Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1

Yu-Zhuo Pan, Amy Zhou, Zihua Hu, and Ai-Ming Yu

Department of Pharmaceutical Sciences (Y.-Z.P., A.Z., A.-M.Y.), Center for Computational Research (Z.H.), University at Buffalo, The State University of New York, Buffalo, NY 14214, USA

Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, 2700 Stockton Boulevard, Sacramento, CA 95817, USA (A.-M.Y.)
Running title: Posttranscriptional regulation of ABCC1 by hsa-miR-1291

Address correspondence to: Dr. Ai-Ming Yu, Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, 2700 Stockton Boulevard, Sacramento, CA 95817, USA. Phone: 916-734-1566; Fax: 916-734-4458; E-mail: aimyu@ucdavis.edu.

Number of Text Pages: 19
Number of Tables: 1
Number of Figures: 8
Number of References: 44
Number of Words in Abstract: 213
Number of Words in Introduction: 538
Number of Words in Discussion: 931

Abbreviations: miRNA, microRNA; hsa-miR-1291, Homo sapiens microRNA-1291; snoRNA, small nucleolar RNA; SNORA34/ACA34, small nucleolar RNA, H/ACA box 34; MRP1/ABCC1, multidrug resistance-associated protein 1/ATP-binding cassette, subfamily C, member 1; 3’UTR, 3’-untranslated region; MRE, microRNA response element; MDR, multidrug resistance.
Abstract

Multidrug resistance-associated protein 1 (MRP1/ABCC1) is an important membrane transporter that contributes to cellular disposition of many endobiotic and xenobiotic agents, and it can also confer multidrug resistance. This study aimed to investigate the role of noncoding microRNA hsa-miR-1291 in regulation of ABCC1 and drug disposition. Bioinformatics analyses indicated that hsa-miR-1291, localized within the small nucleolar RNA H/ACA box 34 (SNORA34), might target ABCC1 3’-untranslated region (3’UTR). Using splinted ligation small RNA detection method, SNORA34 was found to be processed into hsa-miR-1291 in human pancreatic carcinoma PANC-1 cells. Luciferase reporter assays showed that ABCC1 3’-UTR-luciferase activity was decreased 20% in cells transfected with hsa-miR-1291 expression plasmid, and increased 40% in cells transfected with hsa-miR-1291 antagonir. Furthermore, immunoblot study revealed that ABCC1 protein expression was sharply reduced in hsa-miR-1291 stably transfected PANC-1 cells, which was attenuated by hsa-miR-1291 antagonir. The change of ABCC1 protein expression was associated with an alternation in mRNA expression. In addition, hsa-miR-1291-directed downregulation of ABCC1 led to a greater intracellular drug accumulation, and sensitized the cells to doxorubicin. Together, our results indicate that hsa-miR-1291 is derived from SNORA34, and modulates cellular drug disposition and chemosensitivity through regulation of ABCC1 expression. These findings shall improve the understanding of microRNA-controlled epigenetic regulatory mechanisms underlying multidrug resistance and interindividual variability in pharmacokinetics.
Introduction

MicroRNAs (miRNAs or miRs) are a large family of short (~22 nt), single strand non-coding RNAs transcribed from genome. miRNAs usually suppress target gene expression through the inhibition of translation or acceleration of mRNA degradation after imperfectly complementary Watson-Crick base pairings with miRNA response element (MRE) within the 3’-untranslated regions (3’UTRs) of mRNA targets. Over 2,000 miRNAs have been identified in humans, and they are predicted to govern posttranscriptional regulation of thousands of protein coding genes in control of essentially all life processes (Kasinski and Slack, 2011). Nevertheless, there are only a limited number of studies (Tsuchiya et al., 2006; Kovalchuk et al., 2008; To et al., 2008; Pan et al., 2009a; Pan et al., 2009b; Liang et al., 2010; Mohri et al., 2010; Haenisch et al., 2011; Li et al., 2011; Borel et al., 2012) on miRNA-controlled posttranscriptional gene regulation of xenobiotic metabolizing enzymes and transporters underlying drug metabolism and disposition as well as multidrug resistance (MDR).

ATP-binding cassette, sub-family C (CFTR/MRP), member 1 (ABCC1/MRP1) is a membrane transporter expressed ubiquitously in human tissues, and contributes to cellular disposition of a large number of xenobiotics (e.g., doxorubicin, SN-38 and imatinib) and endobiotics (e.g., glutathione and leukotrienes). Inhibition, genetic variations and altered expression of ABCC1 may lead to variable drug disposition, cytotoxicity and clinical outcome (Maeno et al., 2009; Cho et al., 2011; Pajic et al., 2011). ABCC1 is also able to confer the resistance to many chemotherapeutic agents such as anthracyclines (e.g., doxorubicin) and folate antagonist methotrexate. Indeed, clinical studies have demonstrated that overexpression of ABCC1 in a
variety of solid or invasive tumors such as breast, ovarian, lung, prostate and neuroblastoma is implicated as a high risk factor of MDR and a negative prognostic biomarker (Filipits et al., 2005; Haber et al., 2006; Triller et al., 2006; Faggad et al., 2009). As an example, ABCC1 is readily detectable in all primary neuroblastoma samples studied, and a greater degree of ABCC1 expression is highly predictive of both event-free survival and overall survival of the patients (Haber et al., 2006).

The 3’UTR of ABCC1 is around 2 kb in length, and it contains a number of computationally predicted MREs that awaits experimental investigation. Recently, the action of miR-326 on ABCC1 3’UTR and impact on ABCC1-mediated MDR has been successfully demonstrated (Liang et al., 2010). Understanding the miRNA-controlled epigenetic regulatory mechanisms shall provide novel insight into interindividual variability in drug absorption, distribution, metabolism and excretion (ADME) as well as overexpression of ABC efflux transporters in MDR cancer cells towards the development of rational or new drug therapy (Gomez and Ingelman-Sundberg, 2009; Yu, 2009; Ingelman-Sundberg and Gomez, 2010; Nakajima and Yokoi, 2011; Yu and Pan, 2012; Yokoi and Nakajima, 2013). Therefore, we aimed to delineate the action of a relatively newer human miRNA hsa-miR-1291 on the 3’UTR of ABCC1 in present study. Interestingly, we find that hsa-miR-1291 sequences reside within the small nucleolar RNA (snoRNA), H/ACA box 34 (SNORA34) (Watkins and Bohnsack, 2012). We show that SNORA34 indeed can be processed to mature hsa-miR-1291 in PANC-1 cells. Furthermore, we present data suggesting that hsa-miR-1291 regulates ABCC1 gene expression, and the suppression of ABCC1 protein expression by hsa-miR-1291 is translated into a significantly greater level of intracellular drug accumulation and chemosensitivity.
Materials and Methods

Chemicals and Materials. Dulbecco's modified Eagle's medium (DMEM), RPMI 1640 medium, penicillin sodium, and streptomycin sulfate solution were purchased from Corning Cellgro (Manassas, VA). G418, fetal bovine serum (FBS), Lipofectamine 2000, and Trizol reagent were bought from Life Technologies (Carlsbad, CA). Actinomycin D, doxorubicin, and methylthiazolyldiphenyl-tetrazolium bromide (MTT) were from Sigma-Aldrich (St. Louis, MO). Primers and digoxin-labeled oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA). Restriction enzymes KpnI, XhoI, NotI, psiCHECK-2 vector, and the dual luciferase assay system were purchased from Promega (Madison, WI). T4 DNA ligase was from New England Biolabs (Ipswich, MA). The antibodies against ABCC1/MRP1 and GAPDH were bought from Abcam (Cambridge, MA), and SantaCruz Biotechnologies (Santa Cruz, CA), respectively. Horseradish peroxidase (HRP) labeled anti-digoxin antibody and anti-mouse secondary antibodies were purchased from Jackson ImmunoResearch Laboratories (West Grove, PA). Hybond enhanced chemiluminescence (ECL) membrane and Nylon+ membrane were from GE Healthcare (Piscataway, NJ). The hsa-miR-1291 antagonirs (anti-miR-1291) and negative control oligonucleotides, ECL substrate, BCA Protein Assay Kit, and Pierce CL-Xposure film were from Thermo Scientific (Rockford, IL). RIPA buffer was purchased from Rockland Immunochemicals (Gilbertsville, PA). Complete protease inhibitor cocktail was purchased from Roche Diagnostics (Mannheim, Germany).

Cell Culture. The human pancreatic carcinoma PANC-1 cells, small lung cancer H69 cells and the drug-resistant subline H69AR, and embryonic kidney HEK-293 cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA), and grown in DMEM medium containing 10% FBS, 100 U/mL of penicillin sodium, and 100 µg/mL of streptomycin sulfate at 37 °C in a humidified atmosphere of 5% carbon dioxide.

Plasmids. The coding region (1033 bp) of SNORA34 containing hsa-mir-1291 was amplified from the human genome DNA via PCR. The PCR products were digested with MluI and XhoI, and inserted into a small RNA expression vector named pCMV-Globin (a gift from Dr. Tamás Kiss, Université Paul Sabatier, France) (Kiss et al., 2002), resulting in a SNORA34/miR-1291 expression plasmid namely pCMV-SNORA34/miR-1291. The pCMV empty vector was used as a control. The whole 3’-untranslated region (UTR) of ABCC1 (NM_004996.3) consisting of 1822 nt was amplified by PCR, and inserted into psiCHECK-2 vector after linearized by XhoI and NotI, leading to a ABCC1 3’UTR-luciferase reporter plasmid namely psiCHECK-ABCC1-3’UTR. All PCR primer sequences are provided in Table 1.

Bioinformatics Analysis. The 3’UTR of ABCC1 was retrieved from NCBI ENTREZ (http://www.ncbi.nlm.nih.gov/ENTREZ) and searched for hsa-miR-1291 MREs by RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/), TargetScan (http://www.targetscan.org/), miRanda (http://www.microrna.org/microrna/home.do), and PITA (http://genie.weizmann.ac.il/pubs/mir07/) algorithms.

Luciferase Reporter Assay. The luciferase reporter assay was performed as described previously (Pan et al., 2009a; Pan et al., 2009b). Briefly, HEK-293 cells (1 × 10^4 cells/well) were co-transfected with psiCHECK-ABCC1-3’UTR luciferase reporter plasmid (0.1 µg) and
pCMV-miR-1291 or control plasmid (0.4 µg). Likewise, cells were co-transfected with ABCC1 3’UTR-luciferase reporter (0.1 µg) and 50 nM of anti-miR-1291 or control oligonucleotides. Luciferase activity was determined using the dual luciferase reporter assay system and the Berthold Centro LB960 Luminometer (Berthold Technologies, Oak Ridge, TN). Relative luciferase activities were calculated as the ratios between Renilla and firefly luciferase activities, and further normalized to control treatments.

Establishment of miR-1291 Stably Transfected PANC-1 Cell Line. The PANC1 cells in exponential growth were seeded into 6-well plates at a concentration of 2 × 10^5 cells/well. After 24 h, cells were transfected with 2.5 µg of pCMV-SNORA34/miR-1291 or control plasmids using Lipofectamine 2000. Media were replaced after 24 h, and the cells were selected stepwise with 500 µg/mL of G418. After 3-5 weeks, G418-resistant clones were selected with a cloning ring for amplification in culture.

Splinted Ligation. The splinted ligation was conducted as described (Maroney et al., 2008) with some modifications. Briefly, total RNA was isolated with Trizol reagent, and quantified using NanoDrop (Thermo Scientific, Rockford, IL). 500 ng of total RNA was mixed with 100 fmol of bridge oligonucleotides and 2 pmol of 3’-digoxin-labeled ligation oligonucleotides (Table 1), denatured at 95°C for 1 min, and then annealed at 65°C for 5 min and at 37°C for 15 min. Then 50U of T4 DNA ligase was added to the reaction, and incubated at 37°C for 2 h. The ligase was heat inactivated at 75°C for 15 min. After mixed with 2X loading dye (20 mM EDTA and 0.05% xylene cyanole in 95% formamide) and denatured at 95°C for 5 min, the mixture was immediately transferred onto ice to prevent annealing, and loaded onto a pre-run denaturing 15%
urea-polyacrylamide gel. After separation through electrophoresis, nucleic acids were transferred onto Nylon membrane, fixed onto the membrane by UV cross linking in a Stratalinker (Stratagene) for 3 min at the highest power, blocked with 5% nonfat milk, detected by HRP labeled anti-digoxin antibody and ECL method. The light emitted from HRP-catalyzed oxidation of luminol was captured on film or by the ChemiDoc XRS+ System (Bio-Rad, Hercules, CA).

Reverse Transcription (RT)-Quantitative Real-Time PCR (qPCR). RT-qPCR quantification of mRNA of interest and stem loop RT-qPCR analyses of mature hsa-miR-1291 were conducted using gene selective primers (Table 1) on Bio-Rad MyIQ real-time PCR system, as described (Li et al., 2011; Rodrigues et al., 2011). The cycle number (C_T) at which the amplicon concentration crossed a defined threshold was determined for each mRNA/miRNA. The relative level of each analyte over internal standard was calculated using the formula 2^{-ΔC_T}, where ΔC_T was the difference in C_T values between analyte and internal standard (18S or U74), and then compared between different groups or treatments.

RNA Degradation Analysis. Forty eight hours after transfection with hsa-miR-1291 and control plasmids, PANC-1 cells were treated with actinomycin D at a final concentration of 5 µg/mL to block de novo RNA synthesis. Cells were harvested at 0, 24, and 48 hours. ABCC1 mRNA levels were determined by RT-qPCR, and normalized to 18S.

Western Blots. The cells were lysed in RIPA buffer with complete protease inhibitors, and protein concentrations were determined with BCA Protein Assay Kit. Whole-cell proteins (50 µg/lane) were separated on a 10% SDS-PAGE gel, transferred onto Hybond ECL membrane.
Membranes were incubated with selective antibody against ABCC1 or GAPDH, and subsequently with a peroxidase goat anti-mouse IgG. The membranes were then incubated with ECL substrates, and images were acquired by ChemiDoc XRS+ System (Bio-Rad).

Flow Cytometry Analyses. Intracellular drug accumulation was investigated using a FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ), as reported (Li et al., 2011). Briefly, cells (5×10^5) were incubated with phenol red free RPMI medium containing 10% FBS and 50 μM of doxorubicin at 37°C for 1 h. Cells incubated in the absence of drug were used as negative controls. Cells were then washed twice with ice-cold medium, incubated with drug free medium, harvested by centrifugation, and subjected to flow cytometry analyses in the FL-3 channel (650 ± 30 nm). Drug efflux ability was reflected by the fluorescence of drug accumulated within cells. Flow cytometry data were analyzed by WinMDI Ver.2.8 software (Scripps Institute, San Diego, CA). Relative intracellular drug accumulation was calculated by normalized geometric mean of hsa-miR-1291 group to the control group after subtraction of the basal fluorescence (negative control).

Chemosensitivity. Cell sensitivity to doxorubicin was carried out as described (Pan et al., 2009a). Briefly, stably transfected PANC-1 cells were plated at 1000 cells/well) in 96 well plates in DMEM medium containing various concentrations of doxorubicin. Cell viability was determined using MTT assay. Inhibition (IC50 value) of cell growth by the drug was estimated by fitting the percentage of cell growth (vehicle control plus 0 μM test drug as 100%) to the Hill equation \(Y = 100/(1+10^{(\log IC50-X)*HillSlope}) \) (GraphPad Prism) (Pan et al., 2009a). All experiments were carried out in triplicate and repeated once with separate cultures.
Data Analysis. All values were expressed as mean ± S.D. Different treatments (qPCR, luciferase activity, and drug accumulation data) were compared by unpaired Student's t test, and multiple variances (chemosensitivity) were analyzed by two-way ANOVA (GraphPad Prism 5, San Diego, CA). Difference was considered as significant if the probability was less than 0.05 (P < 0.05).
Results

Mature hsa-miR-1291 is derived from SNORA34. To improve the understanding of miRNA mechanistic functions in regulation of ADME, we employed multiple bioinformatic algorithms to screen potential miRNA targets for cytochrome P450 enzymes and ABC transporters. To identify more promising miRNA candidates, we conducted analyses to see if particular miRNAs were enriched for a list of ADME 106 genes by comparing the number of miRNA target ADME genes to the number of genes for the same miRNA in the whole human genome (unpublished data). Candidate miRNAs showing significant enrichment (Fisher’s exact test) were obtained for further analysis. Among a set of putative miRNAs (unpublished data), hsa-miR-1291 is a newer miRNA that might be generated from SNORA34 (Fig. 1 and 2) and act on the 3’UTR of ABCC1 (Fig. 3) critical for xenobiotic disposition and MDR. Thus we examined the biogenesis of hsa-miR-1291 and possible role in regulation of ABCC1-mediated drug disposition.

Our bioinformatic analyses also showed that hsa-miR-1291 sequences are located within the intron 9 of an uncharacterized gene C12orf41 on human chromosome 12q13.11. Given the fact that the precursor hsa-mir-1291 overlaps with SNORNA34 (Fig. 1), we reasoned that SNORA34 might be processed to 24-nt mature hsa-miR-1291. To test the hypothesis, a splinted ligation method based on a direct ligation of miRNA and probe (Maroney et al., 2008) was adapted to examine the association of SNORA34 and hsa-miR-1291 expression in PANC-1, H69AR, and H69 cells using a non-radioactive digoxin labeled probe with relative high sensitivity, among which PANC-1 and drug resistant H69AR cells exhibit high level expression of ABCC1. Our data showed that SNORA34 was detectable from the total RNAs isolated from PANC-1, H69AR,
and H69 cells (Fig. 2A). Among them, H69 cells exhibited the lowest level of SNORA34, and PANC-1 cells had the highest level. Consistent with this finding, miR-1291 showed a greater expression in PANC-1 cells whereas it was undetectable in H69 cells (Fig. 2A), suggesting a positive relationship between hsa-miR-1291 and SNORA34 expression.

To investigate the processing of SNORA34, we created a SNORA34/miRNA-1291 expression plasmid. A 1033-bp fragment of SNORA34 was inserted into the intron 2 of globin within the snoRNA expression vector pCMV-globin to maintain the intronic feature of SNORA34. This design also proved to ensure a good expression of snoRNA (Darzacq et al., 2002; Kiss et al., 2002). After a transient transfection with SNORA34 expression plasmids, the expression of SNORA34 was increased in H69AR cells but unchanged in PANC-1 cells (Fig. 2B). However, hsa-miR-1291 expression level remained undetectable in SNORA34 transfected H69AR cells, whereas it seemed to be higher in SNORA34 transfected PANC-1 cells (Fig. 2B), suggesting a fine processing of SNORA34 to hsa-miR1291 in PANC-1 cells. Therefore, the PANC-1 cells were further transfected with an anti-miR-1291 oligonucleotide. As expected, the expression of mature hsa-miR-1291 was markedly reduced by the hsa-miR-1291 antagomir (Fig. 2B). The results suggest that mature hsa-miR-1291 may be generated from SNORA34 in PANC-1 cells.

hsa-miR-1291 acts on the 3′UTR of ABCC1. The ABCC1 3′UTR consists of four putative hsa-miR-1291 MRE sites (Fig. 3A). The first site (position 32-38) is well conserved, and the others are relatively more selective for human ABCC1. The values of binding energy (ΔG_{duplex}) of hsa-miR-1291 with the target sequences estimated by RNAhybrid were -29.3, -24.1, -24.7, and -27.0 kcal/mol, respectively. To evaluate the potential interaction between hsa-miR-1291 and
ABCC1 3’UTR, we conducted a luciferase reporter study in cells with gained and lost hsa-miR-1291 function. Our data showed that ABCC1 3’UTR luciferase reporter activities were reduced by ~20% in cells transfected with miR-1291 expression plasmid, and increased by ~40% in cells transfected with anti-miR-1291 oligonucleotide (Fig. 3B). These data support the actions of hsa-miR-1291 on the 3’UTR of ABCC1.

hsa-miR-1291 regulates the expression of ABCC1. To examine the potential role of hsa-miR-1291 in regulation of ABCC1, we first generated a SNORA34/hsa-miR-1291 stably transfected PANC-1 cell line (Fig. 4). Quantitative PCR analyses showed that hsa-miR-1291 expression was approximately 18-fold higher in SNORA34/hsa-miR-1291 stably transfected PANC-1 cells than the control, whereas SNORA34 expression was unchanged (Fig. 4). Overexpression of hsa-miR-1291 led to a reduced ABCC1 protein expression in hsa-miR-1291 stably transfected cells, as revealed by immunoblot analyses (Fig. 5A). This was associated with a ~5-fold lower ABCC1 mRNA expression (data not shown). Furthermore, the suppression of ABCC1 protein expression by gain of hsa-miR-1291 function could be rescued, as manifested by the increase of ABCC1 protein expression in hsa-miR-1291 stably transfected cells after transient transfection with anti-miR-1291 oligonucleotide (Fig. 5B) that was associated with a ~11-fold higher ABCC1 mRNA expression (data not shown).

In addition, an mRNA degradation study was performed to test if mRNA decay mechanism was involved in the hsa-miR-1291 controlled posttranscriptional regulation of ABCC1. When actinomycin D blocked de novo RNA synthesis, ABCC1 mRNA stability did not differ between cells transfected with hsa-miR-1291 and control plasmids (Fig. 6). This might exclude the
involvement of mRNA degradation mechanism, and suggest the presence of other possible means such as translation inhibition or targeting of transcription factors.

hsa-miR-1291 modulates cellular drug disposition. To examine whether the regulation of ABCC1 protein expression by hsa-miR-1291 can be translated into significant difference in xenobiotic disposition, flow cytometry analyses was conducted to determine intracellular doxorubicin accumulation. Our data showed that there was a greater level of doxorubicin fluorescence intensity in hsa-miR-1291 stably transfected PANC-1 cells (Fig. 7A). Overall, doxorubicin accumulated within hsa-miR-1291 stably transfected PANC-1 cells was ~2.5-fold higher than the control cells (Fig. 7B), which is likely due to a lower ABCC1 expression (Fig. 5A) that is able to pump the anti-neoplastic drug doxorubicin out of the cells.

Gain of hsa-miR-1291 function sensitizes human carcinoma cells to xenobiotics. To evaluate the impact of hsa-miR-1291 controlled regulation of ABCC1 on chemosensitivity, the MTT assay was employed to define the cytotoxicity of doxorubicin in PANC-1 cells stably transfected with hsa-miR-1291 and control plasmids. Cytotoxicity was measured after 48 h treatment with various concentrations of doxorubicin. The data showed that hsa-miR-1291 stably transfected cells were much more sensitive to doxorubicin (Fig. 8). This was also demonstrated by a significantly lower IC50 value ($137 \pm 1 \mu M$) and steeper Hill slope (-1.08 ± 0.13) in hsa-miR-1291 transfected cells than the control cells ($373 \pm 2 \mu M$ and -0.50 ± 0.05, respectively). The results indicate that gain of hsa-miR-1291 function sensitizes PANC-1 cells to doxorubicin.
Discussion

There is increasing evidence supporting that noncoding miRNAs may contribute to epigenetic regulation of ADME processes through their actions on xenobiotic metabolizing enzymes, transporter and nuclear receptors (Gomez and Ingelman-Sundberg, 2009; Yu, 2009; Ingelman-Sundberg and Gomez, 2010; Nakajima and Yokoi, 2011; Yu and Pan, 2012; Yokoi and Nakajima, 2013). In this study, we demonstrate that snoRNA-derived hsa-miR-1291 targets the 3’UTR of membrane transporter ABCC1, and negatively regulates the expression of ABCC1. Gain of hsa-miR-1291 function can sensitize carcinoma cells to anticancer drug via increasing ABCC1-mediated intracellular drug accumulation.

The snoRNAs are another class of non-coding regulatory RNAs that are 60-300 nt in length, and mainly responsible for the posttranscriptional modification of ribosomal RNAs in cells (Kiss, 2002; Watkins and Bohnsack, 2012). There are two major groups of snoRNAs, box C/D snoRNAs and box H/ACA snoRNAs, which function as guide RNAs for the 2’-O-methylation and pseudouridylation of target RNA sequences, respectively. Most interestingly, evolutionarily conserved box H/ACA snoRNAs share structural similarities with miRNA precursors. Consisting of two hairpin domains, H/ACA snoRNAs can be processed by the RNase III-type endoribonuclease Dicer to produce mature miRNAs (Scott et al., 2009) or miRNA-like small RNAs (Ender et al., 2008; Saraiya and Wang, 2008). Recent studies have also demonstrated the derivation of small RNAs from box C/D snoRNAs, which exhibit miRNA-like functions (Brameier et al., 2011). The hsa-miR-1291 precursor (Fig. 1) has been shown to structurally resemble an H/ACA snoRNA, SNORA34 (Scott et al., 2009). In the present study, we show the
detection of mature hsa-miR-1291 using splinted ligation method. Mature hsa-miR-1291 of 24 nt in length is readily processed from the SNORA34/miR-1291 construct in PANC-1 cells, which may be reduced by the anti-SNORA/miR-1291 oligonucleotide. In addition, the detection of other RNAs longer than hsa-miR-1291/SNORA34 in H69AR and PANC-1 cells (Fig. 2) might indicate the presence of long noncoding RNAs (lncRNAs) containing miR-1291/SNORA34 sequences. Actually the abundance of lncRNAs in mammalian cells has been demonstrated by various techniques including the unbiased deep sequencing, and there is an increasing interest in understanding the functions of lncRNAs in gene regulation and their clinical importance (Wang and Chang, 2011; Kung et al., 2013).

The processing of SNORA34 to hsa-miR-1291 might be tissue or cell type dependent. The hsa-miR-1291 was original discovered via massively parallel sequencing of small RNA libraries generated from stem cells (Morin et al., 2008), and SNORA34 was cloned from HeLa cells (Kiss et al., 2004). We first identified and cloned hsa-miR-1291 sequences from LS-180 cells (unpublished data) when studying miRNA-controlled regulation of CYP3A4 (Pan et al., 2009a). Our recent report showed a lower expression of hsa-miR-1291 than some other ADME regulatory miRNAs in MCF-7 and Caco-2 cells, which might be altered by xenobiotics (Rodrigues et al., 2011). Current study revealed that hsa-miR-1291 was undetectable in H69 cells, which was associated with a lower level of SNORA34. In contrast, both SNORA34 and hsa-miR-1291 were found to be present at a higher level in PANC-1 cells (Fig. 2). These observations suggest a cell specific biogenesis of hsa-miR-1291, and the underlying machinery awaits further exploration.
Computational identification of putative MRE sites for hsa-miR-1291 within ABCC1 3’UTR (Fig. 3) led to the findings on hsa-miR-1291-controlled suppression of ABCC1 mRNA and protein expression (Fig. 5). While mRNA degradation study suggests that hsa-miR-1291 does not change ABCC1 mRNA stability, the experiment might be complicated by the fact that actinomycin D is also a substrate of ABCC1 (Hill et al., 2013). Additional investigations are needed to determine whether hsa-miR-1291-mediated suppression of ABCC1 indeed involves translation inhibition. In addition, because there is a lack of hsa-miR-1291 MRE within ABCC1 5’UTR, hsa-miR-1291 might affect ABCC1 expression through the targeting of its transcription factor. Nevertheless, the importance of miRNA regulatory mechanisms is nicely exemplified by its significant impact on ABCC1-mediated cellular drug disposition and chemosensitivity (Fig. 7-8). Recent studies have also revealed a critical role for miR-134 and miR-326 in regulation of ABCC1 and the association with MDR (Guo et al., 2010; Liang et al., 2010). Other examples of miRNA functions in regulation of ABC transporters include the control of ABCB1 expression by miR-451 and miR-27 (Kovalchuk et al., 2008; Zhu et al., 2008), ABCG2 by miR-328, miR-519c and miR-520h (To et al., 2008; Pan et al., 2009b; Wang et al., 2010; Li et al., 2011), and ABCC2 by miR-379 (Haenisch et al., 2011). These findings support the importance of regulatory miRNAs in modulation of cellular ADME processes and potential influence on pharmacokinetics and pharmacodynamics (Gomez and Ingelman-Sundberg, 2009; Yu, 2009; Ingelman-Sundberg and Gomez, 2010; Nakajima and Yokoi, 2011; Yu and Pan, 2012; Yokoi and Nakajima, 2013).

Overexpression of ABCC1 is frequently observed in MDR cancers and closely related to the outcome of chemotherapy (Filipits et al., 2005; Haber et al., 2006; Faggad et al., 2009), which is often associated with abnormal expression or miRNAs. Indeed, we have found that
hsa-miR-1291 is significantly downregulated in human pancreatic ductal adenocarcinoma, compared to normal pancreas (unpublished data). Very recent studies also show a lower expression of hsa-miR-1291 in acute myocardial infarction (Meder et al., 2011) and renal cell carcinoma (Hidaka et al., 2012), suggesting a common downregulation of hsa-miR-1291 in cancerous tissues. Given the finding on hsa-miR-1291-mediated suppression of ABCC1, novel approaches might be developed to intervention of hsa-miR-1291 pathways towards combating MDR. Nevertheless, the clinical significance of hsa-miR-1291 warrants additional critical studies.

In summary, our results indicate that SNORA34 may serve as a hsa-miR-1291 precursor. Our data also show that hsa-miR-1291 targets the 3’UTR of ABCC1, and consequently regulates the expression of ABCC1. The impact of hsa-miR-1291 on ABCC1-mediated drug disposition and chemosensitivity support our hypothesis that interference of miRNA regulatory pathway can sensitize human carcinoma cells to anticancer drugs. An improved understanding of miRNA functions in control of ABC transporters as well as miRNA biogenesis will not only provide new insights into variable drug disposition but also offer novel clue to develop rational drug therapy and combat MDR.
Authorship Contributions

Participated in research design: Yu, Pan and Hu.

Conducted experiments: Pan and Zhou.

Contributed to new reagents or analytical tools: Pan.

Performed data analysis: Pan, Yu, Hu and Zhou.

Wrote or contributed to the writing of the manuscript: Yu, Pan and Hu.
References

Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, and Yu AM (2011) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like
ABCG2+ cancer cells. *Biochem Pharmacol* **81**:783-792.

This project was supported in part by the National Institute On Drug Abuse, National Institutes of Health [R01DA021172].

Send reprint requests to: Dr. Ai-Ming Yu, Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, 2700 Stockton Boulevard, Sacramento, CA 95817, USA. Phone: 916-734-1566; Fax: 916-734-4458; E-mail: aimyu@ucdavis.edu.
Figure Legends

Figure 1. hsa-miR-1291 and SNORA34 sequences are co-localized within the intron 9 of an uncharacterized gene *C12orf41* on human chromosome 12q13.11.

Figure 2. hsa-miR-1291 is produced from SNORA34 in PANC-1 cells. (A) Expression of SNORA34 and miR-1291 were detected by splinted ligation method in H69AR and PANC-1 cells. Mature miR-1291 was clearly detected as a labeled band of 35 nt. (B) SNORA34 could be processed to hsa-miR-1291 in PANC-1 cells following transient transfection with pCMV-SNORA34/miR-1291 plasmid, which might be inhibited by the anti-hsa-miR-1291 oligonucleotide.

Figure 3. hsa-miR-1291 acts on the 3’UTR of ABCC1. (A) Bioinformatic analyses revealed four putative MREs for hsa-miR-1291 within the 3’UTR of ABCC1. The seed sequences were underlined. (B) ABCC1 3’UTR-luciferase activity was significantly altered in HEK-293 cells after the manipulation of hsa-miR-1291 function with hsa-miR-1291 expression plasmid or antagonim (anti-miR-1291). Data are mean ± SD (N = 3 in each group). *P < 0.05, compared to the control (Student’s t-test).

Figure 4. A hsa-miR-1291 stably transfected PANC-1 cell line (A) is established, which showed 18-fold higher hsa-miR-1291 expression (B) but no change in SNORA34 (C). Data are mean ± SD (N = 6 in each group). *P < 0.05, compared to the control (Student’s t-test).

Figure 5. hsa-miR-1291 regulates ABCC1 protein expression. Immunoblots showed a lower
ABCC1 protein level in hsa-miR-1291 stably transfected PANC-1 cells (A), which was reversed when the cells were transfected with hsa-miR-1291 antagonir (anti-miR-1291) (B). GAPDH was used as a loading control.

Figure 6. hsa-miR-1291 does not affect ABCC1 mRNA stability. ABCC1 mRNA levels in PANC-1 cells treated with actinomycin D were determined by qPCR analyses and normalized to 18S in corresponding samples. Data are mean ± SD (N = 3 in each group).

Figure 7. has-miR-1291 modulates cellular drug disposition. Flow cytometry analyses showed that intracellular doxorubicin accumulation was increased significantly in PANC-1 cells stably transfected with hsa-miR-1291. (A) Fluorescence histograms of doxorubicin content. (B) Relative drug accumulation indicated by the geometry mean of doxorubicin fluorescence. Data are mean ± SD (N = 3 in each group). *P < 0.05, compared to the control (Student’s t-test).

Figure 8. hsa-miR-1291 sensitizes cancer cell to anticancer drug. Cytotoxicity study revealed that hsa-miR-1291 stably transfected PANC-1 cells were more sensitive to doxorubicin, compared to the control cells (P < 0.05; two-way ANOVA). This is also manifested by a lower IC50 value (137 ± 1 μM) and steeper Hill slope (-1.08 ± 0.13) in hsa-miR-1291 transfected cells than the control (373 ± 2 μM and -0.50 ± 0.05, respectively). Data are mean ± SD (N = 6 in each group).
Table 1. Oligonucleotides used for the construction of plasmids, qPCR and splinted ligation experiments.

<table>
<thead>
<tr>
<th>Application</th>
<th>Oligonucleotide</th>
<th>Sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>psiCHECK-ABCC1-3’UTR</td>
<td>Forward</td>
<td>CCGCTCGAGCGGAGGTTGATCGCTTTGGACAAAGGAGAAATC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TTGCGGCGGCAAACCCCCAAAAACTTAGTTTATCTAATGTGAAAGAATG</td>
</tr>
<tr>
<td>pCMV-SNORA34/miR-1291</td>
<td>Forward</td>
<td>CGACGCCGTTCGCAACTAATAGAAGTGAGGTTCTGGCTTCCC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CCCTCGAGGGGACTTGGATTTGCTGGTTGATGGTATGCAG</td>
</tr>
<tr>
<td>Stem-loop RT-qPCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsa-miR-1291</td>
<td>RT</td>
<td>GTCGTAATCCAGTGCGAGGTCCGAGGTATTCCGACTGGAATACGACACTGCT</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>GCCCTGGCCTTGACUGAAGACC</td>
</tr>
<tr>
<td>U74</td>
<td>RT</td>
<td>GTCGTAATCCAGTGCGAGGTCCGAGGTATTCCGACTGGAATACGACATTGT</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>CCTGTGGAGTGTCTCTACGTGGTG</td>
</tr>
<tr>
<td>Universal reverse primer</td>
<td></td>
<td>GTGCAGGGGTCCGAGGT</td>
</tr>
<tr>
<td>qPCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCC1</td>
<td>Forward</td>
<td>AACCTGGACCCATTCCAGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GACTGGATAGGTCGTCGCGT</td>
</tr>
<tr>
<td>SNORA34</td>
<td>Forward</td>
<td>CTGACCTGAAGCCAGCAGCTTTGTA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGAATAGCCATTCCCTCTACTGAG</td>
</tr>
<tr>
<td>18S</td>
<td>Forward</td>
<td>GTAACCGTGGAGACCCATT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CCATCCAAATCGGTAGTCAGG</td>
</tr>
<tr>
<td>Splinted Ligation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection Probe</td>
<td></td>
<td>5’-Phosphate-CGCTTATGACATTC-3’-digoxin</td>
</tr>
<tr>
<td>Bridge oligo for miR-1291</td>
<td></td>
<td>GAATGTCATAAGCCTGCTGGTCT</td>
</tr>
<tr>
<td>Bridge oligo for SNORA34</td>
<td></td>
<td>GAATGTCATAAGCGGTGTTTCTTC</td>
</tr>
</tbody>
</table>
Fig. 1

Chromosome 12

(12q13.11)

C12orf41
Pre-mRNA

-49,076,035

-49,046,994

Intron 9

SNORA34
(137 nt)

Splicing

5'

3'

Drasha

Dicer

hsa-miR-1291
(87 nt)

hsa-miR-1291
(24 nt)
Fig. 2
Fig. 3

A) ABCC1 mRNA

Conserved

Position 32-38 of ABCC1 3'UTR 5'-AUAAUCUGGGUCAGAUGACAGGGCCU-3'

hsa-miR-1291 3'-UGACGACCAGAAGUCAGUCUGCCGU-5'

Poorly conserved

Position 557-563 of ABCC1 3'UTR 5'-CCCUGGACAGUGGCUCCAGGGCC-3'

hsa-miR-1291 3'-UGACGACCAGAAGUCAGUCUGCCGU-5'

Position 740-746 of ABCC1 3'UTR 5'-UGGACCUGGG---AACUGUAGGCCCAG-3'

hsa-miR-1291 3'-UGACGACCAGAAGUCAGUCUGCCGU-5'

Position 740-746 of ABCC1 3'UTR 5'-GCCAGGGGAUGUCAGGGCCG-3'

hsa-miR-1291 3'-UGACGACCAGAAGUCAGUCUGCCGU-5'

B) Relative luciferase activity (%)

<table>
<thead>
<tr>
<th></th>
<th>Relative luciferase activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td></td>
</tr>
<tr>
<td>miR-1291</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Relative luciferase activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>anti-miR-1291</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5

(A) Control vs. miR-1291

- ABCC1
- GAPDH

(B) Control vs. anti-miR-1291

- ABCC1
- GAPDH
Fig. 6

![Chart showing ABCC1 mRNA remaining over time after actinomycin D treatment.

- Control
- miR-1291

Y-axis: ABCC1 mRNA remaining (Fold)
X-axis: Time (h) after actinomycin D treatment

Data points at 0, 24, and 48 hours show a decrease in ABCC1 mRNA levels, with miR-1291 treatment leading to a greater decrease compared to control.](chart.png)
Fig. 7

(A) Control, no drug ——— Control, drug ——— MiR-1291, no drug ——— MiR-1291, drug

(B) Doxorubicin accumulation (fold)

<table>
<thead>
<tr>
<th>Control</th>
<th>MiR-1291</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Fig. 8

![Graph showing cell growth (%) against doxorubicin concentration (µM)]

- Control
- miR-1291