Metabolism of Bis(4-fluorobenzyl)trisulfide and its formation of hemoglobin adduct in rat erythrocytes

Hao Pan, Liqiang Gu, Siyuan Sun, Zhongjian Chen, Hui Zhou, Su Zeng, and Huidi Jiang

Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
Running Title Page: Metabolism of BFBTS and its formation of Hb adduct in rat RBCs

Corresponding author:

Huidi Jiang, Ph.D., Department of Pharmaceutical Analysis and Drug Metabolism
Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
E-mail: hdjiang@zju.edu.cn
Tel(Fax): 86-571-88208408

Number of text pages = 35
Number of tables = 2
Number of figures = 10
Number of references = 49
Number of words in Abstract = 231
Number of words in Introduction = 580
Number of words in Discussion = 1490

Non-standard abbreviations:

RBCs, red blood cells; Hb, hemoglobin; GSH, reduced glutathione; MDR, multidrug resistance; NAC, N-acetyl cysteine; CoA, coenzyme A; TQD, Triple quadrupole detector; BFBTS, Bis(4-flurobenzyl)trisulfide; p-FBM, para-fluorobenzyl-mercaptan; BFBDS, Bis(4-flurobenzyl)disulfide; p-FBA, para-fluorobenzoic acid; p-FHA, para-fluorohippuric acid; DAD, diode array detector; ESI, electrospray ionization; HPLC, high-performance liquid chromatography; IAI, iodoacetamide; MS, mass spectrometry; MS/MS, tandem mass spectrometry; MALDI, matrix-assisted laser desorption/ionization; TOF, time of flight.
Abstract

Bis(4-flurobenzyl)trisulfide (BFBTS) is a promising new antitumor agent under investigation. It was metabolized rapidly in vivo in rat, but the metabolic fate and primary site of metabolism have not been clarified. In this study, we investigated the role of blood in the metabolism of BFBTS, and compared the BFBTS metabolic potencies in whole blood, plasma and red blood cells (RBCs) in vitro. Three major metabolites of BFBTS (BFBDS: Bis(4-flurobenzyl)disulfide, p-FBM: para-fluorobenzyl-mercaptan, and p-FBA: para-fluorobenzoic acid) were detected in RBCs and whole blood. Significant metabolism of BFBTS was observed in RBCs which were identified as the primary site of BFBTS metabolism. Thiols, including endogenous thiols and hemoglobin, were proved to be the critical factor in BFBTS metabolism. S-fluorobenzylmercapto-cysteine Hb adducts were characterized in vitro at BFBTS concentration of 250μM and higher, while such Hb adducts were not detected in RBCs from Sprague-Dawley rats receiving a single intravenous injection of BFBTS at a high dose of 50mg/kg. LC-MS/MS results revealed that adduction induced by BFBTS was prone to take place at Cys125 of globin β chains. Otherwise, glutathionylation of Hb was also observed which may be attributed to the oxidative effect of BFBTS. In summary, BFBTS was unstable when it met with thiols, and RBCs were the main site of BFBTS metabolism. Hb adducts induced by BFBTS could be detected in vitro at high concentration but not in vivo even at high dose.
Introduction

Various naturally occurring sulfides have been demonstrated to have a lot of pharmacological effects, such as antibacterial, anticoagulative (Makheja and Bailey, 1990), antitumor (Wargovich et al., 1988; Sumiyoshi and Wargovich, 1990; Xiao and Singh, 2006; Iciek et al., 2007; Kim et al., 2007; Seki et al., 2008), anti-radiation, antioxidative (Zeng et al., 2008), lipid-lowering effects (Warshafsky et al., 1993; Yeh and Yeh, 1994; Zhou et al., 2005) and some other important biological activities (Agarwal, 1996; Amagase et al., 2001; Amagase, 2006). Allium vegetables are typical collection of those sulfides, to which consistent attention has been paid for their potential cancer preventive effects. It is widely investigated and well documented that diallyl trisulfide, a kind of trisulfide, is the primary antitumor component from garlic (Fukao et al., 2004; Xiao and Singh, 2006; Wang et al., 2012). Dibenzyl trisulfide (DBTS) is another well documented trisulfide from a subtropical shrub, Petiveria alliacea, with potent antitumor activity (Rosner et al., 2001; Williams et al., 2004).

Bis(4-flurobenzyl)trisulfide (BFBTS Fig.1), a novel trisulfide, is a synthetic analogue of the sulfur-containing compound DBTS generated after a systematic screening against a wide range of tumor cell lines (An et al., 2006). BFBTS exhibits a broad spectrum of anti-tumor activity against nine human tumor cell lines, and is more potent than DBTS (An et al., 2006). A further in vitro study reveals that BFBTS shows an equal antitumor potency between tumor cell lines over-expressing multidrug-resistant transporter gene, MDR1/ABCB1 (MCF7/adr and KBv2 cell lines), and their parental cell lines. The anti-proliferation activity of BFBTS is mainly based on its inhibition on microtubule
polymerization dynamics (Xu et al., 2009), while a further investigation reveals that BFBTS is covalently bound to β-tubulin at a novel site residue Cys12, forming β-tubulin-SS-fluorobenzyl. BFBTS also exhibits potent anti-tumor activity in nude mice bearing A549 lung cancer, Bcap-37 breast cancer, SKOV3 ovarian cancer or MCF-7/adr breast cancer xenografts. The promising antitumor effects of BFBTS intrigue more efforts on its application as an agent for anti-cancer therapeutics.

Our previous study revealed the pharmacokinetic profile of BFBTS in rats (Gu et al., 2008). Similarly to the most widely investigated trisulfides (Sun et al., 2006), the concentration of BFBTS decreased rapidly within 30 min after its exposure to the circulation system, resulting in a short half-life in rat blood. A major metabolite bis(4-flurobenzyl)disulfide (BFBDS) was detected in blood, having an equivalent exposure to the circulation system comparing with its parent compound BFBTS. The final metabolites in rats were found to be para-fluorohippuric acid (p-FHA) and para-fluorobenzoic acid (p-FBA) (Pan et al., 2009). Although our previous studies suggested a possible complicated metabolism of BFBTS (Gu et al., 2008; Pan et al., 2009), the metabolic pathway and mechanism of BFBTS metabolism have not been clearly clarified yet.

Based on our preliminary study, BFBTS was shown to be much more unstable in blood than in liver microsomes with an extremely short half-life in rat blood. Since the main route of BFBTS administration is the intravenous route, blood is probably critical in the disposition of BFBTS. In the current study, we investigated the factors involved in the significant metabolism of BFBTS in rat blood, and identified the metabolites of BFBTS. As indicated in the literatures (Hosono et al., 2005; Xu et al., 2009), the trisulfide might interact with the
cysteine residues in biological macromolecules, thus we confirmed the interactions between BFBTS and hemoglobin, the major protein in red blood cells. The results will contribute to a better understanding of the metabolic mechanism of BFBTS and other trisulfides in blood.

Material and Methods

Materials

Bis(4-flurobenzyl)trisulfide (BFBTS), Bis(4-flurobenzyl)disulfide (BFBD), and p-fluorobenzyl-mercaptan (p-FBM) were provided by ACEA Bio (Hangzhou) Co., Ltd. p-fluorobenzoic acid (p-FBA) (purity, 98.0%) was purchased from Sigma-Aldrich Co. (Steinheim, Germany). Reduced glutathione and L-Cysteine (purity, >98.0%) were purchased from Sangon Biotech (Shanghai) Co., Ltd. N-acetyl-L-cysteine (purity, >98%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Trifluoroacetic acid (TFA, purity, >99.5%) was purchased from Aladdin reagent. Acetonitrile was of HPLC grade from Tedia Co., Inc (USA). All other reagents were of analytical grade. The deionized water was purified by the Milli-Q Gradient A10 water system (Millipore Inc, USA).

Animals

Male Sprague-Dawley rats (200 g–220 g) were obtained from Zhejiang Experimental Animal Center, Zhejiang Academy of Medical Science. The certification number of the rats was SCXK (Zhe) 2003-0001. The rats were maintained on a 12h light/dark cycle and given water and fed ad libitum. All the procedures used in this study were approved by the Zhejiang University ethics committee.

In vitro metabolism of BFBTS in Blood

Preparation of different fractions of rat blood
Whole blood was collected from the orbital sinus of rats, the plasma was harvested after a centrifugation at 3,000g for 10 min and the red blood cells were washed with three volumes of isocratic PBS (pH 7.4) for three times and then re-suspended in appropriate volume of PBS. BFBTS was incubated with whole blood and the two different fractions of blood for 2 hours, after liquid-liquid extraction and HPLC analysis, the recoveries were compared for stability investigation.

Identification of BFBTS metabolites in rat blood

BFBTS was incubated with rat whole blood, plasma and RBCs at 37°C. For the identification of metabolites, the reaction was terminated by rapid addition of two volumes of acetonitrile to the incubation system. The mixture was vortexed for 1 min followed by centrifugation at 13,000g for 10 min, and the resultant supernatant was subjected to LC-MS and GC-MS analysis.

Kinetics of BFBTS metabolism in rat blood

For the kinetic study, BFBTS (final concentration, 50μM) was incubated with RBCs diluted with equal volume of PBS or whole blood for designed time (5, 10, 15, 30, 45, and 60 min), the substrate and metabolites were determined by the following methods. For metabolite M2 and M3 assay, two volumes of acetonitrile were added to the incubation system, and the samples were prepared by the method previously described, followed by HPLC analysis, while for BFBTS and metabolite M1 analysis, the samples were treated by the method reported (Bao et al., 2008; Gu et al., 2008). Briefly, 3 mL of extraction solvent (n-hexane:isopropyl alcohol = 95:5, v/v) was added to the incubation system, followed by liquid-liquid extraction for 5 min, the dried organic layer was reconstituted in mobile phase.
and subjected to HPLC analysis.

Profile of BFBTS metabolism in rat RBCs

The relation among the metabolites is critical for a better understanding of the BFBTS metabolism, especially the sequential metabolism, therefore, rat RBCs were incubated with all the different metabolites, respectively. After sample preparation by the method described in 2.3.2, the supernatant was analyzed using HPLC. The metabolites were confirmed using the authentic standards.

Investigation of the mechanism of BFBTS metabolism

The impact of sulfhydryl groups on the metabolism of BFBTS

Reduced glutathione (GSH), cysteine, N-acetyl cysteine, and coenzyme A are the common endogenous thiols in biological systems. BFBTS (final concentration, 5μM) was incubated with 0.5mM reduced glutathione (GSH), cysteine, N-acetyl cysteine or coenzyme A, respectively, in PBS for 15, 30 and 60 min, followed by the liquid-liquid extraction and HPLC analysis as previously described.

To confirm the role of sulfhydryl groups in the metabolism of BFBTS, RBCs were pre-incubated with iodoacetamide (IAI, 5mM), a classic thiol-residue blocking reagent, for 1 hour, after which BFBTS (final concentration, 5μM) was added and incubated for another 1 hour. The mixture was treated as previously described, and a time-concentration profile of BFBTS was depicted to evaluate the effect of thiol group in the degradation of BFBTS.

Mechanism of interaction between GSH and BFBTS

BFBTS (5μM) was incubated with GSH (0.5mM) in PBS (pH7.4) for 30 min, two volumes of acetonitrile were added to the incubation system and followed by HPLC and
LC-MS analysis.

Chromatographic conditions

HPLC-UV analysis of BFBTS and its metabolites

The HPLC analysis was performed using a Diamonsil C$_{18}$ column (250 mm × 4.6 mm, 5 μm) with a C$_{18}$ guard column (15 mm × 4.6 mm, 5 μm) at 30 ± 1°C. The analysis was carried out by a gradient mobile phase consisted of acetonitrile(A) and 0.1% phosphoric acid solution (B) at a flow rate of 1.0 mL•min$^{-1}$ (0-7 min 25% A and 75% B, 13-25 min 85% A and 15% B). The DAD detector was set at a wavelength of 220 nm for determination of BFBTS, BFBDS, p-FBM and 230 nm for p-FBA.

GC-MS analysis of p-FBM

Capillary GC-MS analysis was carried out on a 6890N/5975 Inert GC-MS instrument (Agilent Technologies, USA) equipped with a data processing system (Agilent ChemStation system). Gas chromatography was performed on an HP-5MS capillary column (30m×0.25mm i.d.) with the stationary (bonded 5% phenyl and 95% dimethylpolysiloxane) coated at a 0.25μm film thickness. High purity helium (99.99%) was used as the carrier gas at a constant flow rate of 1 mL•min$^{-1}$ maintained by an electronic pressure controller. A split/splitless injection system operated in the split mode was used, and the split ratio was set at 10:1. The injector and interface temperatures were set at 250°C and 280°C, respectively. The oven temperature was programmed from 80 to 180°C at the rate of 6°C•min$^{-1}$ and then held for 10min, increased to 250°C at 10°C•min$^{-1}$ and held at 280°C for 5min. The mass spectrometer was operated in the electron impact mode at the energy of 70 eV, and the ion source temperature was set at 200°C. The mass spectra were recorded in full scan mode to
collect the total ion current (TIC) within the m/z range from 50 to 500.

UPLC-MS analysis of p-FBA

The UPLC-MS analysis was performed on a UPLC ACQUITY instrument (Waters, USA) equipped with a TQD detector. LC-MS analysis was performed on an ACQUITY UPLC™ BEH C18 column (2.1 × 100 mm × 0.17 μm) under negative ion mode. The flow rate of mobile phase was 0.2 mL·min⁻¹ and the gradient elution programmed from 75% A (0.1% formic acid)/25% B (acetonitrile): at 0-1 min to 25% A/75% B at 11- 13 min. The column temperature was controlled at 25°C during the analysis. Capillary voltage: 3.30 kV, cone voltage: 31 V, source temperature: 150°C, desolvation temperature: 350°C were set for MS analysis.

Investigation of BFBTS induced hemoglobin adducts

In vitro incubations of BFBTS with RBCs

The collected RBCs were re-suspended in nine volumes of PBS (pH7.4) before incubation with BFBTS (5μM and 200μM, final concentrations) in a metabolic shaking bath for 0.5h at 37°C, the globins were isolated using acidified acetone after incubation as the method described previously (Moll et al., 2000). Briefly, 6 volumes of cold acidified acetone (1% HCl) were added to the incubation system to precipitate the globins. The sample was centrifuged at 3,000g for 10min, and then the pellets were washed with cold acidified acetone, cold acetone, and cold diethyl ether, successively. The globins were dried under vacuum and kept at -20°C.

In vivo study of BFBTS derived hemoglobin adducts

For *in vivo* study of hemoglobin adducts, three male rats were administered by a single
injection intravenously at a dose of BFBTS (50mg/kg, 8 folds of the effective dose), and the heparinized whole blood was collected at 30min post-dose, since the rapid elimination phase of BFBTS in vivo was estimated to be 30min(Gu et al., 2008). The heparinized whole blood was processed immediately to obtain globins as previously described. The control globins were also obtained from the blood harvested pre-dose.

Electrospray ionization/mass spectrometry (ESI/MS) analysis of intact globin chains

Acetone precipitated globins were dissolved in acetonitrile: H₂O (50:50) before analysis on LC-Q-TOF (ABSciex, API QSTAR). The spectra were scanned with a mass range 200-1500 m/z, and series of multiply charged ions were deconvoluted using Analyst software (Applied Biosystems).

Trypsinization of Hb

Hb from RBCs incubated with 50 or 500μM BFBTS along with their respective controls were trypsinized for modified peptide analysis. Proteolytic digestion of precipitated Hb samples was carried out in 100mM ammonium bicarbonate (pH 8.4) at 37℃ for 20 h. The reaction was stopped by adding TFA to bring the solution to pH<3 prior to analysis by LC/ESI/MS.

Mass spectrometry

Trypsinized samples of globins from control RBCs and RBCs exposed to BFBTS were loaded onto a Zorbax 300-SB C₁₈ trap column for online desalting and sample cleanup, followed by separation on RP-C₁₈ column (0.150mm×15mm, 300 Å, Column Technology Inc.) and analyzed using LTQ Velos Dual-Pressure Ion Trap Mass spectrometer (Thermo Fisher Scientific Inc.). The LC method was as follows: mobile phase A was 0.1% formic acid
in H₂O and mobile phase B was 0.1% formic acid in 84% acetonitrile. Peptides were eluted with a linear gradient of mobile phase. The mobile phase B was increased from 4% to 50% during 0 to 50 min, and then increased to 100% over 4 min, and held for another 6 min. As peptide was eluted and injected into the LC/ESI source, 20 MS/MS spectra were collected after every MS scan. Customized database was created after import of the Sprague-Dawley rat Hb amino sequence (α1, β1, β2, β3, β4) (Ferranti et al., 1993). Raw MS/MS data was used to search for a rat Hb peptides modifications in a customized amino acid sequence using Bioworks and SEQUEST program (Thermo Fisher Scientific Inc.)

Results

Identification of BFBTS metabolites in rat blood after in vitro incubation

As BFBTS was found to be extremely unstable in rat blood, we identified the metabolites to clarify the metabolic fate of BFBTS. BFBTS (50 μM) was incubated with rat blood for 15 minutes followed by HPLC analysis to identify metabolites. BFBTS and three metabolites were detected, which were well separated in the liquid chromatography (Fig.2.).

By GC/MS analysis, we found M1 and M2 shared the same spectra with the authentic standards of BFBDS and p-FBM, respectively (Fig.3). In the MS analysis of M1, the [M] ion of 282 represented BFBDS, while fragmental ion m/z 109 and 83 represented the [para-fluorobenzyl] and [FC₅H₄], respectively. While in the MS analysis of M2, the [M] ion of 141.8 represented p-FBM, and fragmental ion m/z 95 and 83 represented the [M-CH₂SH] and [M-C₂H₂SH], respectively.

After UPLC-MS/MS analysis, identical spectra of M3 and p-fluorobenzoic acid (FBA) were observed (Fig.3). In the MS spectrum, the parent ion of M3 was 139 which represented
the [M-H]⁻, meanwhile, the characteristic structure of BFBTS-derived metabolite was the p-fluorobenzen ring which was represented by ion m/z 95.

M1 was finally confirmed to be Bis(4-flurobenzyl)disulfide (BFBDS) after comparing the retention time of metabolite with the corresponding authentic standard, while it was also the major metabolite identified in our previous pharmacokinetic study of BFBTS (Gu et al., 2008). The retention times of M2 and M3 were also identical with the authentic standards of p-fluorobenzyl-mercaptan (p-FBM) and para-fluorobenzoic acid (p-FBA), respectively.

Based on the above results, we identified the M1, M2 and M3 as BFBDS, p-FBM and p-FBA, respectively.

The identification of major metabolic site and mechanism of the BFBTS metabolism

The kinetic profile of BFBTS metabolism in rat whole blood and RBCs

For the identification of the main metabolic site, the stabilities of BFBTS in different fraction of rat blood were compared. The recovery of BFBTS (64μM) in rat whole blood, plasma after incubation for 2 h, was 2.54% and 12.98%, respectively, while no BFBTS was retained in RBCs. The kinetic study was conducted based on the time-concentration profile of BFBTS metabolism in rat RBCs, and the time-concentration profile of BFBTS metabolites was also depicted(Fig.4). A rapid elimination of BFBTS coupled with a rapid formation of M2 (p-FBM) was observed. The formation of M3 (p-FBA) was relatively slow and steady in comparison with M2. The characteristics of metabolites formation were consistent in RBCs and whole blood, which strongly indicated that RBCs play a more important role in the elimination of BFBTS. Appropriately diluted RBCs (10e⁸/ml) were used to estimate the metabolism of BFBTS. The estimated half-life of BFBTS in RBCs was less than 0.5 min by
nonlinear-regression method using GraphPad Prism 5.0.

Involvement of the thiol group in BFBTS metabolism

It was known that thiol-exchange reactions may occur between thiols and disulfide bond. Thus, a series of endogenous thiols were investigated and compared to determine the main metabolic contribution in blood. BFBDS and p-FBM were detected after incubation of BFBTS with GSH, Cys, NAC and CoA, and the time profile of BFBTS metabolism was shown in Fig.5. BFBTS was unstable when it was exposed to all the small molecules containing sulphydryl group. After 30 min incubation, BFBTS was almost undetectable. In red blood cells (RBCs), the endogenous thiols was reported to be abundant (~2 mM) (Di Simplicio et al., 1998) which may contribute to the metabolism of BFBTS. Notably, such fast elimination of BFBTS in RBCs was almost completely inhibited when RBCs was pre-incubated with iodoacetamide (IAI) which reacted with thiol and significantly blocked most of the exposed thiol residues (Fig.5). The above results strongly indicated a significant involvement of thiols in BFBTS metabolism in RBCs.

Minor potential GSH-\(p\)-FBM conjugate can be detected after 30min incubation of BFBTS in GSH system using LC-MS. Briefly, the precursor ions of the conjugate were 448 and 470 which were identified to be the \([M+H]^+\) and \([M+Na]^+\) ion of GSH-\(p\)-FBM, and their corresponding product ions were 306 and 328 which can be the fragment generated by losing \(p\)-FBM. This observation indicated a direct thiol exchange reaction between BFBTS and GSH which generated an unstable intermediate, GSH-\(p\)-FBM. The reaction mechanism was proposed in Fig.6, the generation of \(H_2S\) was confirmed using Lead(II) acetate paper test.

Sequential metabolism of BFBTS in rat RBCs and metabolism of BFBTS in different
fractions of rat blood

After comparing the metabolic profile of BFBTS, M1, M2, and M3 in rat RBCs, the observation was summarized in Tab.1. The results indicated a complicated sequential metabolism. A reversible reaction existed between M1 and M2, and M3 was the terminal metabolite of BFBTS in rat RBCs.

The metabolism of BFBTS in different fractions of rat blood was also investigated. M1 and M2 were both detected from all the incubation systems, while M3 was only found in rat whole blood and rat RBCs. Collectively, M3 is the terminal product of BFBTS metabolism in rat blood, and rat RBCs is the only site where M3 is generated.

In vitro study of BFBTS induced modification of rat hemoglobin

ESI-TOF analysis of intact globin

Another major part of endogenous thiols in RBCs are the macromolecules with cysteine (thiol) residues, among which hemoglobin are the most abundant. Assessing hemoglobin adducts is also toxicologically important, as it can be used to indicate enzyme inhibition or the physiological of hemoglobin may altered after modification (Eyer et al., 1983). ESI-TOF is a useful tool to investigate macromolecules based on its accurate mass. Thus, the interaction of BFBTS with hemoglobin was investigated using ESI-TOF. Fresh isolated rat RBCs were incubated with 1, 10, 50, 250 and 500 μM BFBTS, 250 μM BFBDS, and 500 μM p-FBM at pH 7.4, 37°C for 30 min. After globins were acetone-precipitated and isolated, samples were subjected to ESI/MS for intact protein analysis. The presence of adducts was determined on the basis of a mass shift of the unmodified chain. Since the sulfur-sulfur bond can be easily broken up and form new sulfur-sulfur bond with sulfhydryl groups. The
theoretical adducted moiety was p-FBM, thus, the theoretical mass shift was (+140 Da) for mono-adduct of p-FBM moiety, and (+280 Da) for bis-adduct. Our analysis of all incubation revealed the presence of mono-adduct on both α1 and β2 chain of Hb when the concentration of BFBTS was above 250μM, while a significant glutathionylation on β chain was also observed (Fig.7). The Hb adducts were undetectable when BFBTS concentrations was lower than 250 μM, which was due to the elimination mediated by small thiols. However, no Hb adducts were detected when RBCs were incubated with BFBDS or p-FBM at high concentration.

LC/MS/MS analysis of peptide digestion

Based on the published reports (Hosono et al., 2005) and our results, cysteine residues were expected to be the modified sites. It was known that there are three cysteine residues on α chain (Cys 13, Cys 104 and Cys 111) and two on β chain (Cys 93 and Cys 125) in Hb, so we carried out LC/MS/MS analysis of Hb peptides to determine the major modification site. Briefly, the globin samples from vehicle control, 250 and 500μM BFBTS treated rat RBCs were trypsinized and subjected to LC/MS/MS analysis using LTQ Velos Dual-Pressure Ion Trap Mass spectrometer.

The globins from 250μM BFBTS treated RBCs revealed three BFBTS modified peptides (Table.1). Cys104/Cys111-containing peptide (α1 93-126) and Cys125-containing peptides (β2/β3 105-132) both of which were identified as BFBTS adducts. The MS/MS fragmentation patterns of Cys104-containing peptides and Cys125-containing peptides were consistent with the BFBTS adducts at the cysteine residue (Fig.8). The spectrum of triple charged precursor ion (m/z 1059.22) referring to the modified Cys125-containing peptide
displayed five b ions and ten y ions. The fragmentation between Thr123 and Pro124 gave rise to a single charged y9 ion (1103.48) and a double charged b19 ion (1139.98). While the high intensity of double charged y21 ion (1218.33) along with the presence of corresponding double charged b7 ion (371.30) were due to the fragmentation between Val 111 and Ile112. All the above results suggested the presence of BFBTS on the cysteine-containing fragment of these peptides.

The globins isolated from RBCs treated with 500μM BFBTS revealed a more wide modification on cysteine-containing peptides, and eight BFBTS modified peptides were detected (Tab.2) including Cys104/Cys111-containing peptide (α1 100-127), Cys93-containing peptide (β1/β2/β3/β4 83-95, 83-104), Cys125-containing peptide (β1 121-132, β2/β3 121-132, β2/β3 105-132, 121-146). The Cys125-containing peptides 121-132 on β1 chain, 121-132, 105-132 and 121-146 on β2/β3 chain, were detected to be modified by BFBTS after confirming the MS/MS fragmentation pattern. The results also revealed the BFBTS adducts on the cysteine residues of Cys104/Cys111-containing peptide 100-127 from α1 chain and Cys93-containing peptides 83-95, 83-104 from β1/β2/β3/β4. The MS/MS data of trypsin digested globins from incubation system of BFBTS at 250 and 500μM revealed the wide involvement of Cys125 from β1/β2/β3 chain, and high reactivity toward BFBTS.

In vivo study of BFBTS modification of rat Hb

To test whether such BFBTS derived Hb adducts were formed in vivo, globins were isolated from collected rat blood at 30 min after a single i.v. injection of BFBTS at a dose of 50mg/kg. By ESI/MS analysis, no difference was observed between globin samples from rat blood of pre-dose and post-dose. (Fig.9), which meant no formation of Hb adducts in vivo.
even at such a high dose.

Discussion

In this study, we investigated the metabolic pathway and the metabolic profile of BFBTS. The results showed that BFBTS was significantly metabolized in rat blood, especially in the RBCs, and generated three metabolites which were identified as M1: Bis(4-fluorobenzyl)disulfide, M2: *para*-fluorobenzyl-mercaptan, and M3: *para*-fluorobenzoic acid. Our further *in vivo* study also confirmed the formation of BFBDS, *p*-FBM, and *p*-FBA in rat blood after i.v. injection of BFBTS. It was the first time to elucidate the metabolic fate of such a trisulfide compound in biological system.

The metabolism of BFBTS was dramatically rapid, coupling with the formation of BFBDS, *p*-FBM and *p*-FBA in rat blood especially in rat RBCs. The time-concentration profiles of *p*-FBM and *p*-FBA formation in rat whole blood and RBCs showed no significant difference, which indicated the critical role of RBCs in the metabolism BFBTS. Moreover, the metabolism of BFBTS was extremely rapid even in a diluted RBCs suspension, therefore, it could be deduced that the RBCs was the primary metabolic site of BFBTS metabolism.

Incubation of BFBTS, M1 and M2 all generated *p*-FBA in rat RBCs, thus it could be concluded that *p*-FBA was the terminal metabolite in rat blood while *p*-FBM and BFBDS were the major intermediate metabolites. Our previous excretion study revealed that *p*-FBA and *p*-FHA were the major metabolites detected in rat urine(Pan et al., 2009), and it was commonly known that hippuric acid was formed by the conjugation of benzoic acid with glycine in mitochondria(Simkin and White, 1957). Thus, the reason why *p*-FHA was not detected in the *in vitro* incubation system or *in vivo* is probably that RBCs have no...
Plasma did not exhibit a comparable metabolic potency, and p-FBA was also not generated in plasma, thus RBCs were also confirmed as the primary site of BFBTS metabolism in the aspect of terminal metabolite formation.

Glutathione (GSH) and cysteine are the major endogenous thiols that keep the intracellular redox potential (Schafer and Buettner, 2001; Giustarini et al., 2008; Kemp et al., 2008) while CoA and N-acetyl cysteine are the two thiols in the biological systems with low concentration. Our investigation on the metabolic mechanism of BFBTS showed that the endogenous thiols were potent to transfer BFBTS to BFBDS and p-FBM. Since the concentration of GSH was relatively high (~2mM) in RBCs, it was probable that GSH dominated the metabolism of BFBTS in rat blood. On the other hand, the total inhibition of BFBTS elimination after pre-incubation of RBCs with iodoacetamide (IAI) confirmed the critical role of thiols.

The metabolism of BFBTS was presumed to be based on the fast thiol/disulfide (SH/SS) exchange(Iversen et al., 2010) and the high reactivity of BFBTS towards thiols due to its specific structure. A minor GSH conjugate was observed when BFBTS was incubated with GSH which partially confirmed the previous hypothesis. p-FBA was not found in those thiol incubation systems, thus the formation of p-FBA was related to other mechanisms that should be further investigated.

Most of the studies about polysulfide metabolism are focused on disulfide and the hepatic metabolism system (Teyssier et al., 1999; Teyssier and Siess, 2000; Germain et al., 2003) which is probably not critical for the metabolism of trisulfide. Apart from the
endogenous thiols, the concentration of protein-SH groups is even higher in RBCs (Di Simplicio et al., 1998) which indicates the possible formation of covalent protein adducts.

Hemoglobin constitutes more than 95% of the protein content in the RBCs and contains more than one reactive cysteine residue (Di Simplicio et al., 1998). Moreover, some cysteine residues in rat hemoglobin have been demonstrated to be more reactive than the metabolically important thiols, such as GSH (Rossi et al., 1998). Hemoglobin adducts are also used widely to indicate or account for the potential toxicity like enzyme inhibition (Zimmerman et al., 2002). Thus it is necessary to investigate the interaction between BFBTS and hemoglobin by assessing the formation of hemoglobin adducts.

Our in vitro study showed that BFBTS derived adducts only formed at high concentrations (250μM and 500μM). The finding of no Hb adducts induced by BFBD or p-FBM indicated the formation of Hb adducts was based on thiol/disulfide exchange, and the structure of trisulfide meant higher reactivity towards thiols. The reason why BFBTS derived adducts were not detected at low concentration was probably due to the great abundance of GSH in RBC (~2mM) of rats (Guan et al., 2003). Our previous data revealed the rapid metabolism of BFBTS by GSH even at low concentration. Thus, the significant metabolism of BFBTS by GSH might have occurred before BFBTS getting access to Hb.

The detection of mono Hb adducts at high concentration (250 and 500μM) by ESI-TOF was further supported by analysis of trypsin-digested globin, which revealed a modified Cys125-containing peptide on β1 chain at both concentrations of BFBTS (250 and 500μM). And the modifications of Cys93 on β chain and Cys104/111 on α chain were detected at high concentration (500μM).
BFBTS derived mono-adducts at 4 out of 5 cysteine sites of the rat Hb were observed at high BFBTS concentration while no multi-adducts were detected by ESI-TOF. This result may be ascribed to the low concentration of the potential multi-adducts and low sensitivity of ESI-TOF mainly caused by ion suppression when analyzing complex samples.

Cys125 is the obvious target since it is located externally at the α_1/β_1 interface of Hb (John, 1982). The exposure level of Cys125 to solvent is the highest one among the 5 cysteine residues, thus the steric hindrance for the reaction of BFBTS with Cys125 was negligible. The prevalence of Cys125 modified peptides on β chain revealed that Cys125 was the most reactive site in rat Hb toward BFBTS, which was also consistent with the previous report defining the Cys125 on rat Hb β chain as the fast reacting thiols (Rossi et al., 1998). Cys104/111 on α chain is located internally at the α_1/β_1 interface (John, 1982), it was suggested that the dissociation of tetramers into dimers will give access to Cys104/111. Cys13 was buried in α chain and Cys93 on β chain was also less exposed to solvent than Cys125, both of which were defined as low-reactive thiol residues. This may be the reason why Cys93 modified peptide was detected only at high concentration (500 μM), while Cys13 modified peptide was not detected.

Apart from the BFBTS derived adducts, glutathionylation of Hb β chain was observed even more significant than BFBTS adducts at the same concentration on ESI-TOF. It was well known that the concentration of glutathione-protein mixed disulfide in various rodent tissues increased under oxidative stress (Brigelius et al., 1982; Keeling et al., 1982; Brigelius et al., 1983; Grimm et al., 1985; Terada et al., 1993; Di Simplicio and Rossi, 1994; Di Simplicio et al., 1996; Giannerini et al., 2001) while the effects of oxidant on blood was
found to be more pronounced than other organs in rat (Giannerini et al., 2001).

In our study, glutathionylation of Hb β chain was not found when RBCs was incubated with BFBDS or p-FBM but was apparent with BFBTS. Since the extra sulfur atom in the compound will increase its oxidative potential, the obvious glutathionylation of Hb is probably due to the oxidative effect of BFBTS on rat RBCs. Our previous observation of interaction between GSH and BFBTS indicated that the unstable intermediate GSH-p-FBM might interact with hemoglobin by the same mechanism. Thus the glutathionylation of Hb β may be ascribed to the oxidative effect of BFBTS or the complicated thiol exchange among GSH, BFBTS and hemoglobin.

A further investigation of Hb adducts was conducted through in vivo study on rats at a single i.v. dose of 50mg/kg (Gu et al., 2008). The reason why neither BFBTS derived adducts nor glutathionylated adducts were detected was probably that the fast elimination induced by GSH resulted in relatively low exposure of BFBTS towards Hb in vivo.

The formation of hemoglobin adducts was also assessed in human by incubating human RBCs with BFBTS. In this case, hemoglobin adducts were not detected which indicated a lower risk in forming BFBTS derived Hb adducts in human.

In summary, we demonstrated the mechanism of BFBTS metabolism in rat RBCs, and indicated that rat RBCs were the main site for the metabolism of BFBTS. The main metabolites were identified as BFBDS, p-FBM and p-FBA, p-FBA was the terminal metabolite while BFBDS, p-FBM were the intermediate metabolites. The proposed pathway of BFBTS metabolism is shown in Fig 10. Thiols were identified as the key factor in the metabolism of BFBTS while the small thiols played a significant role based on the
mechanism of thiol exchange reaction. Hemoglobin adducts could be found only in rat RBCs incubated with BFBTS at high concentration on which Cys 125 showed the highest reactivity toward BFBTS. Moreover, no Hb adduct was detected neither in vivo even at a single high i.v. dose of BFBTS in rat nor in human RBCs incubated with BFBTS. Therefore, it can be deduced that the risk of formation of BFBTS adducts is very low at therapeutical exposure of BFBTS.
Acknowledgements

We thank Xiaqiong Ma and Dr. Narenmandura for their help with the ESI-TOF MS analysis,
Authorship Contributions

Participated in research design: Hao Pan, Liqiang Gu, Su Zeng, and Huidi Jiang

Conducted experiments: Hao Pan, Liqiang Gu

Contributed new reagents or analytic tools: Hao Pan, Liqiang Gu, Siyuan Sun, Zhongjian Chen, Hui Zhou, Su Zeng, and Huidi Jiang

Performed data analysis: Hao Pan, Liqiang Gu, Siyuan Sun, Zhongjian Chen, Hui Zhou, Su Zeng, and Huidi Jiang

Wrote or contributed to the writing of the manuscript: Hao Pan, Siyuan Sun and Huidi Jiang
References

Biochim Biophys Acta 1289:252-260.

Kemp M, Go YM, and Jones DP (2008) Nonequilibrium thermodynamics of

Schafer FQ and Buettner GR (2001) Redox environment of the cell as viewed through

Simkin JL and White K (1957) The formation of hippuric acid; the influence of benzoate administration on tissue glycine levels. Biochem J 65:574-582.

(DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology 252:86-91.

Foot Note:
The research was supported by National Major Special Project for Science and Technology Development of Ministry of Science and Technology of China [2009ZX09304-003]
Figure Legends:

Fig.1 Structures of BFBTS and its metabolites found in rat blood.

Fig.2 Representative HPLC chromatograms. (A) Blank blood sample; (B) Samples at 15 min after incubation of BFBTS (50 μM) with the whole blood from rats. Three metabolites were detected after comparing the retention time with authentic standards of p-FBA, p-FBM and BFBDS (C) ((1). p-FBA, retention time: 8.15 min; (2). p-FBM, retention time: 24.66 min; (3) BFBDS, retention time: 38.89 min)

Fig.3 MS spectra of metabolites M2 and M3 found in rat blood after in vitro incubation with BFBTS. The pattern of fragmentation was illustrated: (A) BFBDS (B) p-FBM and (C) p-FBA

Fig.4 The concentration - time profiles of BFBTS and its metabolites in RBCs. A) BFBTS (50 μM) was incubated with RBCs and whole blood for 5, 10, 15, 30, 45, 60 min. After termination by adding two volumes of acetonitrile, the formation of BFBTS metabolites (M2: p-FBM, M3: p-FBA) were analyzed by HPLC. B) BFBTS was incubated with diluted RBCs (10e5/mL) for short time (1.5, 3, 5, 10, 15 min). After extraction, BFBTS was analyzed by HPLC and the time-concentration profile of BFBTS metabolism in RBCs was depicted. The half-life of BFBTS was calculated by non-linear regression using GraphPad 5.0. (Data points represent the means, n=3 and standard deviation was applied)

Fig.5 Involvement of thiols in BFBTS elimination in RBCs. The concentration-time profile of BFBTS (5 μM) elimination by thiols (upper) and the inhibition of BFBTS (25 μM)
elimination in RBCs after preincubation with iodoacetamide (IAI, 5mM), stability of BFBTS in PBS was taken as control (bottom).

(Data points represent the means, n=3 and standard deviation was applied)

Fig.6 Proposed mechanism of BFBDS and p-FBM formation

Fig.7 ESI-Q-TOF analysis of intact globin. A) Globins after incubation without BFBTS B) Globins after *in vitro* incubation with BFBTS at 250μM with three major Hb adduct formation detected.

Fig.8 LC-MS/MS of peptide β2/3 105-132 modified by BFBTS at Cys125.

Fig.9 ESI-Q-TOF analysis of intact globin. A) Globin from SD rat before administration B) globin from SD rat 30min after administration (50mg/kg).

Fig.10 Pathway of BFBTS metabolism
Tab 1. Investigation of sequential metabolism of BFBTS in rat RBCs

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Substrate</th>
<th>BFBTS</th>
<th>BFBDS</th>
<th>p-FBM</th>
<th>p-FBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFBTS</td>
<td>/</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BFBDS</td>
<td>+</td>
<td>/</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-FBM</td>
<td>+</td>
<td>+</td>
<td>/</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-FBA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>/</td>
<td>-</td>
</tr>
</tbody>
</table>

---: not detected, +:detected
Tab 2. Peptides modified by the adducts of ρ-FBM moiety (+140.02Da) after incubation of RBCs with BFBTS (250μM and 500μM)

<table>
<thead>
<tr>
<th>Hb chain</th>
<th>Peptide</th>
<th>Sequence</th>
<th>Mass$_{theo}$ (Da)</th>
<th>Mass$_{obs}$ (Da)</th>
<th>Modified position</th>
</tr>
</thead>
<tbody>
<tr>
<td>250μM BFBTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td>93-126</td>
<td>VDPVNFKFLSCLLVTACHPGDFTPMHASLD</td>
<td>4001.08</td>
<td>4001.00</td>
<td>104</td>
</tr>
<tr>
<td>α1</td>
<td>93-126</td>
<td>VDPVNFKFLSCLLVTACHPGDFTPMHASLD</td>
<td>4001.08</td>
<td>4000.96</td>
<td>111</td>
</tr>
<tr>
<td>β2/3</td>
<td>105-132</td>
<td>LLGNMIVLGHHLGKEFTPCQAFAFK</td>
<td>3175.81</td>
<td>3175.66</td>
<td>125</td>
</tr>
<tr>
<td>500μM BFBTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td>100-127</td>
<td>FLShClLVTACHPGDFTPMASLD*HASLDK</td>
<td>3219.59</td>
<td>3219.02</td>
<td>104</td>
</tr>
<tr>
<td>α1</td>
<td>100-127</td>
<td>FLShClLVTACHPGDFTPMASLD*HASLDK</td>
<td>3219.59</td>
<td>3219.61</td>
<td>111</td>
</tr>
<tr>
<td>β1/2</td>
<td>83-95</td>
<td>GTFAHLSELHCDK</td>
<td>1598.64</td>
<td>1597.88</td>
<td>93</td>
</tr>
<tr>
<td>β1/2/3/4</td>
<td>83-104</td>
<td>GTFAHLSELHCDKLHDPENFR</td>
<td>2706.86</td>
<td>2706.13</td>
<td>93</td>
</tr>
<tr>
<td>β1</td>
<td>121-132</td>
<td>EFSPCAQAFAFK</td>
<td>1467.51</td>
<td>1467.32</td>
<td>125</td>
</tr>
<tr>
<td>β2/β3</td>
<td>121-132</td>
<td>EFTPCQAFAFK</td>
<td>1481.54</td>
<td>1480.76</td>
<td>125</td>
</tr>
<tr>
<td>β2/β3</td>
<td>105-132</td>
<td>EFTPCQAFAFKKVAGVASALAHKYH</td>
<td>2886.16</td>
<td>2885.90</td>
<td>125</td>
</tr>
<tr>
<td>β2/β3</td>
<td>121-146</td>
<td>LLGNMIVLGHHLGKEFTPCQAFAFK</td>
<td>3177.66</td>
<td>3177.49</td>
<td>125</td>
</tr>
</tbody>
</table>
Dibenzyl trisulfide (DBTS)

Bis(p-fluorobenzyl)trisulfide (BFBTS)

Bis(p-fluorobenzyl)disulfide (BF BDS)

p-fluorobenzyl mercaptan (p-FBM)

p-fluorobenzoic acid (p-FBA)
Fig. 4

A

Formation of Metabolites (μM) vs. Incubation Time (min)

- p-FBA(RBCs)
- p-FBM(RBCs)
- p-FBA(W)
- p-FBM(W)

B

Substrate concentration (μM) vs. Incubation Time (min)

- BFBTS (25 μM)
- BFBTS (1 μM)

Half-life: $t_{1/2} = 0.4 \pm 0.3$ min

Half-life: $t_{1/2} = 0.5 \pm 0.1$ min
Fig. 7

A

α-globin

β-globin

B

α-globin

β-globin

α-globin + BFBTS

β-globin + BFBTS

β-globin + GSH