Heterotropic Activation of the Midazolam Hydroxylase Activity of CYP3A by a Positive Allosteric Modulator of mGlu₅: In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions

Anna L. Blobaum, Thomas M. Bridges, Frank W. Byers, Mark L. Turlington, Margrith E. Mattmann, Ryan D. Morrison, Claire Mackie, Hilde Lavreysen, José M. Bartolomé, Gregor J. MacDonald, Thomas Steckler, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Shaun R. Stauffer and J. Scott Daniels

Running Title: Heterotropic activation of CYP3A by a novel mGlu₅ PAM

Address Correspondence to:

Dr. J. Scott Daniels

Drug Metabolism & Pharmacokinetics, Vanderbilt Center for Neuroscience Drug Discovery
Vanderbilt University Medical Center, Nashville, TN 37232
Tel: 615.322.0673
Fax: 615.875.3375
Email: scott.daniels@vanderbilt.edu

Text Pages: 29

Figures: 8

References: 55

Words in Abstract: 244

Words in Introduction: 718

Words in Discussion: 1438

Abbreviations: CNS, central nervous system; CPHP, 4-(4-chlorophenyl)-4-hydroxy piperidine; CYP or P450, cytochromes P450; DDI(s), drug-drug interaction(s); GPCR, G-protein-coupled receptor(s); HAL, haloperidol; HLM, human liver microsomes; HPP⁺, 4-(4-Chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium; mGlu₅, metabotropic glutamate receptor subtype 5; MDZ, midazolam; MLM, mouse liver microsomes; NADPH, β-Nicotinamide adenine dinucleotide phosphate; NAM, negative allosteric modulator; NMR, nuclear magnetic resonance; 1-OH-MDZ, 1-hydroxy midazolam; 4-OH-MDZ, 4-hydroxy midazolam; PAM, positive allosteric modulator; RHAL, reduced haloperidol; RHPP⁺, 4-(4-Chlorophenyl)-1-[4-(4-fluorophenyl)-4-hydroxybutyl]-pyridinium; RLM, rat liver microsomes.
Abstract

Allosteric modulation of G-protein coupled receptors (GPCRs) has gained considerable attention in the drug discovery arena as it opens avenues to achieve greater selectivity over orthosteric ligands. We recently identified a series of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) for the treatment of schizophrenia that exhibited robust heterotropic activation of CYP3A4 enzymatic activity. The prototypical compound from this series, VU0448187, was found to activate CYP3A4 to > 100 % of its baseline intrinsic midazolam (MDZ) hydroxylase activity in vitro; activation was CYP3A substrate-specific and mGlu5 PAM-dependent. Additional studies revealed the concentration-dependence of CYP3A activation by VU0448187 in multi-species hepatic and intestinal microsomes and hepatocytes, as well as a diminished effect observed in the presence of ketoconazole. Kinetic analyses of the effect of VU0448187 on MDZ metabolism in recombinant CYPs or human liver microsomes resulted in a significant increase in V_max (minimal change in K_m) and required the presence of cytochrome b5. The atypical kinetics translated to in vivo, as rats receiving an intraperitoneal administration of VU0448187 prior to MDZ treatment demonstrated a significant increase in circulating 1- and 4-hydroxy midazolam (1-OH-MDZ, 4-OH-MDZ) levels compared to rats administered MDZ alone. The discovery of a potent substrate-selective activator of rodent CYP3A with an in vitro to in vivo translation serves to illuminate the impact of increasing intrinsic enzymatic activity of hepatic and extrahepatic CYP3A in rodents, and presents the basis to build models capable of framing the clinical relevance of substrate-dependent heterotropic activation.
Introduction

The neurotransmitter, L-glutamate (Glu), modulates cell excitability and synaptic transmission via neuromodulatory glutamate receptors, called metabotropic glutamate (mGlu) receptors, in the mammalian central nervous system (CNS). The mechanisms by which mGlu receptors are activated, the proteins with which they interact, and the downstream second-messenger pathways involved in the signaling of these receptors have been extensively investigated. Both orthosteric and allosteric small molecule ligands can modulate the activity of the mGlu receptors; however, greater selectivity, and often potency, can be achieved with positive allosteric modulators (PAMs) or negative allosteric modulators (NAMs) of each mGlu receptor. Due to the widespread distribution of mGlu receptors in the CNS, these receptors represent attractive targets for therapeutic intervention into a wide variety of neurological and psychiatric disorders, such as Alzheimer’s disease, anxiety, depression, Parkinson’s disease and schizophrenia (Niswender and Conn, 2010). We and others have developed selective PAMs for mGlu5 that have potential utility in the treatment of schizophrenia and other disorders that involve impaired cognitive function (Moghaddam, 2004; Conn et al., 2009), as evidenced by the effects these compounds produce in animal models of psychosis and cognition (Kinney et al., 2005; Darrah et al., 2008; Liu et al., 2008).

Similar to other disease states, patients receiving treatment for schizophrenia are commonly subjected to polypharmacy approaches intended to alleviate the variety of symptoms of their disease. Many of these drugs, including haloperidol (HAL, HaldolTM), are metabolized either exclusively or to a great extent by cytochrome P450 3A4 (Fang et al., 2001; Kalgutkar et al., 2003; Avent et al., 2006). CYP3A4 is predominantly expressed in the liver, and to a lesser extent in the intestine, and is involved in the metabolism of a wide variety of drugs, xenobiotics,
and steroids (Thummel and Wilkinson, 1998; Guengerich, 2006). Significant clinical drug-drug interactions (DDIs) have been observed in humans due to the inhibition of CYP3A4 by other concomitantly administered drugs (Lin and Lu, 1998) or naturally occurring components of herbal remedies or fruits (i.e. the grapefruit juice effect). CYP3A4 is also subject to induction by a wide variety of ligands (Lin and Lu, 1998), resulting in a significant increase in the levels of protein that are expressed in tissues. Generally, the inhibition or induction of CYP3A4 has received the most attention with regards to clinically relevant DDIs (Hutzler et al., 2005; Hafner et al., 2010). However, the intrinsic enzymatic activity of the cytochromes P450, including CYP3A4, has also been reported to be significantly affected in vitro (and, in only a few examples, in vivo) through homotropic or heterotropic activation of the enzyme (Hutzler and Tracy, 2002; Obach, 2012). A wide variety of compounds and known drugs have been shown to be activators of CYP3A4 enzymatic activity, including 7,8-benzoflavone (Shou et al., 1994), quinidine (Ngui et al., 2000), and steroids (Henshall et al., 2008). The activation of CYP3A4 metabolic activity in vivo may represent an acute DDI scenario that could increase the clearance of a parent drug and/or increase levels of circulating, and perhaps toxic or active, metabolites.

Herein, we report the discovery of a novel mGlu5 PAM (VU0448187) that significantly activated the midazolam (MDZ) hydroxylase activity of CYP3A4 in multi-species hepatic and intestinal microsomes and hepatocytes. Interestingly, this effect appears to be substrate-dependent, as the CYP3A4-mediated hydroxylation of testosterone and progesterone was unaffected by VU0448187. In addition, the effects of these mGlu5 PAMs on MDZ hydroxylase activity by CYP3A4 appears to be structure-dependent, as an mGlu5 PAM from a second distinct structural series was shown to be an inhibitor of CYP3A4-mediated metabolism of MDZ to its 1-hydroxy metabolite (1-OH-MDZ). Furthermore, ketoconazole, a potent and selective inhibitor of
CYP3A4, can block the ability of VU0448187 to activate CYP3A MDZ hydroxylase activity *in vitro*. Kinetic studies of MDZ metabolism with human liver microsomes and recombinant CYP3A4 and CYP3A5 demonstrated that VU0448187 increases V_{max} (with minimal changes in K_m) and requires the presence of cytochrome b_5. Importantly, we were able to show that the activation of CYP3A MDZ metabolism to either 1-OH-MDZ or 4-OH-MDZ by VU0448187 could be translated to an *in vivo* rodent model. This observation, along with preliminary data suggesting that VU0448187 can activate CYP3A4-mediated metabolism of haloperidol in human liver microsomes, suggests a potential to elicit a clinically relevant DDI that is a result of an acute increase in the enzymatic activity of a drug metabolizing enzyme.
Materials and Methods

Chemicals and enzyme sources. NADPH, midazolam (MDZ), 1-OH-midazolam (1-OH-MDZ), 4-OH-midazolam (4-OH-MDZ), haloperidol (HAL), reduced haloperidol (RHAL), 4-(4-chlorophenyl)-4-hydroxy piperidine (CPHP), testosterone, 6β-OH-testosterone, progesterone, 6β-OH-progesterone, phenacetin, acetaminophen, diclofenac, 4-OH-diclofenac, dextromethorphan, dextrorphan, ketoconazole and miconazole were all purchased from Sigma-Aldrich (St. Louis, MO). VU0448187 (5-(4-fluorobenzyl)-2-((3-fluorophenoxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine) and VU0464797 (2-(phenoxymethyl)-N-(pyridin-3-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyridin-4-amine) (Figure 1A) were synthesized internally at the Vanderbilt Center for Neuroscience Drug Discovery (Schemes 1 and 2, Supplemental Information) with purity and structural characterization confirmed by NMR. Human liver microsomes (150-donor pool, mixed gender), human intestinal microsomes (20-donor pool, mixed gender), male murine and rat liver microsomes were all purchased from BD Biosciences (Woburn, MA). Human (20-donor pool, mixed gender), male Sprague-Dawley rat, and male CD-1 mouse hepatocytes were purchased from Celsis In Vitro Technologies (Baltimore, MD). The cDNA-expressed CYP3A4 and CYP3A5 enzymes with reductase and with or without cytochrome b5 (EasyCyps™) were purchased from XenoTech, LLC (Kansas City, MO).

Inhibition or activation Assays: A four-in-one (cocktail) assay for determining IC₅₀ values against human CYP1A2, CYP2C9, CYP2D6 and CYP3A4 was originally developed based on previous reports (Youdim et al., 2008) and utilized for high-throughput screening of potential P450 inhibitors. Human liver microsomes (final concentration of 0.1 mg/mL) and a substrate mixture containing the CYP probe substrates phenacetin (10 µM), diclofenac (5 µM),
DMD #52662

dextromethorphan (5 μM) and MDZ (2 μM) were added to a potassium phosphate buffered solution (0.1 M, pH 7.4) and warmed to 37°C. The reaction mixture was divided evenly into the 96-well plate and various dilutions of each inhibitor/compound of interest (in duplicate) were then added to this reaction mixture such that the final concentration of each compound ranged from 100 nM to 30 μM. This mixture was allowed to pre-incubate for 15 minutes while shaking at 37°C. Buffer or NADPH (1 mM) was added and the reaction mixture was incubated for an additional 8 minutes at 37°C prior to quenching with 2 volumes of ice-cold acetonitrile containing 50 nM carbamazepine (internal standard). The plates were centrifuged at 4000 rpm (4°C) for 10 minutes and the supernatant was removed and diluted with water (1:4, v/v) in preparation for LC-MS/MS analysis. The IC₅₀ values for each compound were obtained for the individual CYP enzymes by quantitating the inhibition of metabolite formation for each probe substrate against a 12-point standard curve specific for each metabolite; acetaminophen (1A2), 4-OH-diclofenac (2C9), dextrorphan (2D6) and 1-OH-MDZ (3A4). A 0 μM compound condition (or control) was set to 100% enzymatic activity and the effect of increasing test compound concentrations on enzymatic activity could then be calculated from the % of control activity. Curves were fitted using XLfit 5.2.2 (four-parameter logistic model, equation 201) to determine the concentration that produces half-maximal inhibition (IC₅₀). Miconazole was included as a positive control for broad spectrum P450 inhibition (pan-P450 inhibitor). Experiments were n = 2 unless noted otherwise.

Discrete assays for monitoring the activation or inhibition of CYP3A4 enzymatic activity in human, rat or mouse liver and intestinal microsomes or hepatocytes were performed similarly to that described above, except that only one substrate was present in any given assay and levels of
substrate-specific metabolites were exclusively monitored. Final concentrations of the substrates MDZ (2 μM), testosterone (25 μM), progesterone (50 μM), and haloperidol (50 μM) were chosen to be reflective of reported K_m values for CYP3A4 and the protein concentration, time of incubation with NADPH (when necessary), and reconstitution ratios for liquid chromatographic, tandem mass spectrometric analysis (LC-MS/MS) were optimized for each substrate and metabolite combination. Levels of each metabolite (1-OH or 4-OH-MDZ, 6β-OH-testosterone, 6β-OH-progesterone, and CPHP) were quantitated against a 12-point standard curve and data were represented as % of control activity remaining. Experiments in HLM involving ketoconazole (1 μM) were performed by pre-incubating ketoconazole for 5 min prior to the addition of VU0488187 for 15 min and then NADPH (1 mM) for an additional 8 min. Hepatocytes were thawed as per the vendor’s instructions, and incubations were conducted with 0.5x10^6 cells/mL.

Kinetic analysis of CYP3A4 activation. Studies to monitor the effect of VU0448187 (10 μM) on the K_m and V_max for MDZ hydroxylation to 1-OH-MDZ were performed in potassium phosphate buffered solution (0.1 M, pH 7.4) with 5 mM MgCl_2. MDZ was dissolved in methanol and diluted over a range of concentrations. Final protein concentrations were 0.5 mg/mL (HLM) and 5 pmol/mL for CYP3A4 and CYP3A5 (EasyCYPs™ co-expressed with reductase and with or without cytochrome b_5) and the assay was optimized for linearity or per vendor’s instructions. A pre-mixture composed of human liver microsomes or recombinant CYP3A4 or CYP3A5 in assay buffer was distributed to tubes on ice that contained either varied concentrations of MDZ alone or MDZ with VU0448187. Every 15 sec, a tube was placed in the 37°C water bath so that all tubes were pre-incubated for 5 min prior to the addition of NADPH (1
mM final) for an additional 5 min. Reactions were quenched with ice-cold acetonitrile containing 50 nM carbamazepine (internal standard). The plates were centrifuged at 4000 rpm (4°C) for 10 minutes and the supernatant removed and diluted with water (1:1, v/v) in preparation for LC-MS/MS analysis. 1-OH-MDZ levels were quantitated against a 12-point standard curve and the data were fit to either Michaelis-Menten (Eq 1) or substrate-inhibition (Eq 2) equations and represented as nmol/min/mg protein (HLM) or pmol/min/pmol P450 (CYP3A4 or CYP3A5). As MDZ metabolism undergoes substrate inhibition at higher concentrations (Martinez et al., 2000; Khan et al., 2002), it was decided to report all data using Eq 2 for completeness. Experiments were \(n = 2 \) or more.

Eq 1. \[Y = \frac{V_{\text{max}} \cdot X}{K_m + X} \]

Eq 2. \[Y = \frac{V_{\text{max}} \cdot X}{K_m + X \times (1 + X/K_i)} \]

In Vivo pharmacokinetic studies with midazolam. MDZ is metabolized by CYP3A *in vitro* to 1-OH-MDZ and 4-OH-MDZ (Figure 1B) (Kronbach et al., 1989). MDZ was prepared as a solution in 10% ethanol/50% PEG-400/40% saline and dosed intravenously (IV) at 1 mg/kg to dual-cannulated male Sprague-Dawley (SD) rats (\(n = 2 \)) or male CD-1 mice (\(n = 2 \)) (Harlan Labs, Indianapolis, IN). Blood was serially collected over EDTA at 0.0333, 0.117, 0.25, 0.5, 1, 3, 7, and 24 hours post-dose and plasma isolated via centrifugation (4000 rpm, 4°C) for storage at -80°C until LC-MS/MS analysis. The sample extraction of plasma was performed by protein precipitation employing three volumes of ice-cold acetonitrile containing 50 nM carbamazepine (internal standard). The samples were centrifuged (4000 rpm, 4°C) and the supernatants
transferred and diluted 1:1 (v/v) for LC-MS/MS analysis. The final pharmacokinetic (PK) parameters for MDZ (clearance, CL₀; half-life, \(t_{1/2} \); volume of distribution predicted at steady-state, \(V_{ss} \)) were calculated by noncompartmental analysis employing WinNonLin (Phoenix, version 6.2; Pharsight Inc., Mountain View, CA). Alternatively, VU0448187 was prepared in 10% Tween 80 (aq) for intraperitoneal administration (IP) of a 10 mg/kg dose to dual-cannulated SD male rats \((n = 2)\) 1 hr prior to a 10 mg/kg IP dose of MDZ. Blood was collected at various times post-dose and handled as described above for LC-MS/MS analysis. VU0448187, MDZ, 1-OH-MDZ and 4-OH-MDZ levels were simultaneously monitored from each experiment and the levels of each analyte quantified against a 10-point standard curve. Concentrations were reported as ng/mL.

Liquid Chromatography-Mass Spectrometry Analysis. *In vitro* and *in vivo* samples were analyzed via electrospray ionization (ESI) LC-MS/MS on an AB Sciex API-4000 (Foster City, CA) triple-quadrupole instrument that was coupled with Shimadzu LC-10AD pumps (Columbia, MD) and a Leap Technologies CTC PAL auto-sampler (Carrboro, NC). Analytes were separated by gradient elution using a thermostated \((40^\circ C)\) C18 column (Fortis 3.0 x 50 mm, 3 µ; Fortis Technologies Ltd, Cheshire, UK). Mobile phase A was 0.1 % formic acid (aq) and mobile phase B was 0.1 % formic acid in acetonitrile. The gradient started at 10 % B after a 0.2 min hold and was linearly increased to 90 % B over 1.3 min; returned to 10 % B in 0.1 min followed by a re-equilibration \((0.9 \text{ min})\). The total run time was 2.5 min and the HPLC flow rate was 0.5 mL/min. The source temperature was set at 500 \(^\circ\)C and mass spectral analyses were performed using multiple reaction monitoring (MRM), with transitions specific for each compound utilizing a
Turbo-Ionspray® source in positive ionization mode (5.0 kV spray voltage). All data were analyzed using AB Sciex Analyst 1.5.1 software.
Results

Assessment of CYP3A-mediated MDZ hydroxylase activity in hepatic and intestinal microsomes and hepatocytes. A mixed-age and mixed-gender hepatic microsomal pool of 150 human donors was utilized to monitor the effect of increasing concentrations of VU0448187 and VU0464797 (Figure 1A) on the ability of four major drug-metabolizing CYP enzymes (1A2, 2C9, 2D6 and 3A4) to metabolize their respective probe substrates. Using a cocktail (4 in 1) approach in human liver microsomes (HLM), we observed that VU0448187 displayed little to no effect on the enzymatic activities of CYP1A2 or CYP2D6 (IC$_{50}$ > 30 μM) and that the activity of CYP2C9 was minimally affected (IC$_{50}$ = 20 μM; inhibition of 4-OH-diclofenac formation) (Figure 2A). Interestingly, we observed an increase in the CYP3A4-mediated metabolism of the probe substrate midazolam (MDZ) to its 1-OH-midazolam (1-OH-MDZ) metabolite in the presence of VU0448187. The CYP3A4 activation discovered was concentration-dependent and the maximal effect occurred at 10 μM VU0448187 (Figure 2A). To delineate what appeared to be a CYP3A4 specific effect by VU0448187, we moved to a discrete assessment of MDZ metabolism in HLM. Importantly, a comparison of the data in Figures 2A and 2B demonstrate that VU0448187 acts directly on the intrinsic activity of CYP3A4 to increase MDZ metabolism. In our initial metabolic assessment of a series of mGlu$_5$ PAMs, we discovered a structure-activity relationship (SAR) of the substrate-specific activation of CYP3A4 in HLM. As shown in Figure 2C, a structurally distinct mGlu$_5$ PAM (VU0464797) does not activate MDZ hydroxylase activity but, in fact, inhibits the CYP3A4-mediated conversion of MDZ to 1-OH-MDZ in HLM.

Therefore, we investigated the ability of VU0448187 to activate CYP3A metabolism of MDZ in multi-species and varied tissues (Figure 3). Interestingly, we found that increasing concentrations of VU0448187 could dose-dependently activate the metabolism of MDZ to its 1-
hydroxy (1-OH) metabolite in both mixed donor pools of human intestinal microsomes (HIM, Figure 3B) and human hepatocytes (Figure 3C). In fact, the activation of CYP3A activity in hepatocytes by VU0448187 was significantly greater than that originally observed in HLM (Figure 3A) with activation continuing out to 30 μM (~400% activity of control) and increased levels of 1-OH-MDZ were measured at the lowest concentration of VU0448187 tested (100 nM). The CYP3A activation effect observed with VU0448187 in hepatocytes versus that in HLM may be a direct result of a more complete physiological test system (all proteins, co-factors at physiologically relevant expression and concentrations, respectively). The concentration-dependent effects of VU0448187 on CYP3A activity were also observed in rat hepatocytes (Figure 3D) and hepatic microsomes (data not shown) and in murine liver microsomes (Figure 3E) and hepatocytes (data not shown). These in vitro data provided confidence that our observations were not species specific, and that VU0448187 was membrane permeable and targeted CYP3A activity in hepatocytes from multiple species and distinct tissues. Together, these results provided support for the selection of an appropriate preclinical model for examining the effect of VU0448187 on CYP3A activity in vivo.

As VU0464797 was found to be an inhibitor of CYP3A4 in HLM (Figure 2), we examined the effect of increasing concentrations of this mGlu₅ PAM in human and rat hepatocytes. Data provided in Figure 4 demonstrate that VU0464797 dose-dependently inhibits the conversion of MDZ to 1-OH-MDZ in hepatic microsomes and hepatocytes from multiple species. Validating VU0464797 as a structurally distinct mGlu₅ PAM (negative control) that has a different reaction phenotype to VU0448187 demonstrates that not all mGlu₅ PAMs exhibit this CYP3A4 activation phenomena and that any potential acute effects caused by the activation of the intrinsic enzymatic activity are likely drug and/or compound specific.
The effects of a specific CYP3A4 inhibitor on VU0448187-mediated enhancement of enzymatic activity and observations with alternative probe substrates. We investigated the ability of ketoconazole, a potent and selective inhibitor of CYP3A4, to inhibit the activity of this enzyme in HLM in the presence of increasing concentrations of VU0448187. Data in Figure 5A show that ketoconazole (at 1 μM) can significantly block the VU0448187-mediated activation of MDZ hydroxylation, indicating that CYP3A4 and/or CYP3A5 are the targets of this heterotropic activator in HLM and not other CYP enzymes. Although we cannot confirm the effects of the activator are mediated through CYP3A4 or CYP3A5 alone, our data are consistent with historical accounts that the effects of a heterotropic activator (i.e., VU0448187) are likely mediated through the enzyme and not simply through a direct interaction of the activator with other partner proteins (such as reductase) (Hutzler and Tracy, 2002; Keubler et al., 2012). In addition, the blockade of VU0488187-mediated CYP3A4 activation with MDZ as the probe substrate can be titrated with varying concentrations of ketoconazole (data not shown).

Understanding that CYP3A4 may catalyze the oxidation of multiple substrates at topologically distinct sites within the protein, we investigated the ability of VU0448187 to activate the metabolism of testosterone and progesterone, two substrates known to bind to distinct sites within CYP3A4. The results displayed in Figure 5 demonstrate that the enhancement of CYP3A4 enzymatic activity in HLM by VU0448187 is substrate-dependent, as the testosterone (Figure 5B) and progesterone (Figure 5C) hydroxylase activities of CYP3A4 (conversion to 6β-OH-metabolites) were not activated by increasing concentrations of VU0448187. In fact, we observed a slight dose-dependent inhibition of testosterone and progesterone metabolism by VU0448187 in HLM. These data underscore the importance of
testing multiple potential perpetrators and victims when examining atypical enzyme kinetics in vitro and further confirm previous literature reports supporting the notion that CYP3A allostery is substrate-dependent (Wang et al., 2000).

The kinetics of CYP3A4 activation of MDZ 1-hydroxylase activity in cDNA expressed CYP3A4 and CYP3A5 and HLM. Previous studies examining the effect of efavirenz on the metabolic activation of CYP3A4 MDZ metabolism found that the K_m of MDZ was relatively unaffected by the presence of efavirenz, but that the V_{max} increased significantly (Keubler et al., 2012). Therefore, we investigated the impact of VU0448187 on the binding affinity (K_m) and catalytic efficiency (V_{max}) of MDZ 1-hydroxylation in recombinant CYP3A4 and CYP3A5 (with and without cytochrome b_5), as well as in HLM. Not surprisingly, the kinetics of MDZ metabolism (1-OH-MDZ formation) was linear at concentrations up to, but not exceeding, 10 μM; as expected, we observed substrate-inhibition kinetics at higher concentrations (100 μM) (Martinez et al., 2000; Lin et al., 2001; Khan et al., 2002). Consistent with previous accounts of efavirenz-mediated activation, the presence of VU0448187 (10 μM) activated the maximal product formation rate (V_{max}) by 1.2-1.4 fold in CYP3A4 and CYP3A5 and 2.8 fold in HLM, with little to no change in K_m for cDNA-expressed CYP3A4 (Figure 6 and Table 1), CYP3A5 (data not shown) and in HLM (Figure 6C and Table 1). The increase in V_{max} associated with VU0448187 in the recombinant CYP assay was dependent on the presence of cytochrome b_5 (Figures 6A and 6B), and the overall intrinsic enzymatic activity of either CYP3A4 or CYP3A5 was higher with cytochrome b_5. Importantly, CYP enzymes have been reported to display compound-dependent variability in metabolic activity (or inhibition profiles) when reactions are fortified with cytochrome b_5 (Jushchyshyn et al., 2005). In fact, efavirenz activation of
CYP3A4-mediated MDZ metabolism was also shown to be dependent on the presence of cytochrome \(b_5 \) (Keubler et al., 2012). Although it is unclear at this time what the precise role cytochrome \(b_5 \) plays in the activation of CYP3A4-mediated MDZ metabolism by VU0448187 (or efavirenz), it is possible that cytochrome \(b_5 \) induces a conformational change in CYP3A4 or CYP3A5 (Yamazaki et al., 1996) or increases the coupling between the P450 protein and reductase (Lee et al., 1997; Locuson et al., 2007), such that the metabolism is enhanced by the presence of VU0448187.

MDZ pharmacokinetics and in vivo models of VU0448187 activation of CYP3A in rodents.

Although MDZ hepatic clearance in the rat is dependent upon the specific rat strain utilized for a given study, it is also well known that MDZ is generally a high-clearance compound (55-80 mL/min/kg) in rat (Kotegawa et al., 2002) with the predominant metabolic pathways being CYP3A-mediated conversion to 1-OH-MDZ and 4-OH-MDZ (at near equal amounts). In a single time point experiment where rats (\(n = 2 \)) were pretreated with vehicle or VU0448187 (10 mg/kg IP, 1 hr) followed by MDZ administration (10 mg/kg IP), we observed a significant increase in concentrations (ng/mL) of both 1-OH-MDZ (Figure 7a) and 4-OH-MDZ (data not shown) at 15 minutes post MDZ treatment. The 1-OH-MDZ metabolite was observed in plasma at approximately 5 ng/mL in rats treated with MDZ alone versus concentrations approaching 125 ng/mL in rats which were pretreated with VU0448187. The increase in the metabolism of MDZ, approximately a 25-fold increase in 1-OH-MDZ production, exceeded the fold increase that was predicted from the results generated in vitro in RLM or rat hepatocytes. Importantly, the increase in 1-OH-MDZ that we observed in rodents was not an effect stemming from the inhibition of the glucuronidation of this metabolite by the mGlu5 PAM, as LC/MS analysis indicated that
VU0448187 (25 µM) displayed no inhibition of the glucuronidation of 1-OH-MDZ\textit{ in vitro} in RLM or rat hepatocytes (data not shown). In a follow up experiment in which VU0448187 pretreated (10 mg/kg IP) rats received a single dose of MDZ (10 mg/kg IP), we also observed a time-dependence in the increased formation of circulating levels of 1-OH and 4-OH-MDZ (Figure 7B). Specifically, the time-concentration data displayed in Figure 7B indicated that, compared to the rats receiving MDZ alone, 1-OH-MDZ metabolite concentrations were maximal in the plasma shortly after rats received an IP administration of MDZ (apparent \textit{T}_{\text{max}} of 7 minutes). Importantly, the concentrations of 1-OH-MDZ returned to plasma levels that were observed in vehicle-treated rats within 2 hours, an observation that is consistent with the notion that CYP3A activation of MDZ hydroxylase activity is a transient effect dependent on VU0448187 exposure.

\section*{Clinical relevance of heteroactivation of CYP3A4 activity in HLM.} The neuroleptic agent, haloperidol (HaldolTM, HAL) is metabolized nearly exclusively by CYP3A4 to multiple metabolites, including RHAL, CPHP, HP+ and RHP+ (Fang et al., 2001; Kalgutkar et al., 2003; Avent et al., 2006); importantly, HAL was also found to be back-oxidized from RHAL \textit{in vitro}. To determine the impact of VU0448187-mediated CYP3A4 activation on the metabolism of HAL, we monitored the conversion of HAL to its primary oxidized metabolite, CPHP, in human liver microsomes. Because our data utilizing MDZ as the CYP3A4 probe substrate (victim) indicated that the resulting enzymatic activation was perpetrator specific, we conducted the experiments with HAL in HLM in the presence or absence of VU0448187 (CYP3A4 activator), VU0464797 (CYP3A4 inhibitor), and miconazole (pan-P450 inhibitor). We observed that both VU0464797 (10 µM) and miconazole (1 µM) significantly inhibited the metabolism of HAL to
DMD #52662

CPHP (Figure 8), whereas VU0448187 (10 μM) enhanced CPHP product formation at an approximate 20% increase over the control experiment. Although the extent of activation of CYP3A4 activity was not as significant as what was observed for MDZ hydroxylation, the observed activation of a clinically relevant CYP3A4 substrate is noteworthy. Likewise, compounds that inhibited MDZ hydroxylation in HLM also showed inhibitory profiles with HAL. These data suggest a clear substrate- and perhaps concentration-dependence to heteroactivation and implies that drugs displaying heteroactivation of enzymatic activity in vitro may mediate this effect in vivo.
Discussion

Although the metabolism of a particular substrate by a P450 enzyme is best described employing Michaelis-Menten kinetics, there are many instances of substrate-enzyme interactions that follow more atypical kinetic profiles, such as homo- or heterotropic activation, substrate inhibition, partial inhibition, or biphasic metabolism (Korzekwa et al., 1998; Hutzler and Tracy, 2002; Atkins, 2005; Egnell et al., 2005). One of the earliest demonstrations of the ability of a P450 activator (i.e., perpetrator) to enhance the metabolism of a concomitantly administered compound (i.e., victim) was the CYP3A4-mediated hydroxylation of benzo[a]pyrene by α-naphthoflavone reported by Shou and co-workers (Shou et al., 1994). While multiple P450 enzymes experience heterotropic activation, the majority of examples of this phenomenon to date have involved CYP3A4. Due to the plethora of liganded/non-liganded x-ray crystal structures available with this enzyme (Williams et al., 2004; Yano et al., 2004), as well as a predominance of kinetics, mutagenesis, and various spectral titration studies or mathematical models (Domanski et al., 1998; Harlow and Halpert, 1998; Shou et al., 1999; Domanski et al., 2000; Hosea et al., 2000; Kenworthy et al., 2001; Khan et al., 2002), multiple hypotheses exist to explain the ability of a perpetrator to enhance the metabolism of a victim substrate. The perpetrator may either bind in a separate or overlapping binding site in the enzyme active site or it may bind to a distinct allosteric site of the enzyme to influence the metabolism of the victim substrate; however, it is generally accepted that the victim drug must bind close to the center heme prosthetic and in close proximity to the activated-oxygen species. While evidence exists to support both theories, it is well accepted that the mechanism of heteroactivation may be dependent upon the specific victim-perpetrator combination and the enzyme itself (due to the relative size of the active site).
The contribution of allosteric binding is not limited to atypical enzyme kinetics, such as heterotropic activation, but, in fact, has been linked to the mechanism-based inactivation of CYP2B4 by 9-ethynylphenanthrene (9EP) (Zhang et al., 2013). Zhang and colleagues found that quenching of 9EP fluorescence by unmodified or 9EP-modified CYP2B4 revealed two binding sites with distinct affinities, with the high-affinity site located on the protein periphery. The suggested location of this high affinity site is at the entrance of a substrate access channel surrounded by the F’ helix, β1-β2 loop region and β4 loop; these and other protein coordinates have been described previously as a potential allosteric site involved in the heterotropic activation of substrate-specific P450 enzymatic activity (Harlow and Halpert, 1998; Davydov et al., 2012; Shah et al., 2012). In the example of 9EP and the mechanism-based inactivation of CYP2B4, the high-affinity site functions as an allosteric site to enhance the efficiency of activation of the acetylenic group of 9EP and subsequent covalent modification of the active site Thr 302 residue. Considering the well-known consequences of P450 inhibition or mechanism-based inactivation in vivo (adverse drug interactions and toxicity) and the magnitude of the effects reported here, it is now prudent that the potential for allosteric effects of a drug molecule either on activation and/or inhibition of a P450 must also be considered during a preclinical DDI assessment. The methods and studies described here served as an example of an approach to define these types of interactions in vitro and in animal models prior to clinical advancement.

A recent perspective has served to re-introduce the importance of the kinetic phenomena of heterotropic activation (and atypical kinetics in general) and its impact to clinical pharmacokinetics of co-administered P450-metabolized drugs (Obach, 2012). Moreover, the perspective highlighted the importance of establishing new approaches towards the prediction of drug-drug interactions (DDIs) associated with atypical kinetics; particularly noteworthy was the
notion of identifying preclinical models capable of mirroring the clinical setting. Importantly, there have been relatively limited examples of translating observed in vitro heteroactivation to in vivo animal models or humans. Tang, et al. found an in vitro to in vivo translation for the stimulation of diclofenac metabolism by quinidine in monkeys (Tang et al., 1999); however, follow-up studies by Hutlzer et al. on the observed robust in vitro activation of CYP2C9-mediated flurbiprofen metabolism by dapsone (Hutzler et al., 2001b) showed only minimal effects in vivo (Hutzler et al., 2001a). More importantly, Yang and co-workers demonstrated evidence for CYP3A allostery in healthy human volunteers by examining the interaction between fluconazole and MDZ (Yang et al., 2012). In a clinical study, Bayer, et al. found that efavirenz rapidly increased MDZ metabolism, suggesting an acute activation of CYP3A-mediated MDZ metabolism that did not occur in a time frame suitable for induction of the enzyme via mRNA transcription (Bayer et al., 2009). Subsequent in vitro analyses confirmed the heteroactivation of CYP3A MDZ hydroxylase activity in HLM and in recombinant CYP3A4 and CYP3A5 (Keubler et al., 2012) was a Vmax-driven effect linked to the presence of cytochrome b5.

CYP3A4 is expressed in a variety of tissues, but is predominantly localized to the liver and intestine. Recent focus has also been placed on the metabolism and inhibition of CYP3A5, which is often expressed in the same tissues as CYP3A4, but may or may not have overlapping substrate specificities and/or show subtype specific inhibition in vitro (Gorski et al., 1994). In addition, rat and murine CYP3A catalytic activity (or inhibition thereof) does not always translate to human CYP3A4 and CYP3A5 activity (Komura and Iwaki, 2008). For example, there have been reports (Kronbach et al., 1989; Perloff et al., 2000) indicating that murine metabolism of MDZ correlates more closely to human metabolism (MDZ to 1-OH-MDZ) than rat (MDZ to 1-OH-MDZ and 4-OH-MDZ in equal quantities). More recently, studies in
humanized CYP3A4 transgenic mice using triazolam have shown stimulation of intestinal and hepatic CYP3A activity (van Waterschoot et al., 2009). In addition, Yamazaki, et al. investigated the in vivo drug interaction between midazolam (MDZ) and thalidomide in mice with humanized livers and found a significant increase in AUC (area under the curve) for the production of 1-OH-MDZ in mice that were co-administered MDZ (intravenously) and thalidomide (orally) (Yamazaki et al., 2013). In an attempt to find alternative rodent models to examine the activation of CYP3A activity in vivo by VU0448187, we examined the hepatic clearance of MDZ in male CD-1 mice (n = 2; 1 mg/kg IV). The hepatic clearance of MDZ was moderate at 50 mL/min/kg (hepatic blood flow ≈90 mL/min/kg) and 1-OH-MDZ was readily detected in mice at this dose employing LC/MS/MS analysis (data not shown). Due to the similarities in the metabolism of MDZ in humans and mice, these preliminary data will serve to direct future studies where potential changes in MDZ clearance and exposure as well as circulating metabolite exposures can be monitored in the presence of VU0448187.

Historical data surrounding the homotropic and heterotropic activation of CYP3A4 enzymatic activity in vitro indicate that these observations are likely to be compound (or perpetrator) specific, as well as substrate (or victim) specific (Shou et al., 1994; Ngui et al., 2000; Wang et al., 2000; Kenworthy et al., 2001). CYP3A4 and CYP3A5 metabolize over half of all known drugs on the market today (Thummel and Wilkinson, 1998). The likelihood of patients receiving drugs and herbal remedies that are metabolized by this same enzymatic pathway is high (antibiotics, antidepressants, birth control, etc); in particular, the chance to precipitate a clinically relevant drug-drug interaction (DDI) in patients is significantly increased with disease states (e.g., neurological disorders, tissue malignancies and acquired immunodeficiency syndrome) that require concomitant administration of multiple medications,
the metabolism of which may be catalyzed at topological sites within the CYP3A protein that are distinct from the MDZ binding site. Understanding the potential off-target activities of a drug or its metabolite(s) is crucial for drug development and clinical success (Hutzler et al., 2005). The discovery and development of mGlu₅ PAMs represents a novel approach in the treatment of schizophrenia. With the understanding that many patients are subjected to polypharmacy, in addition to the deleterious issues of patient compliance and drug overdose, the potential for DDIs (target- or off-mediated) is increased in this particular patient group. While it is uncertain at this time whether the heterotropic activation of cytochrome P450 enzymes is clinically relevant in terms of DDI potential, it is important to understand the effects of this phenomenon on increasing the clearance of parent drug and/or increasing circulating metabolite levels that may have pharmacological or toxicological significance. We have shown here that an in vitro observation of potent activation of CYP3A in multi-species liver and intestinal fractions by a novel mGlu₅ PAM can be translated to rodents in vivo, subsequently enabling the modeling of atypical clinical pharmacokinetics with relevant therapeutic agents.
Authorship Contributions

Participated in research design: Blobaum, Bridges, Byers, Daniels, Mackie, Lavreysen, Steckler

Conducted experiments: Blobaum, Byers

Contributed new reagents or analytical tools: Turlington, Mattmann, Morrison, Stauffer, Bartolome, MacDonald

Performed data analysis: Blobaum, Morrison, Mackie

Wrote or contributed to the writing of the manuscript. Blobaum, Bridges, Morrison, Bartolome, Jones, Niswender, Conn, Lindsley, Stauffer, Daniels
References

Yamazaki H, Suemizu H, Murayama N, Utoh M, Shibata N, Nakamura M, and Guengerich FP (2013) In Vivo Drug Interactions of the Teratogen Thalidomide with Midazolam:
Heterotropic Cooperativity of Human Cytochrome P450 in Humanized TK-NOG Mice.

Footnotes

This work was supported in part by grants from the National Institutes of Health [NS031373, MH062646, and MH89870] and from an industry sponsored contract from Johnson & Johnson.
Figure Legends

Figure 1. Chemical structures of VU0448187 and VU0464797; two structurally distinct, but active positive allosteric modulators (PAMs) of human metabotropic glutamate receptor 5 (hmGlu5) (A). The metabolism of midazolam (MDZ) by CYP3A4 *in vitro* (B).

Figure 2. The effect of increasing concentrations of VU0448187 or VU464797 on the metabolic activity of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in human liver microsomes from a 150-donor pool using (A) a cocktail approach to assay for enzymatic activity or inhibition, or (B) and (C) a discrete assay in human liver microsomes monitoring the conversion of MDZ to 1-OH-MDZ for CYP3A4 activity.

Figure 3. The activation of MDZ 1-hydroxylase activity in pools of human liver microsomes (A), human intestinal microsomes (B), human hepatocytes (C), rat hepatocytes (D), and murine liver microsomes (E) by increasing concentrations of VU0448187. Human donor pools were mixed gender/mixed age; rat and murine pools were male Sprague-Dawley and male CD-1, respectively.

Figure 4. The inhibition of MDZ 1-hydroxylase activity in pools of human liver microsomes (A), human hepatocytes (B), and rat hepatocytes (C) by increasing concentrations of VU0464797. Human donor pools were mixed gender/mixed age; rat pools were male Sprague-Dawley.
Figure 5. The effect of a specific CYP3A4 inhibitor, ketoconazole (1 μM), on the activation of MDZ 1-hydroxylase activity in human liver microsomes by VU0448187 (A). The effect of increasing concentrations of VU0448187 on the hydroxylase activity of alternative CYP3A4 substrates, testosterone (25 μM) and progesterone (50 μM) (B and C).

Figure 6. The kinetics of CYP3A4 activation of MDZ 1-hydroxyase activity by VU0448187 in recombinant systems ± cytochrome b5 (A and B) or human liver microsomes (C). K_m and V_max parameters were determined by fitting the data to an equation for substrate-inhibition. The metabolite formation rate is expressed as pmol/min/pmol P450 for the recombinant CYP or as nmol/min/mg P450 for human liver microsomes.

Figure 7. Increases in 1-OH-MDZ levels in Sprague-Dawley rats following pre-treatment with VU0448187. Single time-point measurement (A) or time course (B) of 1-OH-MDZ levels in male SD rats (n=2) that were administered a 10 mg/kg IP dose of MDZ following a one hour pre-treatment with either vehicle or a 10 mg/kg IP dose of VU0448187.

Figure 8. The activation or inhibition of CYP3A4 haloperidol (HAL) metabolism in human liver microsomes. VU0448187 (10 μM), VU0464797 (10 μM) or miconazole (1 μM) were incubated with HAL (50 μM) and NADPH for 40 minutes and the conversion of HAL to its metabolite, CPHP, was monitored.
Table 1. Kinetic effects of VU0448187 heteroactivation of CYP3A4 MDZ activity.

<table>
<thead>
<tr>
<th></th>
<th>V_{max} (nmol/min/mg or pmol P450)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP3A4</td>
<td>5.30 +/- 0.26</td>
</tr>
<tr>
<td>CYP3A4 + VU0448187</td>
<td>5.31 +/- 0.14</td>
</tr>
<tr>
<td>CYP3A4/b5</td>
<td>7.35 +/- 0.43</td>
</tr>
<tr>
<td>CYP3A4/b5 + VU0448187</td>
<td>10.1 +/- 0.21</td>
</tr>
<tr>
<td>Human LM</td>
<td>1.16 +/- 0.08</td>
</tr>
<tr>
<td>Human LM + VU0448187</td>
<td>3.29 +/- 0.16</td>
</tr>
</tbody>
</table>

Changes in V_{max} for the conversion of MDZ to 1-OH-MDZ in the absence and presence of VU0448187 (10 µM) for cDNA-expressed CYP3A4 and reductase with and without cytochrome b_5 and in human liver microsomes. The metabolite formation rate is expressed as pmol/min/pmol P450 for the recombinant CYP or as nmol/min/mg P450 for human liver microsomes.
Fig. 1

A)

VU0448187
1000 nM EC₅₀ hmGlu5

VU0464797
620 nM EC₅₀ hmGlu5

B)

Midazolam

1-OH-Midazolam

4-OH-Midazolam
Fig. 2

A) Graph showing the % Activity of Control with different concentrations of VU0448187 for different P450 enzymes.

B) Graph showing the % Activity of Control with different concentrations of VU0448187 for P450 3A4.

C) Graph showing the % Activity of Control with different concentrations of VU0464797 for P450 3A4.
Fig. 3

(A) and (B) show the effect of VU0448187 at different concentrations on the % Activity of Control. (C) and (D) display the same effect for another substance. (E) illustrates the impact of VU0448187 on the % Activity of Control, with a similar pattern to (A) and (B).
Fig. 5

A) % Activity of Control

B) % Activity of Control

C) % Activity of Control

VU0448187 (µM)

VU0448187 (µM)
Fig. 6

A) 1-OH-MDZ Formation (nmol/mg protein) vs. Midazolam (μM)

B) 1-OH-MDZ Formation (nmol/mg protein) vs. Midazolam (μM)

C) 1-OH-MDZ Formation (nmol/mg protein) vs. Midazolam (μM)
Fig. 8

![Graph showing CPHP Formation from Haloperidol (% Activity of Control) vs Concentration (µM). The graph compares the effects of different concentrations of Vehicle, VU448187 (10), VU464797 (10), and Miconazole (1) on CPHP formation. The y-axis represents CPHP formation as a percentage of control, while the x-axis represents concentration in µM. The graph indicates that VU448187 (10) has a significant effect on CPHP formation, while VU464797 (10) has a lesser impact, and Miconazole (1) shows no significant effect.]
Heterotropic Activation of the Midazolam Hydroxylase Activity of P450 3A by a Positive Allosteric Modulator of Metabotropic Glutamate Receptor 5: In Vitro to In Vivo Translation and Potential Impact on Clinically Relevant Drug-Drug Interactions

Anna L. Blobaum, Thomas M. Bridges, Frank W. Byers, Mark. L. Turlington, Margrith E. Mattmann, Ryan D. Morrison, Claire Mackie, Hilde Lavreysen, José M. Bartolomé, Gregor J. MacDonald, Thomas Steckler, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Shaun R. Stauffer and J. Scott Daniels

Supplementary Material

VU0464797 and VU0448187 Synthesis

General. All NMR spectra were recorded on a Bruker 400 MHz instrument. 1H chemical shifts are reported in δ values in ppm downfield from TMS as the internal standard in CDCl$_3$. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, bs = broad singlet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, m = multiplet), integration, coupling constant (Hz). Low resolution mass spectra were obtained on an Agilent 1200 series 6130 mass spectrometer. High resolution mass spectra were recorded on a Waters Q-TOF API-US. Analytical thin layer chromatography was performed on Analtech silica gel GF 250 micron plates. Analytical HPLC was performed on an HP1100 with UV detection at 214 and 254 nm along with ELSD detection, LC/MS (J-Sphere80-C18, 3.0 x 50 mm, 4.1 min gradient, 5%[0.05%TFA/CH$_3$CN]:95%[0.05%TFA/H$_2$O] to 100%[0.05%TFA/CH$_3$CN]. Preparative RP-HPLC purification was performed on a custom HP1100 automated purification system with collection triggered by mass detection or using a Gilson Inc. preparative UV-based system using a Phenomenex Luna C18 column (50 x 30 mm I.D., 5 μm) with an acetonitrile (unmodified)-water (0.1% TFA) custom gradient. Normal-phase silica gel preparative purification was performed using an automated Combi-flash companion from ISCO. Solvents for extraction, washing and chromatography were HPLC grade. All reagents were purchased from Aldrich Chemical Co. and were used without purification. All polymer-supported reagents were purchased from Argonaut Technologies and Biotage.

Scheme 1. Synthesis of VU0448187

\[\text{Scheme 1. Synthesis of VU0448187} \]
5-(4-Fluorobenzyl)-2-((3-fluorophenoxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (VU0448187): To a 0 °C solution of 1.1, (2-((3-fluorophenoxy)methyl)-6,7-dihydropyrazolo[1,5-a]pyrazin-5(4H)-yl)(4-fluorophenyl)methanone\(^1\) (333 mg, 0.90 mmol) in THF (9 mL) was added dropwise borane dimethyl sulfide (10 M, 9 mL, 9 mmol). Upon completion the mixture was allowed to warm to rt while stirring. Upon disappearance of starting material as judged by LC-MS (1.5 h) the mixture was cooled to 0 °C and MeOH added intermittently dropwise until gas evolution ceased. Excess MeOH was added (10 mL) and vessel heated under reflux for 1.5h. The mixture was concentrated and the resulting residue purified by automated silica gel chromatography (EtOAc/hexanes) to give desired product as a white low melting semi-solid (70% yield): \(^1\)H NMR \(\delta\) 7.32 (2H, m), 7.21 (1H, q, \(J = 8.3\) Hz), 7.03 (2H, t, \(J = 8.9\) Hz), 6.77 (1H, dd, \(J = 8.3, 2.2\) Hz), 6.71 (1H, dt, \(J = 11.0, 2.4\) Hz), 6.65 (1H, td, \(J = 8.3, 1.7\) Hz), 6.04 (1H, s), 5.02 (2H, s), 4.18 (2H, t, \(J = 5.6\) Hz), 3.68 (2H, s), 3.65 (2H, s), 2.93 (2H, t, \(J = 5.4\) Hz); LC/MS (>98%) \(R_t = 0.638, m/z = 356.1\) [M+H].

Scheme 2. Synthesis of VU0464797.

2-(phenoxy)methyl)-N-(pyridin-3-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyridin-4-amine (VU0464797):
To a solution of ketone 2.1\(^2\) (200 mg, 0.83 mmol) in DCE (4 mL) was added 3-picolyamine (0.1 mL, 0.99 mmol). NaHB(OAc)\(_3\) (280 mg, 1.32 mmol) and acetic acid (0.094 mL, 1.65 mmol) were then added and the mixture was stirred at room temperature for 1 day. After the reaction was judged to be complete by LC-MS the reaction was quenched with aqueous NaOH (2 mL, 1.0 M) and extracted with EtOAc (3 x 10 mL). The organic layer was dried with Na\(_2\)SO\(_4\), concentrated, and the resulting oil was purified by reverse-phase HPLC chromatography 10%[CH\(_3\)CN/0.1%TFA]—90%[CH\(_3\)CN/0.1%TFA] to yield a brown oil (84% yield): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.60 (1H, bs), 8.52 (1H, d, \(J = 4.1\) Hz), 7.73 (1H, d, \(J = 7.7\) Hz), 7.28 (3H,
m), 7.01 (2H, d, J = 8.3 Hz), 6.95 (1H, t, J = 7.3 Hz), 6.33 (1H, s), 5.05 (2H, s), 4.14 (2H, t, J = 6.2 Hz), 3.94 (1H, m), 3.93 (2H, s), 2.27 (1H, m), 2.13 (1H, m), 1.96 (1H, m), 1.76 (1H, m), 1.66 (1H, bs); LC/MS (>98%), R_t = 0.382, m/z = 335.2 [M+H].

REFERENCES

SI addendum: Route to prepare ketone precursor 2.1.

![Chemical Structure](image)

a. Step 1: Preparation of Ethyl 1-(4-ethoxy-4-oxobutyl)-3-(phenoxyethyl)-1H-pyrazole-5-carboxylate, A.

![Chemical Structure](image)

To a solution of ethyl 3-(phenoxyethyl)-1H-pyrazole-5-carboxylate (1g, 4.06 mmol, 1 equiv) in DMF (40 mL, 0.1M) was added K₂CO₃ (0.84 g, 6.99 mmol, 1.5 equiv) and ethyl 4-bromobutyrate (0.87 mL, 6.09 mmol, 1.5 equiv). The reaction was stirred for 14 h at rt, after which the starting material was observed to be consumed by TLC and LC/MS. Two products are observed: the less polar desired regioisomer A (TLC: rᵣ = 0.5, 1:1 Hex/EtOAc; LC/MS: rᵣ = 0.811 min) and the more polar, undesired regioisomer A’ (TLC: rᵣ = 0.4, 1:1 Hex/EtOAc; LC/MS: rᵣ = 0.760). The reaction mixture was diluted with EtOAc (125 mL) and washed with H₂O (3 x 50 mL). The aqueous layer was back extracted with EtOAc (1 x 50 mL), and the organic layers were combined, dried with MgSO₄, and concentrated. The mixture of regioisomers was purified by silica gel column chromatography eluting with Hex/EtOAc (100:0 Hex/EtOAc to 60:40 Hex/EtOAc) with the desired regioisomer A eluting at 15% Hex/EtOAc (A’...
eluting at 30% Hex/EtOAc) to yield 1.17 g (80% yield) of a clear oil: 1H NMR (400 MHz, CDCl$_3$): δ 7.28 (m, 2H), 6.98 (m, 3H), 6.94 (s, 1H), 5.07 (s, 2H), 4.62 (t, 2H, J = 6.8 Hz), 4.32 (q, 2H, J = 7.1 Hz), 4.12 (q, 2H, J = 7.2 Hz), 2.32 (t, 2H, J = 7.3 Hz), 2.19 (p, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz), 1.25 (t, 3H, J = 7.2 Hz). LC/MS (215/254 nm): single peak, $m/z = 361.3$ ([M+H]).

b. Step 2: Preparation of Ethyl 4-oxo-2-(phenoxy methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-5-carboxylate, B.

To a solution of ethyl 1-(4-ethoxy-4-oxobutyl)-3-(phenoxy methyl)-1H-pyrazole-5-carboxylate, A, (1.15 g, 3.19 mmol, 1 equiv) in toluene (31 mL, 0.1 M) was added KOtBu (0.43 g, 3.8 mmol, 1.2 equiv). The reaction was stirred at rt for 15 minutes, and then warmed to reflux for 1 h, upon which the starting material was consumed by TLC. The solution was cooled to room temperature and diluted with CH$_2$Cl$_2$ (25 mL) and H$_2$O (25 mL). The aqueous layer was acidified with dilute aqueous HCl to neutral pH, and then extracted with CH$_2$Cl$_2$ (3 x 25 mL). The organic layer was dried with MgSO$_4$, concentrated, and purified by silica gel column eluting with Hex/EtOAc (100:0 Hex/EtOAc to 60:40 Hex/EtOAc). The product B eluted at 30% Hex/EtOAc to yield 0.806 g (81% yield) of clear oil which solidifies to a white solid under high vacuum.

Note: Product exists as 1:2 mixture of keto/enol tautomers as evidenced by 1H NMR.

Keto tautomer: 1H NMR (400 MHz, CDCl$_3$): δ 7.29 (m, 2H), 7.00 (m, 3H), 6.72 (s, 1H), 5.10 (s, 2H), 4.53 (m, 1H), 4.40 (m, 1H), 4.26 (m, 2H), 3.64 (m, 1H), 2.74 (m, 1H), 2.56 (m, 1H), 1.29 (t, 3H, J = 7.1 Hz). Enol tautomer: 1H NMR (400 MHz, CDCl$_3$): δ 7.29 (m, 2H), 7.00 (m, 3H), 6.72 (s, 1H), 5.09 (s, 2H), 4.30 (q, 2H, J = 7.1 Hz), 4.23 (t, 2H, J = 7.4 Hz), 2.87 (t, 2H, J = 7.4 Hz), 1.35 (t, 3H, J = 7.1 Hz). Two peaks are also present in the LC/MS with both corresponding to the correct mass. LC/MS (215/254 nm): two peaks, $R_t = 0.697$ min, 0.800, $m/z = 315.1$ ([M+H]).

Ethyl 4-oxo-2-(phenoxyethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-5-carboxylate, B (0.6 g, 2.39 mmol, 1 equiv) was dissolved in DMSO (19 mL, 0.1M), and LiCl (0.38 g, 11.3 mmol, 4.75 equiv) and H₂O (0.14 mL, 9.6 mmol, 4 equiv) was added. The solution was heated to 115 °C for 12 h, upon which the starting material was observed to be consumed by TLC and LC/MS. The reaction mixture was diluted with EtOAc (100 mL) and washed with H₂O (3 x 50 mL). The aqueous layer was back extracted with EtOAc (1 x 50 mL), and the organic layers were combined, dried with MgSO₄, and concentrated. The crude product was purified by silica gel column chromatography eluting with Hex/EtOAc (100:0 Hex/EtOAc to 50:50 Hex/EtOAC) with the desired product 2.1 eluting at 40% Hex/EtOAc to yield 0.44 g (77% yield) of a white solid: ¹H NMR (400 MHz, CDCl₃): δ 7.28 (m, 2H), 6.98 (m, 3H), 6.93 (s, 1H), 5.09 (s, 2H), 4.38 (t, 2H, J = 8.5 Hz), 2.68 (t, 2H, J = 6.7 Hz), 2.37 (p, 2H, J = 5.9 Hz). LC/MS (215/254 nm): single peak, Rₜ = 0.617 min, m/z = 243.1 ([M+H]).