine pool) was calculated for each subject using the following set of equations:

\[
\frac{\text{Proportion of } l\text{-milnacipran enantiomer in the 0-96 h urine pool}}{\text{Proportion of } d\text{-milnacipran enantiomer in the 0-96 h urine pool}} = \frac{\text{Peak area ratio of urine standard}}{\text{Peak area ratio of urine standard}} \times \frac{\text{Amount of milnacipran excreted in the 0-96 hour urine pool}}{\text{Amount of milnacipran excreted in the 0-96 hour urine pool}}
\]

\[
\text{Proportion of } l\text{-milnacipran enantiomer in the 0-96 h urine pool} = \frac{\text{Peak area of } l\text{-milnacipran} \times 100\%}{\text{Peak area of } l\text{-milnacipran} + \left(\frac{\text{Peak area of } d\text{-milnacipran} \times \text{Peak area ratio of urine standard}}{\text{Peak area of } d\text{-milnacipran}} \right) \times \text{Amount of milnacipran excreted in the 0-96 hour urine pool}}
\]

\[
\text{Peak area ratio of urine standard} = \frac{\text{Peak area of } l\text{-milnacipran in urine standard}}{\text{Peak area of } d\text{-milnacipran in urine standard}}
\]

\[
\text{Proportion of } d\text{-milnacipran enantiomer in the 0-96 h urine pool} = 100\% - \text{Proportion of } l\text{-milnacipran enantiomer in the 0-96 h urine pool}
\]

*Urine standard was a racemic mixture with equal amounts of \(d\)- and \(l\)-milnacipran.

*Data on file, company study report

This article has not been copyedited and formatted. The final version may differ from this version.
Results

Pharmacokinetics and Mass Balance. Following oral administration of a 100 mg dose of \([^{14}C]\) milnacipran hydrochloride, the average peak plasma concentration among the four male healthy subjects without emesis was 239.6 ng/mL for unchanged milnacipran and 679.0 ng equivalent of milnacipran/mL for \([^{14}C]\) radioactivity (Table 1), indicating that unchanged milnacipran contributed approximately 35% of the plasma radioactivity at peak plasma concentration. The \(\text{AUC}_{0-t}\) of unchanged milnacipran was 2342.6 ng*h/mL and similarly contributed approximately 36% of the \(\text{AUC}_{0-t}\) of \([^{14}C]\) radioactivity (6446.3 ng equivalent of milnacipran*h/mL). The results indicate that milnacipran metabolites were produced and observed in plasma following the oral administration of milnacipran hydrochloride. The average time to peak plasma concentration and half-life were 3.5 hours and 8.9 hours, respectively, for unchanged milnacipran, compared to 4.3 hours and 7.7 hours for \([^{14}C]\) radioactivity, respectively.

Approximately 97% of the radioactivity in the dose was recovered from the excreta (Table 2). On average, 93.3% of the dose (range, 91.3% to 94.3%) was excreted in urine while 3.65% of the dose (range, 2.8% to 5.3%) was excreted in feces, indicating that urinary excretion was the principal route of elimination.

Metabolite Profile. A brief validation of the metabolite profile procedure was conducted to evaluate the sample processing recovery, chromatography resolution, HPLC column recovery, linearity of the analysis, and counting efficiency of the detector. The high recovery of radioactivity from plasma (average 81.0% of the plasma radioactivity) in sample processing, along with the high HPLC column recovery of radioactivity from the sample (average 99.1% of
the sample radioactivity) in the HPLC analysis provided a thorough analysis of metabolites in the metabolite profile.

Plasma metabolite profiles. A total of five chromatographic peaks with measurable radioactivity were observed in the metabolite profile of plasma (Figure 1A). Peak 3 was the major metabolite in plasma, with a maximum plasma concentration of approximately 234 ng equivalent of milnacipran/mL (Table 3). The plasma concentration of Peak 3 was similar to that of milnacipran (Peak 5) for all plasma samples from 0.5 to 12 hours. The plasma concentration of each remaining peak of the plasma metabolite profile was relatively low and did not exceed 25 ng equivalent of milnacipran/mL. No other chromatographic peaks with significant radioactivity were observed in the plasma metabolite profile.

Urine metabolite profiles. Five distinct chromatographic peaks were also observed in the urine metabolite profiles (Figure 1B and Table 4). The majority of milnacipran in the dose was excreted unchanged in urine (Peak 5, average 55% of the dose), with Peak 3 (average 17% of the dose) and Peak 1 (average 7.7% of the dose) representing the major metabolites excreted in urine. Small amounts of Peak 2 and Peak 4 (neither exceeding 2.1% of the dose) were also excreted in urine. No other chromatographic peaks with significant radioactivity were observed in the urine metabolite profile. Chiral LC-SRM analysis of the 0-96 hour urine pools showed that the renal excretion of d-milnacipran (31% of the dose) was slightly higher than that of l-milnacipran (24% of the dose) (Table 5).

Identification of Milnacipran and Its Metabolites. The chemical structures of unchanged milnacipran (Peak 5) and milnacipran metabolites (Peaks 1, 3, and 4) were identified using LC-MS/MS, LC-SRM, and LC-HRMS methods. Identification of the metabolite in Peak 2 was
not attempted because <2% of the dose was excreted as this peak. For LC-MS/MS and LC-SRM analyses, the chemical structure of a metabolite was identified when retention time, protonated molecular ion, and mass spectrum (LC-MS/MS) or product ion (LC-SRM) were identical to those of the standard (biosynthetically or chemically synthesized). For the LC-HRMS analysis, the chemical structure was characterized when the protonated molecular ion of the metabolite was within ±15 ppm of the theoretical protonated molecular ion of the metabolite. Acid hydrolysis and enzyme hydrolysis were also conducted to confirm glucuronide metabolites in Peaks 3 and 4 of the urine samples from two subjects.

Peak 1. The chemical structure of the metabolite eluted as Peak 1 in the metabolite profile of urine was identified as N-desethyl milnacipran, which has a molecular weight of 218.29 and a monoisotopic molecular weight of 218.14. The retention time (11 minutes), protonated molecular ion (m/z 219, Figure 2A), and mass spectrum (Figure 2B) of the metabolite observed in the LC-MS/MS analysis matched those of N-desethyl milnacipran standard (Figure 3). A fragmentation scheme (Figure 4) was proposed based on the major fragments observed in the mass spectrum (m/z 202, m/z 174 and m/z 131, Figure 2B). It appeared that the amine function of the molecule was protonated to produce the protonated molecular ion (m/z 219). The fragment of m/z 202 was produced following a neutral loss of ammonia (NH₃, 17 daltons) from the protonated molecular ion. The fragment of m/z 174 was produced following an additional neutral loss of ethene (C₂H₄, 28 daltons) from the fragment of m/z 202. The protonated form of a lactam was the proposed structure for the fragment of m/z 174. The fragment of m/z 131 was produced by an addition of a hydrogen molecule (2 daltons) to the fragment generated by neutral losses of ammonia (NH₃, 17 daltons) and carbon monoxide (CO, 28 daltons) from the fragment of m/z 174. The carbonium ion of 1-methyl-2-phenyl-cyclopropane was the proposed structure for the
fragment of \(m/z \) 131. The stability of the carbonium ion was probably provided by the electrons of the phenyl ring. The protonated molecular ion (\(m/z \) 219.1478) of the metabolite observed in the LC-HRMS analysis was accurate (6.3 ppm from theoretical) and supported the proposed structure. Peak 1 in the metabolite profile of plasma was also identified as the N-desethyl milnacipran metabolite using a similar procedure.

Peak 3. The chemical structure of the metabolite eluted as Peak 3 in the metabolite profile of urine was identified as \(\text{l} \)-milnacipran carbamoyl O-glucuronide, which has a molecular weight of 466.48 and a monoisotopic molecular weight of 466.20. The retention time (22 minutes), protonated molecular ion (\(m/z \) 467, Figure 5A), and mass spectrum (Figure 5B) of the metabolite observed in the LC-MS/MS analysis matched those of the \(\text{l} \)-milnacipran carbamoyl O-glucuronide biosynthetic standard (Figure 3). Major fragments of \(m/z \) 291, \(m/z \) 247 and \(m/z \) 230 were observed in the mass spectrum (i.e., product ion spectrum) following the fragmentation of the protonated molecular ion. In addition, a minor fragment of \(m/z \) 449 was observed in the spectrum. It appeared that a nitrogen atom of the molecule was protonated to produce the protonated molecular ion. The fragment of \(m/z \) 449 represented a neutral loss of a water molecule (\(\text{H}_2\text{O} \), 18 daltons) from the protonated molecular ion (\(m/z \) 467). The fragment of \(m/z \) 291 was produced by a neutral loss of dehydrated glucuronic acid moiety (176 daltons) from the protonated molecular ion. The fragment of \(m/z \) 247 was produced following an additional neutral loss of carbon dioxide (44 daltons) from the fragment of \(m/z \) 291. The fragment of \(m/z \) 230 was produced following a neutral loss of ammonia (17 daltons) from the fragment of \(m/z \) 247. The protonated molecular ion (\(m/z \) 467.1974) of the metabolite observed in the LC-HRMS analysis was accurate (10.7 ppm from theoretical) and supported the proposed structure.
In addition, the hydrolysis of the urine metabolite in Peak 3 to milnacipran (Figure 6) by β-glucuronidase (selective hydrolysis) and acid (partial hydrolysis) was similar to the hydrolysis of the l-milnacipran carbamoyl O-glucuronide biosynthetic standard. The enzymatic hydrolysis was inhibited by D-saccharic acid 1,4-lactone, indicating that the metabolite was a β-glucuronide. It appeared that the aglycone produced from hydrolysis of the urine metabolite was a milnacipran carbamic acid, which underwent facile decarboxylation and appeared as milnacipran.

The l-isomer of milnacipran, l-milnacipran, was the enantiomer produced from the hydrolysis of Isolated Peak 3. After enzymatic hydrolysis of Isolated Peak 3 in urine samples from Subject #1 and Subject #3, l-milnacipran was the sole milnacipran enantiomer observed in the chiral analysis of the hydrolyzed product (Figure 7B). These results indicate that l-milnacipran was metabolized and excreted in urine as l-milnacipran carbamoyl O-glucuronide metabolite (Peak 3). Peak 3 in the metabolite profile of plasma was also identified as the l-milnacipran carbamoyl O-glucuronide metabolite using similar approaches with LC-SRM and chiral LC-SRM analyses.

Peak 4. The chemical structure of the metabolite eluted as Peak 4 in the metabolite profile of urine was identified as d-milnacipran carbamoyl O-glucuronide. The retention time (24 minutes), protonated molecular ion (m/z 467), and mass spectrum of the metabolite observed in the LC-MS/MS analysis matched those of the d-milnacipran carbamoyl O-glucuronide biosynthetic standard (Figure 3). Since the d- and l-milnacipran carbamoyl O-glucuronides are diastereomers, similar fragments (m/z 449, 291, 247, and 230) were observed in the mass spectra of both glucuronides. The protonated molecular ion (m/z 467.1968) of the Peak 4 metabolite observed in the LC-HRMS analysis was accurate (12.0 ppm from theoretical) and also supported the proposed structure.
In addition, the hydrolysis of the urine metabolite in Peak 4 to milnacipran by β-glucuronidase (selective hydrolysis) and acid (partial hydrolysis) was similar to the hydrolysis of d-milnacipran carbamoyl O-glucuronide biosynthetic standard. Because the enzymatic hydrolysis was inhibited by D-saccharic acid 1,4-lactone, it indicated that the metabolite was a β-glucuronide. It appeared that the aglycone produced from the hydrolysis of the urine metabolite was a milnacipran carbamic acid, which underwent facile decarboxylation and appeared as milnacipran.

The d-isomer of milnacipran, d-milnacipran, was the enantiomer produced from the hydrolysis of Isolated Peak 4. After the enzymatic hydrolysis of Isolated Peak 4 from Subject #1 and Subject #3, d-milnacipran was the sole milnacipran enantiomer observed by chiral analysis of the hydrolyzed product (Figure 7C). Therefore, the results supported that d-milnacipran was metabolized and excreted in urine as d-milnacipran carbamoyl O-glucuronide metabolite (Peak 4). Peak 4 in the metabolite profile of plasma was also identified as the d-milnacipran carbamoyl O-glucuronide metabolite using a similar approach with LC-SRM analysis.

Peak 5. The chemical structure of the compound eluted as Peak 5 in the metabolite profile of urine was identified as unchanged milnacipran, which has a molecular weight of 246.35 and a monoisotopic molecular weight of 246.17. The retention time (36 minutes), protonated molecular ion (m/z 247, Figure 8), and mass spectrum of the compound observed in the LC-MS/MS analysis matched those of milnacipran standard (Figure 3). The fragments of m/z 230, m/z 202, m/z 174, m/z 157 and m/z 129 observed in the mass spectrum following the fragmentation of the protonated molecular ion were similar to those observed in the fragmentation of the N-desethyl milnacipran metabolite (Figure 4). It appeared that the amine function of the molecule was protonated to produce the protonated molecular ion (m/z 247). The fragment of m/z 230 was produced following a neutral loss of ammonia (NH₃, 17 daltons) from the protonated molecular
ion and was the predominant fragment observed in the mass spectrum. The fragment of m/z 202 was produced following a neutral loss of ethene (C_2H_4, 28 daltons) from the fragment of m/z 230. The fragment of m/z 174 was produced following an additional neutral loss of ethene (C_2H_4, 28 daltons) from the fragment of m/z 202. The protonated form of a lactam was the proposed structure for the fragment of m/z 174. The fragment of m/z 157 was produced following a neutral loss of ammonia (NH_3, 17 daltons) from the fragment of m/z 174. The fragment of m/z 129 was produced following a neutral loss of carbon monoxide (CO, 28 daltons) from the fragment of m/z 157. The protonated molecular ion (m/z 247.1778) of the compound observed in the LC-HRMS analysis was accurate (10.9 ppm from theoretical) and supported the proposed structure. Peak 5 in the metabolite profile of plasma was also identified as unchanged milnacipran using a similar procedure.
Discussion

Following oral administration of a 100 mg dose of [14C] milnacipran hydrochloride to healthy male volunteers, the radioactivity of almost the entire dose (approximately 93% of the dose) was excreted in urine within 96 hours, signifying the excellent oral absorption of milnacipran. Renal excretion of unchanged milnacipran in humans appeared to be the major elimination route of milnacipran, accounting for approximately 55% of the dose. This study also found that the renal excretion of d-milnacipran (31% of the dose) was slightly higher than that of l-milnacipran (24% of the dose).

A major milnacipran metabolite, previously reported as milnacipran N-glucuronide (Puozzo et al., 1998), was ultimately identified in this study as l-milnacipran carbamoyl O-glucuronide. This major metabolite was excreted primarily in urine and accounted for approximately 17% of the dose. The d-milnacipran enantiomer was similarly converted to d-milnacipran carbamoyl O-glucuronide metabolite and excreted in urine, but it accounted for only 2% of the dose. This study also found that approximately 8% of the dose was excreted in urine as the N-desethyl milnacipran metabolite. No other metabolites with significant radioactivity were observed in urine. The biotransformation of milnacipran in humans is summarized in Figure 9.

Since unchanged milnacipran accounted for only 36.3% of the AUC_{0-t} for plasma radioactivity (on average), it was expected that milnacipran metabolite(s) would be present in plasma following the oral administration of milnacipran hydrochloride. The milnacipran metabolites excreted in urine were also observed in plasma. The maximum concentration of the major plasma metabolite, the l-milnacipran carbamoyl O-glucuronide metabolite, was approximately 234 ng equivalent of milnacipran/mL. In addition, the concentration of this metabolite was

25
similar to that of milnacipran for all plasma samples collected during the 0.5 to 12 hours after dosing. Therefore, the AUC of \(l\)-milnacipran carbamoyl O-glucuronide metabolite also accounted for approximately 36% of the AUC\(_{0-1}\) of plasma radioactivity. The plasma concentrations of the N-desethyl milnacipran and the \(d\)-milnacipran carbamoyl O-glucuronide metabolites were relatively low and did not exceed 25 ng equivalent of milnacipran/mL. Thus, the AUCs of these two metabolites were not determined.

Similarly to other carbamoyl O-glucuronide metabolites (Delbressine et al., 1990; Tremaine et al., 1989; Schaefer et al., 1998; and Schaefer, 1992), the milnacipran carbamoyl O-glucuronide metabolites were likely formed by a non-enzymatic reversible reaction of the primary amine function of milnacipran with carbon dioxide to form a milnacipran carbamic acid intermediate, which was subsequently conjugated to glucuronic acid. In this study, the milnacipran carbamoyl O-glucuronide metabolites were partially hydrolyzed by acid and selectively hydrolyzed by \(\beta\)-glucuronidase to its aglycone. The aglycone produced from hydrolysis of the glucuronide was a milnacipran carbamic acid, which underwent facile decarboxylation and appeared as milnacipran. Similar hydrolytic properties have been reported for the carbamoyl O-glucuronide metabolite of numerous compounds (Tremaine et al., 1989; Schaefer, 1992; and Kwok et al., 1990).

In addition to the common neutral loss of 176 daltons (i.e., dehydrated glucuronic acid moiety) from the protonated molecular ion of regular glucuronide metabolites, a unique neutral loss of 220 daltons (i.e., the sum of dehydrated glucuronic acid moiety and carbon dioxide, 176 + 44 daltons) from the protonated molecular ions of carbamoyl O-glucuronide metabolites has been frequently reported in the literature (Beconi et al., 2003; Tremaine et al., 1989; Dow et al., 1994; Schaefer et al, 1998; and Straub et al., 1988). In this study, the fragments of \(m/z\) 247 and \(m/z\) 291
observed in the mass spectra of \textit{d}- and \textit{l}-milnacipran carbamoyl O-glucuronide metabolites support the occurrence of both types of neutral losses (220 and 176 daltons) from the protonated molecular ions (\textit{m/z} 467) of these metabolites. The mass spectra results also supported the chemical structure of milnacipran carbamoyl O-glucuronide metabolites.

A significant in-source (i.e., in the ionization source of the mass spectrometer) degradation of both \textit{d}- and \textit{l}-milnacipran carbamoyl O-glucuronide metabolites to milnacipran was observed when the biosynthetic standards, Isolated Peak 3, or Isolated Peak 4 were analyzed by LC-MS/MS and LC-SRM. Milnacipran generated in-source from milnacipran carbamoyl O-glucuronide metabolite should have the retention of milnacipran carbamoyl O-glucuronide metabolite. However, the retention time of milnacipran was much longer than that of milnacipran carbamoyl O-glucuronide metabolite in the analyses. Hence, the milnacipran generated in-source was easily distinguished from the milnacipran presented in the sample.

Milnacipran is not transformed to its \textit{trans}-isomer in humans. The stereochemistry of milnacipran shows it to be a \textit{cis}-isomer composed of a pair of enantiomers: \textit{d}-milnacipran (1\textit{S}, 2\textit{R}) and \textit{l}-milnacipran (1\textit{R}, 2\textit{S}). The \textit{trans}-isomer of milnacipran is also a pair of enantiomers: the (1\textit{R}, 2\textit{R}) and (1\textit{S}, 2\textit{S}). If milnacipran is transformed to its \textit{trans}-isomer, it would require changes at only one chiral center of milnacipran: (1\textit{S}, 2\textit{R}) to (1\textit{R}, 2\textit{R}) or (1\textit{S}, 2\textit{S}); and (1\textit{R}, 2\textit{S}) to (1\textit{R}, 2\textit{R}) or (1\textit{S}, 2\textit{S}). In this study, the HPLC method provided a good baseline resolution (Figure 2) of the \textit{trans}-isomer of milnacipran (retention time \textasciitilde34 minutes) from milnacipran (retention time \textasciitilde36 minutes). The \textit{trans}-isomer of milnacipran was not observed in metabolite profile of plasma or urine by radioactivity analysis (Figures 1A and 1B, respectively). In addition, LC-MS/MS analysis of a urine sample (Figure 8A) confirmed that milnacipran was not excreted in urine as its \textit{trans}-isomer. The absence of milnacipran
transformation to its trans-isomer would imply no chirality change at either chiral center of milnacipran. Furthermore, previous clinical studies of milnacipran have demonstrated that there is no inter-conversion between the d-milnacipran (1S, 2R) and l-milnacipran (1R, 2S) enantiomers (data on file, company study reports). The conversion of d-milnacipran to l-milnacipran, or vice versa, would require changes at both chiral centers: 1S to 1R, and 2R to 2S (or vice versa). Therefore, the absence of the milnacipran transformation to its trans-isomer in this study (no change in either chiral center) strengthens the results of previous clinical studies (no change in both chiral centers).

Previously, the metabolism of milnacipran was studied following oral administration of 14C milnacipran hydrochloride to mice (100 mg/kg), rats (100 mg/kg), and monkeys (60 mg/kg) (data on file, company study reports). Following the oral administration, approximately 40% of the dose (monkeys) to 63% of the dose (rodents) was excreted in urine as unchanged milnacipran. Less than 2% of the dose was excreted as the milnacipran carbamoyl O-glucuronide metabolite in mice (1.0% of the dose), rats (0.1% of the dose), and monkeys (1.6% of the dose). Similar amounts of d- and l-milnacipran carbamoyl O-glucuronide metabolites were excreted by each animal species, and both glucuronide metabolites were observed in plasma of all three animal species. In addition, milnacipran was transformed to N-desethyl milnacipran metabolite in the animals, with the N-desethyl milnacipran metabolite being the major metabolite produced in rats and monkeys. The animal plasma concentrations of N-desethyl milnacipran metabolite and d-milnacipran carbamoyl O-glucuronide metabolite were higher than those observed in humans (100 mg oral dose). Moreover, the plasma concentration of l-milnacipran carbamoyl O-glucuronide metabolite found in monkeys was similar to that observed in humans, but lower plasma concentrations of this metabolite were found in mice and rats.
Overall, the metabolism study of milnacipran hydrochloride was conducted safely in humans. Other than the common side effect of emesis observed in two healthy subjects, the 100 mg oral dose of \([^{14}\text{C}]\) milnacipran hydrochloride was well tolerated by the remaining healthy subjects. In addition to measure all major plasma metabolites of milnacipran in this study, the excretion of milnacipran and its major metabolites were measured. We hope that the results of this comprehensive study of milnalcipran metabolism in humans will help scientists and physicians better understand the therapeutic usage of milnacipran hydrochloride.
Acknowledgement

The clinical phase of this study was conducted by Quintiles Inc. (Overland Park, KS). The authors confirmed that the paper is an accurate representation of the study results. The authors would like to thank Melanie Ronsheim and Thomas Chou for their assistance with the analyses of the study. In addition, the authors would like to thank Larry Cheng for his guidance during the study, as well as Morgan Hill, PhD and Mildred Bahn at Prescott Medical Communications Group (Chicago, IL) for editorial and medical writing assistance.
Authorship Contributions:

Participated in research design: Li, Wangsa, and Ho

Conducted experiments: Li and Chin

Performed data analysis: Li, Chin, Wangsa, and Ho

Wrote or contributed to the writing of the manuscript: Li, Wangsa, and Ho
References

Footnotes

Source of financial support: This work was supported by Forest Research Institute. Medical writing and editorial assistance was also supported by Forest Research Institute.

Address reprint requests to: John Ho, Forest Research Institute, 220 Sea Lane, Farmingdale, NY 11735. Phone number: (631) 501-5377. E-mail: john.ho@frx.com
Figure Legends

Figure 1. HPLC chromatogram of (A) the 1.5 hour plasma pool; and (B) the 4-8 hour urine sample of Subject #3 following oral administration of a 100 mg dose of [14C] milnacipran hydrochloride. *The retention times of the chromatographic peaks observed in LSC of the HPLC fraction (i.e., procedure for metabolite profile of plasma) was approximately 1 to 2 minutes longer than those observed in the radioactivity flow detector because of the extra tubing used for collecting the HPLC fractions.

Figure 2. LC-MS/MS analysis of N-desethyl milnacipran metabolite (Peak 1, precursor ion = protonated molecular ion, m/z 219) in the 0-4 hour urine sample of Subject #1. (A) Protonated molecular ion of N-desethyl milnacipran metabolite; and (B) product ion spectrum produced by the protonated molecular ion of N-desethyl milnacipran metabolite.

Figure 3. The LC-MS/MS chromatogram from the analysis of chemically synthesized and biosynthetic standards. The retention times of the chromatographic peaks observed in LC-MS/MS analysis were approximately 1 to 2 minutes different from those observed in HPLC-radioactivity flow detector analysis due to different HPLC instrument used. *Chemically synthesized standard; **Biosynthetic standard.

Figure 4. Proposed fragmentation pattern for the protonated molecular ion of N-desethyl milnacipran metabolite, [M+H]+, m/z 219.
Figure 5. LC-MS/MS analysis of \(l \)-milnacipran carbamoyl O-glucuronide metabolite (Peak 3, precursor ion = protonated molecular ion, \(m/z \) 467). (A) Protonated molecular ion of \(l \)-milnacipran carbamoyl O-glucuronide metabolite in the 0-4 hour urine sample of Subject #1; and (B) Product ion spectrum produced by the protonated molecular ion of \(l \)-milnacipran carbamoyl O-glucuronide metabolite in the 0-4 hour urine sample of Subject #3.

Figure 6. The chromatograms from the analysis of the Isolated Peak 3 from the 0-4 hour urine sample of Subject #3 (A) Before hydrolysis; (B) After treatment with 2 N hydrochloric acid at 70°C for 1 hour; (C) After treatment with Glusulase® at 37°C for 1 hour; and (D) After treatment with Glusulase® and the inhibitor, D-saccharic acid 1,4-lactone, at 37°C for 1 hour. Milnacipran, \(m/z \) 247 → 230, retention time ~34 minutes; \(l \)-milnacipran carbamoyl O-glucuronide metabolite (Peak 3), \(m/z \) 467 → 230, retention time ~23 minutes.

Figure 7. The chiral LC-SRM analysis of (A) Racemic milnacipran standard; (B) The \(l \)-milnacipran produced from hydrolysis of the isolated \(l \)-milnacipran carbamoyl O-glucuronide metabolite (Peak 3); and (C) The \(d \)-milnacipran produced from hydrolysis of the isolated \(d \)-milnacipran carbamoyl O-glucuronide metabolite (Peak 4). Both metabolites were isolated from the 0-4 hour urine sample of Subject #1. \(l \)-Milnacipran, \(m/z \) 247 → 230, retention time ~15 minutes; \(d \)-milnacipran, \(m/z \) 247 → 230, retention time ~16 minutes.

Figure 8. LC-MS/MS analysis of unchanged milnacipran (Peak 5, precursor ion = protonated molecular ion, \(m/z \) 247) in the 0-4 h urine sample of Subject #1. (A) Protonated molecular ion of
unchanged milnacipran; and (B) Product ion spectrum produced by the protonated molecular ion of unchanged milnacipran.

Figure 9. Proposed metabolic transformation of milnacipran in humans.
TABLE 1

Plasma pharmacokinetics (mean ± SD) of [\(^{14}\)C] radioactivity and milnacipran following oral administration of a 100 mg dose of [\(^{14}\)C] milnacipran hydrochloride to four healthy male subjects

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameters (units)</th>
<th>([^{14}\text{C}]) Radioactivity(^a)</th>
<th>Milnacipran</th>
<th>Milnacipran (% of ([^{14}\text{C}]) Radioactivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{max}}) (ng/mL)</td>
<td>679.0 ± 112.6</td>
<td>239.6 ± 33.2</td>
<td>35.3</td>
</tr>
<tr>
<td>(\text{AUC}_{0-t}) (ng(*h/mL)</td>
<td>6446.3 ± 666.3</td>
<td>2342.6 ± 252.0</td>
<td>36.3</td>
</tr>
<tr>
<td>(\text{AUC}_{0-\infty}) (ng(*h/mL)</td>
<td>7325.3 ± 622.1</td>
<td>2766.5 ± 413.2</td>
<td>37.8</td>
</tr>
<tr>
<td>(T_{\text{max}}) (h)</td>
<td>4.3 ± 0.5</td>
<td>3.5 ± 1.0</td>
<td></td>
</tr>
<tr>
<td>(T_{1/2}) (h)</td>
<td>7.7 ± 1.0</td>
<td>8.9 ± 3.2</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Units for \(C_{\text{max}}\) = ng equivalent of milnacipran/mL; units for \(\text{AUC}_{0-t}\) and \(\text{AUC}_{0-\infty}\) = ng equivalent of milnacipran\(*h/mL\)
TABLE 2

Mean (± SD) cumulative excretion following oral administration of a 100 mg dose of [14C] milnacipran hydrochloride to four healthy male subjects

<table>
<thead>
<tr>
<th>Period (h)</th>
<th>Excretion (% of the dose)</th>
<th>Urine</th>
<th>Feces</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>24.8 ± 1.9</td>
<td>N/A</td>
<td>24.8 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>0-8</td>
<td>48.5 ± 5.1</td>
<td>N/A</td>
<td>48.5 ± 5.1</td>
<td></td>
</tr>
<tr>
<td>0-12</td>
<td>60.8 ± 6.7</td>
<td>N/A</td>
<td>60.8 ± 6.7</td>
<td></td>
</tr>
<tr>
<td>0-24</td>
<td>79.4 ± 4.6</td>
<td>0.407 ± 0.2</td>
<td>79.6 ± 4.8</td>
<td></td>
</tr>
<tr>
<td>0-48</td>
<td>89.3 ± 2.8</td>
<td>2.83 ± 0.9</td>
<td>92.2 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>0-72</td>
<td>92.1 ± 2.2</td>
<td>3.27 ± 1.5</td>
<td>95.4 ± 2.0</td>
<td></td>
</tr>
<tr>
<td>0-96</td>
<td>92.8 ± 1.7</td>
<td>3.62 ± 1.1</td>
<td>96.5 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>0-120</td>
<td>93.1 ± 1.5</td>
<td>3.65 ± 1.1</td>
<td>96.8 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>0-144</td>
<td>93.3 ± 1.4</td>
<td>3.65 ± 1.1</td>
<td>96.9 ± 0.6</td>
<td></td>
</tr>
</tbody>
</table>

N/A= not applicable because no feces samples were collected.
TABLE 3

Plasma concentration of milnacipran and its metabolites following oral administration of a 100 mg dose of $[^{14}C]$ milnacipran hydrochloride to four healthy male subjects

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Peak 1 (N-desethyl milnacipran)</th>
<th>Peak 2 (l-milnacipran carbamoyl O-glucuronide)</th>
<th>Peak 3 (d-milnacipran carbamoyl O-glucuronide)</th>
<th>Peak 4 (milnacipran)</th>
<th>Peak 5 (milnacipran)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>BLOD</td>
<td>BLOD</td>
<td>26.57</td>
<td>BLOD</td>
<td>33.92</td>
</tr>
<tr>
<td>1</td>
<td>BLOD</td>
<td>BLOD</td>
<td>101.66</td>
<td>BLOD</td>
<td>83.17</td>
</tr>
<tr>
<td>1.5</td>
<td>BLOD</td>
<td>BLOD</td>
<td>161.30</td>
<td>BLOD</td>
<td>156.73</td>
</tr>
<tr>
<td>2</td>
<td>BLOD</td>
<td>9.12</td>
<td>190.14</td>
<td>BLOD</td>
<td>178.93</td>
</tr>
<tr>
<td>3</td>
<td>24.60</td>
<td>12.53</td>
<td>195.72</td>
<td>16.42</td>
<td>208.01</td>
</tr>
<tr>
<td>4</td>
<td>19.63</td>
<td>BLOD</td>
<td>234.38</td>
<td>17.49</td>
<td>214.21</td>
</tr>
<tr>
<td>6</td>
<td>23.46</td>
<td>BLOD</td>
<td>140.79</td>
<td>BLOD</td>
<td>186.82</td>
</tr>
<tr>
<td>12</td>
<td>13.67</td>
<td>BLOD</td>
<td>50.79</td>
<td>BLOD</td>
<td>87.22</td>
</tr>
</tbody>
</table>

BLOD = below limit of detection (i.e., concentration < 7.8 ng equivalent of milnacipran/mL.)
TABLE 4

Mean° metabolite profiles of urine following oral administration of

a 100 mg dose of [14C] milnacipran hydrochloride to four healthy male subjects

<table>
<thead>
<tr>
<th>Period (h)</th>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Peak 3</th>
<th>Peak 4</th>
<th>Peak 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0.92</td>
<td>0.43</td>
<td>6.26</td>
<td>0.55</td>
<td>15.54</td>
<td></td>
</tr>
<tr>
<td>4-8</td>
<td>1.35</td>
<td>0.43</td>
<td>5.39</td>
<td>0.64</td>
<td>14.42</td>
<td></td>
</tr>
<tr>
<td>8-12</td>
<td>1.26</td>
<td>0.21</td>
<td>2.36</td>
<td>0.37</td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>12-24</td>
<td>2.06</td>
<td>0.28</td>
<td>2.36</td>
<td>0.58</td>
<td>10.87</td>
<td></td>
</tr>
<tr>
<td>24-48</td>
<td>1.36</td>
<td>0.13</td>
<td>0.76</td>
<td>0.28</td>
<td>5.45</td>
<td></td>
</tr>
<tr>
<td>48-72</td>
<td>0.73</td>
<td>BLOD</td>
<td>0.19</td>
<td>BLOD</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>72-96</td>
<td>0.06</td>
<td>0.07</td>
<td>BLOD</td>
<td>BLOD</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0-96</td>
<td>7.73</td>
<td>1.33</td>
<td>17.23</td>
<td>2.14</td>
<td>54.71</td>
<td>84.26</td>
</tr>
</tbody>
</table>

°Mean values, calculated based on the number of samples that contained a peak.

BLOD = below limit of detection for on-column analysis (approximately 396 cpm/200µL).
TABLE 5

Urinary excretion of milnacipran enantiomers following oral administration of a 100 mg dose of [14C] milnacipran hydrochloride to four healthy male subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>l-Milnacipran</th>
<th>d-Milnacipran</th>
<th>Milnacipran<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.1</td>
<td>33.6</td>
<td>55.7</td>
</tr>
<tr>
<td>2</td>
<td>24.4</td>
<td>28.6</td>
<td>53.0</td>
</tr>
<tr>
<td>3</td>
<td>23.8</td>
<td>32.4</td>
<td>56.2</td>
</tr>
<tr>
<td>4</td>
<td>23.6</td>
<td>30.4</td>
<td>54.0</td>
</tr>
<tr>
<td>Mean</td>
<td>23.5</td>
<td>31.2</td>
<td>54.7</td>
</tr>
</tbody>
</table>

^aData were from metabolite profiles of urine (Table 4).
Figure 1

A

Radioactivity (dpm)

Time (minutes)

Peak 1

Peak 2

Peak 3

Peak 4

Peak 5

B

CPM

Time (minutes)

Peak 1

Peak 2

Peak 4

Peak 5

<table>
<thead>
<tr>
<th>Chromatographic peak</th>
<th>Peak 1 (N-desethyl milnacipran)</th>
<th>Peak 2 (l-milnacipran carbamoyl O-glucuronide)</th>
<th>Peak 3 (d-milnacipran carbamoyl O-glucuronide)</th>
<th>Peak 5 (milnacipran)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention time (min)*</td>
<td>11</td>
<td>22</td>
<td>26</td>
<td>29</td>
</tr>
</tbody>
</table>
Figure 3

![Graph showing the mass spectra of different compounds.]

<table>
<thead>
<tr>
<th>Standard</th>
<th>N-Desethyl milnacipran*</th>
<th>L-Milnacipran carbamoyl O-glucuronide**</th>
<th>d-Milnacipran carbamoyl O-glucuronide**</th>
<th>trans-Isomer of milnacipran*, m/z 247</th>
<th>Milnacipran*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention time (min)</td>
<td>11</td>
<td>22</td>
<td>24</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Prolonated molecular ion (m/z)</td>
<td>219</td>
<td>467</td>
<td>467</td>
<td>247</td>
<td>247</td>
</tr>
</tbody>
</table>
Figure 5

A

Relative Abundance

21.82

[+H]^+ of Peak 3, m/z 467
Retention time ~ 22 minutes

Time (minutes)

B

Relative Abundance

246.7

229.7

290.9

m/z

134.3

194.9

201.5

272.2

316.0

330.9

360.6

408.1

423.3

449.3

467.0
Figure 8

A

Relative Abundance

Time (minutes)

[\text{M+H}]^+ \text{ of Peak 5, } m/z \text{ 247}
Retention time \sim 36 minutes

B

Relative Abundance

m/z

111.7 117.1 128.8 145.6 156.9 160.1 174.0 186.1 195.4 201.7 203.1 227.5 231.2 233.3 247.1
Figure 9

Milnacipran (14C-labeled site) \rightarrow N\text{-}Desethyl milnacipran

Milnacipran carbamic acid

Milnacipran carbamoyl O-glucuronide (predominantly l-milnacipran carbamoyl O-glucuronide)