Title Page

Article title: Conjugation and deconjugation reactions within the feto-placental compartment in a sheep model: a key factor determining bisphenol A fetal exposure

Authors: Tanguy Corbel, Elisabeth Perdu, Véronique Gayrard, Sylvie Puel, Marlène Z. Lacroix, Catherine Viguié, Pierre-Louis Toutain, Daniel Zalko, Nicole Picard-Hagen

Affiliation:

Institut National de Recherche Agronomique, Unité Mixte de Recherche 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France: TC, EP, VG, SP, MZL, CV, PLT, DZ, NPH

Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Ecole d’Ingénieur de Purpan, Université Paul Sabatier, F-31076 Toulouse, France: TC, EP, VG, SP, MZL, CV, PLT, DZ, NPH
Running Title Page

Running title: Feto-placental Bisphenol A conjugation/deconjugation reactions

Corresponding author:

Nicole Picard-Hagen
Ecole Nationale Vétérinaire de Toulouse
23, chemin des Capelles
31076 Toulouse cedex 3
France
Tel : +33(0)561193861
Fax : +33(0)561193917
n.hagen-picard@envt.fr

Number of text pages: 40
Number of tables: 2
Number of figures: 4
Number of references: 53
Number of words in:
Abstract: 238
Introduction: 589
Discussion: 1623

Abbreviations: BPA, Bisphenol A; BPA-G, Bisphenol A-Glucuronide; BPA-S, Bisphenol A-Sulfate; UGT, UDP-glucuronosyltransferase; SULT, Sulphotransferase; UDPGA, UDP-
glucuronic acid; HPLC, High-performance liquid chromatography; UPLC, Ultra-performance liquid chromatography; MS, Mass spectrometry; LOQ, Limit of quantification.
Abstract

The widespread human exposure to Bisphenol A (BPA), an endocrine disruptor targeting developmental processes, underlines the need to better understand the mechanisms of fetal exposure. Animal studies have shown that at a late stage of pregnancy, BPA is efficiently conjugated by the feto-placental unit, mainly into BPA-Glucuronide (BPA-G), which remains trapped within the feto-placental unit. Fetal exposure to BPA-G might in turn contribute to in situ exposure to bioactive BPA, following its deconjugation into parent BPA at the level of fetal sensitive tissues. The objectives of our study were: (1) to characterize the BPA glucurono- and sulfo-conjugation capabilities of the ovine fetal liver at different developmental stages, (2) to compare hepatic conjugation activities in human and sheep and, (3) to evaluate the extent of BPA conjugation and deconjugation processes in placenta and fetal gonads. At an early stage of pregnancy, and despite functional sulfoconjugation activity, ovine fetuses expressed low hepatic BPA conjugation capabilities, suggesting that this stage of development represents a critical window in terms of BPA exposure. Conversely, the late ovine fetus expressed an efficient detoxification system that metabolized BPA into BPA-G. Hepatic glucuronidation activities were quantitatively similar in adult sheep and humans. In placenta, BPA conjugation and BPA-G deconjugation activities were relatively balanced, whereas BPA-G hydrolysis was systematically higher than BPA conjugation in gonads. The possible reactivation of BPA-G into BPA could contribute to an increased exposure of fetal sensitive tissues to bioactive BPA in situ.
Introduction

Bisphenol A (BPA) is a xenoestrogen widely used as a monomer in the manufacture of epoxy resins and polycarbonate plastics, which contribute to the almost ubiquitous human exposure to BPA across a lifespan (Vandenberg et al., 2010). Much of the concern regarding BPA safety has arisen from reported adverse effects of BPA such as the impairment of reproductive development, as well as effects on energy metabolism and cognitive development, even at low doses, when exposure occurs during the perinatal period (Vandenberg et al., 2013).

In adult humans, BPA is almost completely eliminated in urine (Volkel et al., 2002) after an extensive hepatic first pass conjugation into BPA-Glucuronide (BPA-G) by UDP-glucuronosyltransferases (UGT) and to a lesser extent into BPA-Sulfate (BPA-S), by sulfotransferases (SULT). These reactions are usually considered as mechanisms of detoxification, since these metabolites are not estrogenic (Nakagawa and Tayama, 2000; Matthews et al., 2001). In humans, in the feto-placental compartment, highly variable BPA and BPA-G levels have been reported in cord blood, placenta and amniotic fluid (Vandenberg et al., 2010; Gerona et al., 2013). However, these biomonitoring data remained limited and were therefore unlikely to reflect fetal exposure throughout pregnancy. Thus, many uncertainties remain regarding the actual fetal internal exposure to BPA in humans, during this critical period of pregnancy, which consequently prevents a sound evaluation of human health risks, based on the effects observed in animal studies and on the determination of BPA fetal internal exposure in animal models.

Previous BPA toxicokinetic investigations have shown the preponderance of the glucuroconjugated form of BPA in the plasma of fetal monkeys (Patterson et al., 2013) and sheep (Corbel et al., 2013; Viguie et al., 2013), following maternal exposure to BPA. It has been established from both the pregnant ewe (Corbel et al., 2013) and the isolated perfused
human placenta (Corbel et al., 2014) models that placental permeability toward BPA-G is very limited. Such observations suggest that towards the end of gestation, the BPA-G present in fetal blood may originate from fetal phase II metabolism rather than from a maternal supply.

It is noteworthy that the results obtained in near term fetuses are not necessarily representative of BPA fetal exposure at earlier stages of pregnancy, including during the most critical period of development, which are characterized by a weak expression of drug-metabolizing systems (Domoradzki et al., 2004). Moreover, conjugated metabolites can be regenerated back to the corresponding parent compounds by β-glucuronidases and sulfatases, which are expressed in many tissues (Warren and French, 1965; Sperker et al., 1997). Accordingly, it has been shown that 4.4% of the BPA-G dose passed through the placental membrane is converted back to parent BPA in the rat fetal compartment (Nishikawa et al., 2010). Thus, high levels of BPA metabolites in the fetal unit raise the question of the deleterious consequences of in situ reactivation of BPA metabolites through deconjugation at the level of fetal tissues. Together, these data highlight the urgent need for models relevant to the human situation, in order to be able to investigate the dynamics of the balance between BPA conjugation and back deconjugation throughout the whole gestation period.

In this context, the present study aimed at 1) characterizing in vitro fetal hepatic BPA conjugation activities at different pregnancy stages in sheep, 2) comparing in vitro hepatic conjugation activities between adult humans and sheep to ascertain the validity of the sheep model and, 3) evaluating ex vivo the BPA conjugation and back deconjugation in the placenta and fetal gonads, that are target organs susceptible to estrogenic interferences, at different developmental stages.
Materials and Methods

Animals and tissue collection

All animal procedures were carried out in accordance with accepted standards of humane animal care under agreement number 31-1155545 from the French Ministry of Agriculture and were approved by the Midi-Pyrénées ethics committee (ref: MP/01/15/03/12).

Three non-pregnant and 12 pregnant Lacaune ewes (54 to 57 days of gestation, corresponding to an early-stage fetus, n=8 and 120 to 135 days of gestation corresponding to near-term fetus, n=4) were used. Ewes were sacrificed by electrical stunning immediately followed by exsanguination. Fetuses were rapidly extracted from the uterus (6 males and 8 females, and 3 males and 3 females, for the 54-57 days and 120-135 days of pregnancy stages, respectively). Fetal gonads and placental cotyledons were immediately collected and chilled in saline solution at 4°C and were incubated within one hour after collection. Ovaries were also collected from the 3 non-pregnant ewes and from 3 adult ewes at 120-135 days of pregnancy.

For early-stage fetuses, fetal livers were collected, immediately frozen in liquid nitrogen and stored at -80°C. The livers from 6 near-term fetuses and from 3 non-pregnant ewes were immediately perfused for 5 minutes after their collection using a saline solution at 4°C. A fragment of about 10 grams of the right lobe was frozen in liquid nitrogen and stored at -80°C.

Characterization of BPA conjugation/deconjugation activities in hepatic microsomes

Unless otherwise specified, all chemicals were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France).

Preparation of hepatic sub-cellular fractions
Because of the small size of the organs (around 2g, (Bazer et al., 2012)), the livers from 6 male and 6 female early-stage fetuses were pooled as follows: 3 pools of 2 males and 3 pools of 2 females. Livers from the 6 near-term fetuses (3 males, 3 females) and from the 3 non-pregnant ewes were processed individually. Hepatic sub-cellular fractions were prepared by differential centrifugation to obtain microsomal and cytosolic fractions as previously described (Zalko et al., 2006), within one month after collection. All fractions were then stored in sodium phosphate buffer (0.1 M), pH 7.4, containing 20 % glycerol, at -80°C until assays.

Human microsomal fractions were obtained from pools of 10 female donors and purchased from TEBU (Le Perray-en-Yvelines, France), BD Gentest™ (Erembodegem, Belgium) and Life technologies™ (Saint-Aubin, France). Cytosolic fractions were purchased from TEBU (pools of 10 female donors), Life technologies™ and Sigma-Aldrich (Saint-Quentin Fallavier, France) (pools of 10 mixed gender donors).

In vitro incubations

The protein content of the sub-cellular fractions was determined with bovine serum albumin as a standard (Bradford, 1976). The linearity of the UGT reaction with time was investigated using incubation times of 10, 20 and 30 min, with a liver microsomal protein concentration of 1 mg.ml⁻¹ and the linearity of the SULT reaction with time was investigated using incubation times of 10, 20, 30 and 60 min, with a liver cytosolic protein concentration of 0.4 mg.ml⁻¹. All assays were optimized with respect to substrate concentration range. All pre-incubations and incubations were carried out in glass vials containing 0.5 M Tris-Maleate buffer (pH 7.4), 10 mM MgCl₂ at 37°C under shaking. BPA (purity ≥99 %) and BPA-G and BPA-S (purity ≥95 %) stock solutions were dissolved in ethanol and were diluted extemporaneously in
incubation buffer. The final concentration of ethanol in the incubation media was 0.5 % for BPA, 0.8 % for BPA-G and 0.6 % for BPA-S.

Glucuronidation assays:

In vitro glucuronidation of BPA was evaluated by incubating 0.5 mg of hepatic microsomal proteins for 20 min with BPA at different concentrations (2.5, 5, 10, 50, 100 and 200 µM), in a volume of 0.5 ml buffer containing 1 mM UDP-glucuronic acid (UDPGA). The reaction was stopped by adding 1 ml of ice-cold acetonitrile and the samples were stored at -20°C until assayed. Blank samples without UDPGA or without microsomal proteins were used as controls.

Sulfoconjugation assays: In vitro sulfoconjugation activity was evaluated using cytosolic fractions. For each assay, 0.2 mg of cytosolic protein was pre-incubated for 30 min with 5 mM ATP and 2 mM Na₂SO₄ in a volume of 0.5 ml of incubation buffer. The assay conditions for the generation of PAPS in vitro, by pre-incubation of cytosolic proteins at 37°C for 30 min with inorganic sulfate (2 mM) and ATP (5 mM) in presence of Mg²⁺ (10 mM), were adapted from the method optimized by Nemuto et al. (1978), by Wong et al. (1991) and Wong and Wong 1996 (Nemoto et al., 1978; Wong et al., 1991; Wong and Wong, 1996). In a preliminary experiment, we showed that the rate of BPA-S formation was similar in presence of a PAPS generation system or of 240 µM PAPS, indicating that this pre-incubation would generate a sufficient amount of PAPS to optimize BPA sulfoconjugation. BPA at different concentrations (2.5, 5, 10, 50, 100, 200, 500 and 1000 µM) was then added to the incubation medium. The reaction was stopped after 20 min of incubation by adding 1 ml of ice-cold acetonitrile and the samples were stored at -20°C until assayed. Blank samples without ATP and Na₂SO₄ or without cytosolic proteins were used as controls.
Deconjugation assays: Hepatic deconjugation activity was evaluated on ovine microsomal liver fractions from one pool of early-stage fetuses, one near-term fetus and one adult ewe. 0.5 mg of microsomal protein were incubated for 20 min with BPA-G or BPA-S at 3 different concentrations (2.5, 50 and 100 µM), without cofactors, under the same experimental conditions as those of the conjugation assay. The reaction was stopped by adding 1 ml of ice-cold acetonitrile and the samples were stored at -20°C until assayed.

Analytical procedure

BPA and its metabolites concentrations were determined after extraction with acetonitrile using a validated UPLC/MS/MS, adapted for incubation media from a method previously described (Lacroix et al., 2011). The calibration curves ranged from 4.4 nM to 219 µM, 24.8 nM to 248 µM and 32.5 nM to 325 µM, for BPA, BPA-G and BPA-S, respectively. The mean intra- and inter-day coefficients of variation for 3 concentrations of BPA, BPA-G and BPA-S, were lower than 15%, and the limits of quantification (LOQ) were validated at 4.4 nM, 24.8 nM and 32.5 nM, respectively.

Determination of Michaelis-Menten parameters

All data were computed using WinNonlin software (Version 5.3, Pharsight Corporation) and the Michaelis-Menten parameters, V_{max} and K_m, were determined by nonlinear regression analysis using the following model:
where V_{max} was the maximum reaction velocity expressed in pmol.mg of microsomal or cytosolic protein$^{-1}$.min$^{-1}$, K_m was the Michaelis constant which corresponds to the BPA micromolar concentration at half V_{max} and $[S]$ was the micromolar substrate concentration.

For the incubations of hepatic sub-cellular pool fractions of early-stage fetuses, several concentrations of BPA-G were below the LOQ. Consequently, the sparse data option of WinNonlin was used for each sex group, allowing a computation of the different standard errors (S.E.) associated with the estimated parameters.

Hepatic intrinsic clearance

From the Michaelis-Menten parameters determined both for the glucurono- and sulfoconjugation reactions, the hepatic intrinsic clearance (Cl_{int}) was calculated with the following equation, expressed in ml.min$^{-1}$.g$^{-1}$ of liver:

$$\text{Cl}_{\text{int}} = \frac{V_{\text{max}}}{K_m} \times A$$

Equation 2

where A was the amount of protein (microsomal or cytosolic for glucuronidation and sulfoconjugation, respectively) per gram of liver. In sheep, the amount of protein per gram of liver was determined by the Bradford method (Bradford, 1976). For human sub-cellular fractions, the values of the amounts of microsomal protein and cytosolic protein per gram of liver were 45 mg.g$^{-1}$ (Riley et al., 2005) and 80.7 mg.g$^{-1}$ (Cubitt et al., 2011), respectively.

Correction for non-specific protein binding

Glucuronidation and sulfoconjugation BPA intrinsic clearances were corrected for non-specific protein binding in the microsomal or cytosolic incubation medium (f_{inc}) using the following equation:
The free fraction of BPA in the microsomal incubation medium (fu_{inc}) was estimated with the following equation (Austin et al., 2002):

\[
f_{\text{u,inc}} = \frac{1}{C \times 10^{0.56 \log P/D - 1.41} + 1}
\]

where \(C \) was the microsomal protein concentration in the incubation medium (mg.ml\(^{-1}\)) and \(\log P/D \), corresponding to \(\log K_{ow} \) for a basic compound, was 3.4 for BPA (Austin et al., 2002; Mazur et al., 2010).

To verify the predicted \(f_{\text{u,inc}} \) determined by Equation 4 in our experimental conditions, \(f_{\text{u,inc}} \) was determined experimentally in duplicate by equilibrium dialysis over 20 min at 37°C, with a cellulose membrane with a molecular weight cut-off of 5 kDa as described previously (Corbel et al., 2013). The binding of BPA to microsomal proteins was determined at protein concentrations of 1 mg.ml\(^{-1}\) for only one adult sheep and for three BPA concentrations (1, 10 and 100 µM).

Since no equation was described to estimate the free fraction of BPA in the cytosolic incubation medium, the binding of BPA to cytosolic proteins was determined for hepatic cytosolic fractions at a protein concentration of 0.4 mg.ml\(^{-1}\) from one pool of early-stage fetuses, one near-term fetus, one adult sheep and one human pool and for two concentrations of BPA (10 and 200 µM).

BPA concentrations in the incubation medium and dialyzed sub-cellular fraction sample compartments were measured by UPLC/MS/MS, as described above. The free fraction of
BPA (fu_{inc}) was determined as the ratio of the BPA concentration measured in the incubation medium compartment, to that in the dialysed compartment containing the microsomal or the cytosolic fractions.

In vitro-in vivo extrapolation for hepatic clearance

To understand better the species- and development stage-dependent variation in BPA hepatic pharmacokinetics, the unbound intrinsic clearance (Cl_{int,u}) was incorporated into the well-stirred model (Ito and Houston, 2004) to calculate the hepatic clearance (Cl_H) for ovine near-term fetuses and for adult sheep and humans, as shown in the following equation derived from Miners et al. (Miners et al., 2006):

\[
Cl_H = \frac{Q_H \times fu \times (B \times Cl_{int,u})}{Q_H + fu \times (B \times Cl_{int,u})}
\]

where \(Q_H \) was the liver blood flow [75, 50 and 23 ml.kg^{-1}.min^{-1} in near-term fetuses (Rudolph, 1985), adult ewes (Boxenbaum, 1980) and humans (Arms and Travis, 1988), respectively], \(fu \) was the free fraction of BPA in blood [11%, 7% and 5% in near-term fetuses, adult ewes (Corbel et al., 2013) and humans (Csanady et al., 2002), respectively] and \(B \) was the ratio between the liver weight and the body weight [12 g.kg^{-1} in sheep (Boxenbaum, 1980) and 26 g.kg^{-1} in humans (Arms and Travis, 1988)].

BPA conjugation/deconjugation reactions in target tissues

Biochemical synthesis of [3H]-BPA-Glucuronide and [3H]-BPA-Sulfate

Tritiated metabolites of BPA, not available commercially, were synthesized from [3H]-BPA (Moravek Biochemicals, CA, USA; radio-purity: >97%, specific activity: 185 GBq.mmol^{-1}) as previously described (Bursztyka et al., 2008).
[^3]H-BPA-Glucuronide ([^3]H-BPA-G) was produced by incubating 2 mg of guinea pig liver microsomal protein with [^3]H-BPA (1133 kBq) fortified with 40 nmol BPA and 2 mM UDP-glucuronic acid in 1 ml 0.5 M Tris buffer (pH 7.4) containing 10 mM MgCl₂ and 0.1% Triton X-100 for 2 hours at 37°C. After the addition of 3 volumes of methanol and a 10 min centrifugation at 8000g, the supernatant was collected and [^3]H-BPA-G synthesis was checked using the radio-HPLC system described below. [^3]H-BPA-G was collected using the same HPLC system coupled to a Gilson model 201/202 fraction collector. [^3]H-BPA-G was purified using a 0.5 g Chromabond C18 glass cartridge (Macherey Nagel) as described previously (Cabaton et al., 2008). The [^3]H-BPA-G structure, with a specific activity of 28.3 GBq.mmol⁻¹, was confirmed by mass spectrometry.

[^3]H-BPA-Sulfate ([^3]H-BPA-S) was produced by incubating 2 mg of guinea pig liver cytosolic protein with 40 nmol [^3]H-BPA (1133 kBq) and 2 mM PAPS in a final volume of 1 ml 0.5 M Tris buffer (pH 7.4) containing 10 mM MgCl₂ for 2 hours at 37°C. After protein precipitation using 3 volumes of methanol and centrifugation, the supernatant was evaporated. [^3]H-BPA-S production was checked by radio-HPLC. [^3]H-BPA-S was collected and purified using a 0.5 g Chromabond C18 glass cartridge (Macherey Nagel) as described elsewhere (Cabaton et al., 2008). The [^3]H-BPA-S structure, with a specific activity of 28.3 GBq.mmol⁻¹, was confirmed by mass spectrometry.

About 5 mg of fetal ovaries or fetal testes at an early stage of pregnancy (54-57 days, n=3) and about 50 mg of fetal testes and fetal ovaries from 120-135 days old fetuses (n=3), placental cotyledons and maternal ovaries (n=3) were incubated in 12-well plastic culture plates containing 100 pmol [^3]H-BPA (2.83 kBq) in 1 ml DMEM, or 100 pmol [^3]H-BPA-G...
(2.83 kBq) in 1 ml sodium chloride 0.9 %, or in 1 ml sodium acetate buffer 0.2 M pH 4.5, or 100 pmol \[^{3}H\]-BPA-S (2.83 kBq) in 1 ml sodium chloride 0.9%.

For the 3 molecules, control incubations were carried out in the same conditions with 100 pmol \[^{3}H\]-BPA, \[^{3}H\]-BPA-G or \[^{3}H\]-BPA-S (2.83 kBq) without tissues. All incubations were maintained for 8 hours at 37°C under 90 rpm shaking and an O\(_2\)/CO\(_2\) 95%/5% atmosphere. At the end of the incubations, media and tissues were collected separately in glass vials. Tissues were extracted in 1 ml of ethanol. All samples were kept at -20°C until analysis.

Analytical procedure

Radioactivity recovery and BPA and metabolite quantifications were performed with the analytical procedures previously described (Bursztynka et al., 2008).

The radioactivity in each incubation medium and tissue was measured from aliquots (10 µl) by liquid scintillation counting in a Packard Tricarb 4430 counter with Ultima Gold (Packard Instruments Co., Meriden, CT) as the scintillation cocktail. Aliquots of each incubation medium were analyzed directly by radio-HPLC. Ethanolic extracts from tissues were evaporated before radio-HPLC analysis.

The HPLC system used to analyze BPA metabolites consisted of a Spectra Physics system (P1000) coupled to Flo-One A500 detector, with Flo-scint II as scintillation cocktail (Packard Instruments Co., Meriden, CT) for online radioactivity detection. The column was a Zorbax C18 column (250 × 4.6 mm, 5 µm) (Interchim, Montluçon, France) coupled to a Kromasil C18 guard column (18 × 4.6 mm, 5 µm). The mobile phases consisted of ammonium acetate buffer (20 mM, pH 3.5) and acetonitrile 95:5 v/v and 10:90 v/v in A and B, respectively. The flow rate and temperature were set at 1 ml.min\(^{-1}\) and 35°C. The gradient used was 0–4 min 100% A; 4–6 min linear gradient from 100% A to A:B 85:15 v/v; 6–16 min A:B 85:15 v/v; 16–18 min linear gradient from 15% B to 25% B; 18–28 min A:B 75:25 v/v; 28–30 min linear
gradient from 25% B to 30% B; 30–37 min A:B 70:30 v/v; 37–39 min linear gradient from 30% B to 70% B; 39–45 min A:B 30:70 v/v.

BPA and metabolites were identified by comparison of radio-HPLC retention times with those of authentic standards before and after enzymatic hydrolysis. Metabolites were quantified by integrating the area under the detected radioactive peaks.

Statistical analysis

Data were expressed as mean (± S.D.), unless otherwise specified. Statistical analyses were carried out using Systat 12.0 software (SPSS, Inc, CA, USA). For the early-stage fetuses (only for sulfoconjugation) and the 120-135 days old fetuses, the formation rate of BPA metabolites by sub-cellular hepatic fractions was analyzed by a two-way ANOVA with substrate concentration, sex and their interaction as fixed-effect factors, and individuals were nested within the sex group as a random-effect factor. As no gender effect was observed, male and female fetuses were grouped together. The effect of the developmental stage (early-stage versus near-term fetuses only for sulfoconjugation and near-term fetus versus adult ewes on both glucurono- and sulfoconjugation) and the effect of species (human vs. ovine) on the liver metabolic parameters (\(V_{\text{max}} \), \(K_m \) and intrinsic clearance) were evaluated by the Student \(t \) test or by Aspin-Welch test in the case of unequal variance. For each analysis, \(p \) values were corrected by the number of comparisons.
Results

Characterization of BPA conjugation /deconjugation activities in hepatic microsomes

The mean (± S.D.) amounts of microsomal proteins were 5.15 ± 1.24 and 6.80 ± 1.95 mg.g⁻¹ in early-stage and near-term fetal livers, respectively, and were about 2-fold higher in adult livers (12.65 ± 2.12 mg.g⁻¹, t test p<0.05). The mean (± S.D.) amounts of cytosolic proteins were 10.78 ± 1.49, 12.45 ± 4.37 and 16.28 ± 1.65 mg.g⁻¹ in early-stage, near-term fetal livers and in adult livers, respectively. The average body weight of the near-term fetuses was 2.93 ± 0.86 kg and their liver weight was 89.2 ± 23.8 g.

Correction for non-specific protein binding

The experimental BPA free fraction (fuinc) in the microsomal incubation medium under all conditions was similar to the predicted value (Equation 4) (mean ± S.D.: 0.26 ± 0.04 versus 0.24). The experimental fuinc in cytosol was close to 1 (mean 0.97±0.10, ranging from 0.84 to 1.07) under all conditions. Thus, the non-specific protein binding correction in the cytosol was disregarded to calculate Clint,u.

Glucuronidation of BPA

The formation of BPA-G by hepatic microsomal fractions of human, adult ewes and early- and late-ovine fetuses, expressed as a function of BPA concentration, followed Michaelis-Menten kinetics (Figure 1). BPA-G formation showed enzyme saturation for BPA concentrations around 10 μM and 50 μM, in ovine fetuses at early and late stages of pregnancy, respectively and around 100 μM in adult ewes and humans (Figure 1). In near-term ovine fetuses, the kinetics of BPA-G formation did not differ according to gender (ANOVA, N.S.).
Table 1 presents the mean ± S.D. values for the Michaelis-Menten parameters (V\text{max} and \text{Km}) and the hepatic unbound intrinsic clearance (Cl\text{int,u}) of BPA glucuronidation in humans, in ovine adults and in early- and late-stage ovine fetuses. The mean V\text{max} of glucuronidation increased throughout the development: it was 512-fold lower in early-stage fetuses and 13-fold lower in near-term fetuses (p=0.012) than in adult sheep. The mean V\text{max} of BPA glucuronidation was significantly higher for incubations carried out with adult ovine hepatic microsomal fractions, compared to human hepatic microsomes (6086 ± 862 versus 2770 ± 250 pmol.min\(^{-1}\).mg\(^{-1}\), p=0.006).

The Michaelis-Menten constant (\text{Km}) of BPA glucuronidation increased with the developmental stage in sheep: it was about 20-fold and 10-fold lower (p=0.03) for early (4.06 \mu M) and late (9.59 \mu M) stages of pregnancy, respectively, compared to adults (82.0 \mu M). In adults, the \text{Km} for glucuronidation was not significantly different between ewes and humans (59.6 \mu M, N.S.).

In sheep, the hepatic unbound intrinsic clearance of BPA glucuronidation was about 65-fold and 2-fold lower for early (0.060 ml.min\(^{-1}\).g\(^{-1}\) of liver) and late (1.73 ml.min\(^{-1}\).g\(^{-1}\) of liver, p=0.04) stages of pregnancy, respectively, compared to adults (3.93 ml.min\(^{-1}\).g\(^{-1}\) of liver). The human unbound intrinsic clearance (9.00 ml.min\(^{-1}\).g\(^{-1}\) of liver) was in the same range as observed for adult sheep, although it tended to be higher (p=0.06).

Sulfoconjugation of BPA

The formation of BPA-S by hepatic cytosolic fractions of humans adult ewes and early- and late-ovine fetuses, expressed as a function of BPA concentration, followed Michaelis-Menten kinetics (Figure 2). BPA-S formation showed enzyme saturation for a BPA concentration around 50 \mu M for ovine fetuses, regardless of the stage of pregnancy, and for 100 and 500 \mu M, for humans and adult ewes, respectively (the latter concentration is not shown in Figure
2). In ovine, hepatic sulfoconjugation plots clearly suggest similar sulfoconjugation activities, whatever the stage of pregnancy. By contrast, the sulfoconjugation rate calculated for the 3 human cytosolic fraction pools showed considerable variation, and was lower than observed for adult sheep. For the early- and late-stage ovine fetuses, the kinetics of BPA-S formation did not differ according to the sex (ANOVA, N.S.).

Table 2 gives the mean (± S.D.) values of Michaelis-Menten parameters (V_{max} and K_m), for BPA-S formation, and for the hepatic unbound intrinsic clearance of BPA sulfoconjugation. The overall mean V_{max} of hepatic sulfoconjugation for early-stage and late-stage fetuses, respectively, were similar (78.3 ± 1.32 versus 104 ± 16.2 pmol.min$^{-1}$.mg$^{-1}$ of cytosolic proteins, N.S.), but were lower than that calculated for ewes (655 ± 309 pmol.min$^{-1}$.mg$^{-1}$ of cytosolic proteins). Compared to adult sheep, the mean human sulfoconjugation V_{max} (7.03 ± 4.37 pmol.min$^{-1}$.mg$^{-1}$ of cytosolic proteins) was very low.

The overall mean K_m for sulfoconjugation were similar between early- and late-stage fetuses (15.67 ± 8.11 versus 7.51 ± 1.48 µM, N.S.) and were 37 and 77-fold lower than in the adult sheep (575 ± 267 µM), respectively. In the adult, the K_m for sulfoconjugation was 14-fold lower when using human cytosols (40.2 ± 6.16 µM), than when using adult sheep cytosols.

In sheep, the hepatic unbound intrinsic clearance of BPA sulfoconjugation was 3-fold lower for early-stage fetuses than it was for near-term fetuses (0.241 ± 0.065 versus 0.688 ± 0.240 ml.min$^{-1}$.g$^{-1}$ of liver, $p=0.015$). The adult ewes hepatic unbound intrinsic clearance of BPA sulfoconjugation was 8-fold lower than that of fetuses at a late stage of pregnancy ($p=0.007$) (Table 2). The hepatic unbound intrinsic clearance of sulfoconjugation was in the same range in humans and in ewes (0.015 ± 0.012 versus 0.081 ± 0.034 ml.min$^{-1}$.g$^{-1}$ of liver, N.S.).

In sheep, the ratio between the unbound intrinsic clearance of BPA glucuronidation and BPA sulfoconjugation increased with the stage of pregnancy, from 0.24 (early stage), to 2.5 (late...
stage), and reached 48 in adult ewes. In adult humans, BPA hepatic glucuronidation was highly predominant, with a ratio of about 600.

Prediction of in vivo hepatic clearance from the in vitro data on BPA-G and BPA-S formation by hepatic sub-cellular fractions

The glucuronidation hepatic clearance Cl_H (Table 1) was of the same order of magnitude in ovine near-term fetuses and in adult sheep (5.58 ± 3.68 versus 3.14 ± 0.43 ml.kg$^{-1}$.min$^{-1}$, N.S.). However, it was 2-fold higher in humans, compared to adult sheep (7.67 ± 1.35 versus 3.14 ± 0.43 ml.kg$^{-1}$.min$^{-1}$; $p=0.01$).

The sulfoconjugation hepatic clearance (Table 2) was very low in adult sheep and humans (0.070 ± 0.034 versus 0.020 ± 0.015 ml.kg$^{-1}$.min$^{-1}$) and accounted for only 2.2% and 0.26% of the overall conjugation hepatic clearance, respectively. The near-term fetal sulfoconjugation hepatic clearance was 33-fold higher than that in adult sheep (2.34 ± 0.97 ml.kg$^{-1}$.min$^{-1}$; $p=0.001$) and was as high as 30% of the conjugation hepatic clearance.

Deconjugation of BPA metabolites

The deconjugation assays (glucuronidase and sulfatase activities) carried out with ovine hepatic microsomal fractions, under the same conditions of incubation as the conjugation assays, but without cofactors, showed a very low percentage of hydrolysis of BPA-G and BPA-S into BPA: below 1.5% and 2.5% for the sulfatase and the glucuronidase activities, respectively, whatever the concentration of the substrate and the stage of development.

Since glucuronidation of BPA and hydrolysis of BPA-G were measured under the same incubation conditions, resulting in the maximal glucuronidation and hydrolysis rates, the fraction of BPA-G formed in presence of 100 µM of BPA (with UDPGA) and the fraction of BPA-G (100 µM) hydrolyzed were compared. In early-stage fetuses, the percentage of BPA-G hydrolyzed (0.72%) was very low, even if it was three-fold higher than the rate of
BPA-G formed (0.24%). In ovine near-term fetuses and in adult sheep, the rate of hydrolysis of BPA-G was low, even negligible, compared with the percentage of glucuronidation (2.38 vs 12.7 % in near-term fetuses and 1.15 vs 72.8 % in adult sheep).

BPA conjugation/deconjugation reactions in target tissues

Overall radioactivity recovery for incubation media and tissues (fetal gonads, adult ovaries and placenta), after 8 hours of incubation with 100 pmol [^3H]-BPA, [^3H]-BPA-G or [^3H]-BPA-S (2.83 kBq), was 105 ± 15 %. The fraction of the radioactivity recovered from incubation media was 65 ± 18 % for [^3H]-BPA (DMEM), 57 ± 23 % for [^3H]-BPA-G (sodium acetate buffer), 80 ± 15 % for [^3H]-BPA-G (saline solution) and 74 ± 16 % for [^3H]-BPA-S (saline solution). The respective percentages of radioactivity recovered for the same assays, from tissue extracts, were 57 ± 12 %, 45 ± 21 %, 20 ± 13 % and 21 ± 8 %.

Representative radio-HPLC profiles for these assays are displayed in Figure 3, for 100 pmol [^3H]-BPA incubated in 1 ml of DMEM, 100 pmol [^3H]-BPA-G incubated in saline solution without tissue (control) or incubated with placenta obtained at 54-57 days of pregnancy. Blank incubations of radiolabelled substrates without tissue did not reveal any degradation of BPA or of BPA-G. Under our HPLC conditions, the retention times of [^3H]-BPA, [^3H]-BPA-G and [^3H]-BPA-S were 43.8, 29 and 42.5 min, respectively. After incubation of BPA with placenta, the only metabolite produced was BPA-S. Incubation of BPA-G with placenta tissue in saline solution showed a hydrolysis of BPA-G into BPA. Integrating the area under the radioactive peaks permitted quantification of BPA and metabolites in pmoles and comparison of BPA conjugation with BPA-G hydrolysis.

Figure 4 shows, for each tissue (fetal and adult gonads, placenta), the amount of [^3H]-BPA that was conjugated, and the amount of [^3H]-BPA-G that was hydrolyzed after 8 hours of incubation of 100 pmol of radiolabelled BPA (in DMEM) or 100 pmol of radiolabelled BPA-
G (in saline solution). In placenta (Fig.4-A), at early, as well as at late stages of pregnancy, BPA conjugation (ranging from 4.89 to 29.64 pmol.8h\(^{-1}\) and from 6.67 to 47.7 pmol.8h\(^{-1}\), respectively) was highly variable, and was mainly associated with the production of BPA-S.

In incubations carried out with adult ovaries, the BPA conjugation rates (median and range) were 21.8 pmol.8h\(^{-1}\) (11.6 -35.3) for ovaries obtained from pregnant ewes and 18.2 pmol.8h\(^{-1}\) (1.08- 24.9) for ovaries of non-pregnant ewes (Fig.4-B).

In fetal gonads, the conjugation of BPA was either very low or undetectable, whether obtained from early or late stages of pregnancy fetuses, and ranged from 0 to 2.29 pmol.8h\(^{-1}\) (median: 0 pmol.8h\(^{-1}\)) in fetal ovaries (Fig.4-C) and from 0 to 8.48 pmol.8h\(^{-1}\) (median: 4.15 pmol.8h\(^{-1}\)) in fetal testes (Fig.4-D).

In optimal conditions for glucuronidase activity (incubation in sodium acetate buffer pH 4.5), the overall mean hydrolysis percentage of radiolabelled BPA-G was high, 91 ± 15 %, whatever the tissue and the stage of development, indicating presence and functionality of this enzyme in our \textit{ex vivo} conditions.

In saline solution, for fetal gonads, BPA-G hydrolysis rates were relatively high both for early- and late-stage of pregnancy [median (range): 6.99 pmol.8h\(^{-1}\) (4.13-15.9) for fetal ovaries (Fig.4-C) and 27.5 pmol.8h\(^{-1}\) (16.8-59.3) for fetal testes (Fig.4-D)]. For adult ovaries (Fig.4-B), BPA-G hydrolysis rates were similar between pregnant and non-pregnant ewes [median (range): 49.5 pmol.8h\(^{-1}\) (49.1-58.4) \textit{versus} 43.1 pmol.8h\(^{-1}\) (26.0-54.8)]. In our experimental conditions, for fetal gonads (at all stages of pregnancy) and adult ovaries, the BPA-G hydrolysis rate was systematically higher than the BPA conjugation rate. For placenta, the BPA-G hydrolysis rate was lower at an early stage than at a late stage of pregnancy [median (range): 3.42 pmol.8h\(^{-1}\) (3.13-10.1) and 24.5 pmol.8h\(^{-1}\) (18.3-28.6), respectively] (Fig.4-A).
[^H]-BPA-S hydrolysis rates (data not show) were relatively low (median: 1.44 pmol.8h\(^{-1}\)) and ranged from 0 to 5.20 pmol.8h\(^{-1}\) for the fetal gonads (all stages of pregnancy) and adult ovaries. For placenta, BPA-S hydrolysis rates ranged from 0 to 7.58 pmol.8h\(^{-1}\) and from 3.92 to 14.0 pmol.8h\(^{-1}\) at early and late stages of pregnancy, respectively and were highly variable, precluding any comparison between conjugation and BPA-S deconjugation activities throughout gestation.
Discussion

Pregnancy is a critical window of exposure during which developmental processes are extremely sensitive to estrogenic interferences. BPA is a xeno-estrogen of major concern for fetal development. The degree of human fetal exposure to BPA and its metabolites is still unclear. Addressing the metabolism of the feto-placental unit in animal models is a key issue for the understanding of fetal exposure to bioactive (parent) BPA. In the present study, we used human and ovine sub-cellular liver fractions, as well as sheep target tissues, to evaluate the ontogeny of metabolic activities involved in BPA conjugation/deconjugation reactions.

Hepatic BPA conjugation /deconjugation activities

Our study showed that the ovine fetus at the first third of pregnancy, expressed limited activities of BPA glucuronidation, with an intrinsic clearance about 30-fold lower than in the last third of pregnancy. By contrast, the capability of the liver to glucurono-conjugate BPA in near-term lambs was nearly as high as in adults. These results are consistent with the development of the expression of isoforms of UGT in the ovine near-term fetus newborn (Dvorchik et al., 1986; Pretheeban et al., 2011). The two parameters, V_{max} and K_m, increased throughout pregnancy and in adulthood, indicating both an increase in UGT enzyme expression and a decrease in their affinity, depending on the UGT isoforms. However, as the in vitro BPA glucuronidation was evaluated under native incubation conditions (without activation), we cannot rule out the hypothesis that the UDPGA cofactor transport could be a rate-limiting step for BPA glucuronidation in ovine fetuses.

In human liver microsomes, BPA is mainly glucuronidated by the UGT2B15 and 2B7 isoforms (Hanioka et al., 2008; Mazur et al., 2010). The expression of these two isoforms is detectable in human fetal livers during the second trimester of pregnancy, and was stated to account for 18 % (Divakaran et al., 2014) or 10-20 % of the values calculated in adults.
We showed that for BPA, the glucuronidation unbound intrinsic clearance of hepatic microsomal fractions in humans was close to that calculated for sheep. This suggests that sheep, unlike immature rats (Matsumoto et al., 2002), represent a valuable model to evaluate metabolic processes towards BPA.

The estimated value of hepatic glucuronidation clearance for adult humans (7.7 ml.kg\(^{-1}\).min\(^{-1}\)) was consistent with the values determined in in vitro studies using liver microsomal fractions [13.7 ml.kg\(^{-1}\).min\(^{-1}\) (Elsby et al., 2001); 15.5 ml.kg\(^{-1}\).min\(^{-1}\) (Mazur et al., 2010)] or cryopreserved hepatocytes [4.4 ml.kg\(^{-1}\).min\(^{-1}\) (Kurebayashi et al., 2010); 6 ml.kg\(^{-1}\).min\(^{-1}\) (Kuester and Sipes, 2007)].

We found no gender related differences for the \(V_{\text{max}}\), \(K_m\) values, nor for the unbound intrinsic glucuronidation clearance of BPA in ovine fetuses. This suggests that UGT’s activities towards BPA are similar in male and female fetal livers, at the examined stages of pregnancy. This result is in agreement with data obtained with human liver microsomes (Elsby et al., 2001; Mazur et al., 2010) and hepatocytes (Kuester and Sipes, 2007), as well as with the BPA pharmacokinetic data previously reported for sheep (Corbel et al., 2013). By contrast, a gender difference in the hepatic glucuronidation of BPA was observed in vitro in adult rats (Mazur et al., 2010).

We also assessed the contribution of the hepatic sulfoconjugation pathway using liver cytosols. The ability of ovine fetal livers to conjugate BPA through sulfoconjugation was found to be high, even at an early stage of pregnancy. In fact, it was about 3- to 8-fold higher in fetuses than in adults. This precocious expression of phenol liver sulfoconjugation activities has already been reported in mid-gestation human fetuses, with levels slightly below, or equal to the activities calculated in adults (Pacifici, 2005; Stanley et al., 2005; Hines, 2008).
The respective contribution of these two conjugative pathways to the hepatic clearance of BPA was then evaluated. In early-stage fetuses, the unbound intrinsic sulfoconjugation clearance of BPA was 4-fold higher than that of glucuronidation. These data are in accordance with the exposure to BPA-S observed in human umbilical cord blood at mid-gestation time (Gerona et al., 2013). Conversely, BPA’s sulfoconjugation hepatic clearance was very low in adult sheep and humans, accounting for only 2.2 % and 0.26 % of the total conjugation hepatic clearance. This result is consistent with the low fraction of BPA-S (1.4% of total BPA) observed at a steady state in ewes, following BPA intravenous infusion (Corbel et al., 2013). In adult human hepatocytes incubated with BPA, it was previously reported that the BPA-S fraction was rather high (9% of the total metabolites), but remained low compared to BPA-G (Kurebayashi et al., 2010). In the near-term ovine fetus, the contribution of hepatic BPA sulfoconjugation was more pronounced in vitro (30 %) than previously reported in vivo, at a steady state in the fetal lamb, following intravenous infusion of BPA (4% (Corbel et al., 2013)). This difference could be due to the limitation of in vitro assays (Miners et al., 2006).

Inasmuch as conjugation plays an important role in the detoxification of BPA, it is necessary to examine the possible contribution of the liver to the deconjugation of BPA metabolites, which could in turn modulate the elimination of BPA. Our results indicate that β-glucuronidase activity had only a minor influence on the liver BPA glucuronidation activity of ovine near-term fetuses and adult sheep. By contrast, in early-stage fetuses, as the glucuronidation activity was very low, the balance between glucuronidation and deconjugation was in favor of hydrolysis, reinforcing the limited capacity of detoxification by BPA glucuronidation pathway in the fetus at an early-stage of pregnancy.

BPA conjugation/deconjugation reactions in target tissues
The placenta is considered to play a protective role during gestation, through metabolism and clearance of xenobiotics. In our study, the placenta showed wide inter-individual variability regarding BPA conjugation and hydrolysis activities. These data are in good accordance with the highly variable ratio (from 0.32 to 6.6) of conjugated over unconjugated BPA measured in human placenta (Zhang et al., 2010). Similar high inter-individual variations in UGT and β-glucuronidase expression and activities have previously been reported for human mid-term and late-term placenta (Collier et al., 2002a; Collier et al., 2002b). This variability remained unexplained, but was partly attributed to a variability in the fraction of trophoblast contained in the placental samples. Indeed, UGT enzymes are localized in the trophoblast layer.

Under our conditions, BPA-S was the main metabolite produced by ovine placental tissues, and the sulfoconjugation activity was already observed at an early stage of pregnancy. This result is consistent with the fact that the SULT1A family is expressed in human placenta (Stanley et al., 2001), and this isoform is known to provide a relevant contribution to the sulfoconjugation of BPA (Nishiyama et al., 2002). Furthermore, the BPA-G and BPA-S hydrolysis activities were low at an early stage of pregnancy, when hepatic sulfoconjugation was predominant. These results suggest that the deconjugation of BPA metabolites does not occur to a significant extent and that the placenta may play a metabolic detoxification role with regard to BPA in the early stages of pregnancy, when the fetus has limited metabolic capacities. However, at a late stage of pregnancy, BPA-G and BPA-S hydrolysis activities were demonstrated to be active in the placenta, suggesting that the placenta would not only be involved in the detoxification of BPA but may also contribute to the reactivation of BPA metabolites.

The amount of BPA-conjugates hydrolysis in relation to their formation was also investigated ex vivo, using ovine gonads, which are potential targets for BPA’s endocrine effects. The
conjugation/deconjugation balance was clearly in favour of BPA-G deconjugation in ovine fetal gonads (ovaries and testes) with an activity of BPA-G hydrolysis 10-fold higher than the activity of BPA conjugation. As the total BPA levels in adult rodent gonads exceeded those in plasma (Yoo et al., 2000; Zalko et al., 2003; Kim et al., 2004), the capacity of gonads to hydrolyse BPA-G could lead to a reactivation of BPA directly at the level of target tissues. The close proximity of both the enzymes responsible for the formation (UGT) as well as the hydrolysis (β-glucuronidase) of BPA-G could result in a cycle of glucuronidation and deglucuronidation. Such futile cycling would greatly influence the apparent glucuronidation rate of BPA, and could thereby modify BPA disposition at the level of tissues, leading to prolonged effects of BPA in all tissues in which such a cycle would be present, including the gonads. This process may explain the sustained levels of unconjugated BPA in rat testis 8 hours after an oral administration of BPA, even though plasma concentrations had already decreased (Miyakoda et al., 2000).

In conclusion, our data suggest that the dynamics of the balance between the conjugation of BPA and the deconjugation of BPA-G, throughout development, in hepatic, placental and gonadal tissues could play a role in determining the level of exposure of target tissues to BPA, providing key information for predicting human fetal BPA exposure. At an early stage of pregnancy, despite a significant sulfoconjugation activity, ovine fetuses were shown to express poor detoxification systems towards BPA, supporting previous assumptions that early development is a critical window of exposure for this endocrine disruptor. By contrast, near-term ovine fetuses expressed detoxification systems able to efficiently metabolize BPA into BPA-G, and, to a lesser extent, into BPA-S. However, we previously demonstrated that both metabolites remain trapped in the feto-placental compartment, leading to a high fetal exposure to the BPA conjugates. Furthermore, our data show that the β-glucuronidase activity in the fetal gonads could lead to a reactivation of BPA-G to BPA, thereby modifying locally the
exposure to active BPA. The critical importance of this conjugation-deconjugation cycle must be further investigated, to determine if the fetal overexposure to BPA conjugates, assumed to be inactive in terms of estrogenicity, has to be taken into account in risk assessment for human health, related to fetal BPA exposure.
Acknowledgments

The authors thank the staff of the sheep experimental unit of Toxalim for animal care and F Lyazrhi for his help with statistical analysis.
Authorship Contributions

Participated in research design: Corbel, Perdu, Gayrard, Lacroix, Viguié, Toutain, Zalko, and Picard-Hagen

Conducted experiments: Corbel, Perdu, Gayrard, Picard-Hagen, and Puel

Contributed new reagents or analytic tools: Perdu, Puel, and Lacroix

Performed data analysis: Corbel, Perdu, Gayrard, Toutain, and Picard-Hagen

Wrote or contributed to the writing of the manuscript: Corbel, Perdu, Gayrard, Lacroix, Viguié, Toutain, Zalko, and Picard-Hagen
References

Footnotes

Financial support

This study was supported by the French Région Midi-Pyrénées [APRTCN 100551322] and by the French National Research Agency [ANR-13-CESA0007-1].

‡ This work was presented in part at the International Conference of the French National Endocrine Disruptor Research Program, December 10-11, 2012, Paris, France.

§ Reprint requests should be addressed to:

Nicole Picard-Hagen

Ecole Nationale Vétérinaire de Toulouse

23, chemin des Capelles

31076 Toulouse cedex 3

France

E-mail: n.hagen-picard@envt.fr

1Institut National de Recherche Agronomique, Unité Mixte de Recherche 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France

2Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Ecole d’Ingénieur de Purpan, Université Paul Sabatier, F-31076 Toulouse, France
Figure Legends

Figure 1. Kinetics of Bisphenol A glucuronidation by liver microsomes

BPA-G formation rate (pmol.mg microsomal prot\(^{-1}\).min\(^{-1}\)) as a function of BPA concentrations by liver microsomes from ovine fetus at early- and late-stages of pregnancy and from adult ewes and humans, incubated for 20 min. Symbols indicate mean (± S.D.) values of 3 determinations and lines indicate fitted values of BPA-G formation.

Figure 2. Kinetics of Bisphenol A sulfoconjugation by liver cytosols

BPA-S formation rate (pmol.mg cytosolic prot\(^{-1}\).min\(^{-1}\)) as a function of BPA concentrations using liver cytosol from ovine fetuses at early- and late-stages of pregnancy and from adult ewes and humans, incubated for 20 min. Symbols indicate mean (± S.D.) values of 3 determinations and lines indicate fitted values of BPA-S formation.

Figure 3. Representative radio-chromatograms showing BPA conjugation and BPA-G deconjugation by placenta tissue

Representative radio-chromatographic profiles obtained after incubation of 100 pmol [\(^{3}\)H]-BPA for 8h in DMEM medium without tissue (A) or with early-stage of pregnancy placenta (B) and from incubation of 100 pmol [\(^{3}\)H]-BPA-G for 8h in saline solution without tissue (C) or with early-stage of pregnancy placenta (D).

Figure 4. BPA conjugation/deconjugation reactions in placenta and in gonads

Conjugation rate of [\(^{3}\)H]-BPA and hydrolysis rate of [\(^{3}\)H]-BPA-G in fetal and adult ovine tissues after incubation for 8h in DMEM and saline solution, respectively. BPA conjugation and BPA-G hydrolysis activities are represented individually for a three fetus pool at an early-stage of pregnancy (solid symbols) and three fetuses at late-stage of pregnancy (open symbols).
symbols): A, in placenta. B, in fetal ovaries. C, in fetal testes and D, in adult ovaries of three pregnant (solid symbols) and three non-pregnant ewes (open symbols).
Tables

Table 1. *Bisphenol A glucuronidation by hepatic microsomes*

Michaelis-Menten apparent kinetic constants (\(V_{\text{max}}\) and \(K_m\)) for BPA glucuronidation by hepatic microsomal fractions of early-stage (54-57 day-old) and near-term (120-135 day-old) ovine fetuses and of adult sheep and humans after incubation with BPA for 20 min. Hepatic glucuronidation unbound intrinsic clearance (\(C_{\text{int,u}}\)) and extrapolated hepatic clearance (\(C_{\text{H}}\)) (mean values ± S.D.).

<table>
<thead>
<tr>
<th></th>
<th>(V_{\text{max}}) pmol mg microprot⁻¹ min⁻¹</th>
<th>(K_m) µM</th>
<th>(C_{\text{int,u}}) ml min⁻¹ g⁻¹ of liver</th>
<th>(C_{\text{H}}) ml kg⁻¹ min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovine fetuses (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=3) (b)</td>
<td>15.3 (S.E. 2.26)</td>
<td>4.71 (S.E. 2.95)</td>
<td>0.075</td>
<td>na (c)</td>
</tr>
<tr>
<td>Male (n=3) (b)</td>
<td>8.50 (S.E. 1.70)</td>
<td>3.41 (S.E. 2.93)</td>
<td>0.044</td>
<td>na (c)</td>
</tr>
<tr>
<td>Near-term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovine fetuses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=3)</td>
<td>519 ± 258</td>
<td>10.8 ± 5.94</td>
<td>1.53 ± 1.16</td>
<td>4.76 ± 3.68</td>
</tr>
<tr>
<td>Male (n=3)</td>
<td>446 ± 316</td>
<td>8.38 ± 7.05</td>
<td>1.93 ± 1.21</td>
<td>6.40 ± 4.28</td>
</tr>
<tr>
<td>Adult ewes (n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6086 ± 862</td>
<td>82.0 ± 18.1</td>
<td>3.93 ± 0.85</td>
<td>3.14 ± 0.43</td>
</tr>
<tr>
<td>Adult humans (n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2770 ± 250</td>
<td>59.6 ± 15.6</td>
<td>9.00 ± 2.47</td>
<td>7.67 ± 1.35</td>
</tr>
</tbody>
</table>

\(a\) At 54-57 days of pregnancy, several concentrations of BPA-G were below the LOQ (25 nM), so the data were computed together for each sex group to estimate Michaelis-Menten parameters and the associated standard errors (S.E.).

\(b\) 3 pools of three fetuses

\(c\) not applicable
Table 2. Bisphenol A sulfoconjugation by hepatic cytosols

Michaelis-Menten apparent kinetic constants (V_{max} and K_m) for BPA sulfoconjugation by hepatic cytosolic fractions of 54-57 day-old (early-stage) and near-term ovine fetuses and of adult sheep and humans. Hepatic sulfoconjugation unbound intrinsic clearance ($Cl_{int,u}$) and extrapolated hepatic clearance (Cl_{H}) (mean values ± S.D.)

<table>
<thead>
<tr>
<th></th>
<th>V_{max} (pmol.mg cyt prot$^{-1}$.min$^{-1}$)</th>
<th>K_m (µM)</th>
<th>$Cl_{int,u}$ (ml.min$^{-1}$.g$^{-1}$ of liver)</th>
<th>Cl_H (ml.kg$^{-1}$.min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovine fetuses</td>
<td>Female (n=3)a</td>
<td>79.2 ± 5.74</td>
<td>12.3 ± 0.84</td>
<td>0.279 ± 0.020</td>
</tr>
<tr>
<td></td>
<td>Male (n=3)a</td>
<td>77.3 ± 18.3</td>
<td>19.0 ± 11.4</td>
<td>0.203 ± 0.076</td>
</tr>
<tr>
<td>Near-term</td>
<td>Female (n=3)</td>
<td>116 ± 27</td>
<td>7.96 ± 0.44</td>
<td>0.660 ± 0.370</td>
</tr>
<tr>
<td>Ovine fetuses</td>
<td>Male (n=3)</td>
<td>93.0 ± 24.0</td>
<td>7.05 ± 2.16</td>
<td>0.716 ± 0.070</td>
</tr>
<tr>
<td>Adult ewes</td>
<td>(n=3)</td>
<td>655 ± 309</td>
<td>575 ± 267</td>
<td>0.081 ± 0.034</td>
</tr>
<tr>
<td>Adult humans</td>
<td>(n=3)</td>
<td>7.03 ± 4.37</td>
<td>40.2 ± 6.16</td>
<td>0.015 ± 0.012</td>
</tr>
</tbody>
</table>

a 3 pools of three fetuses.

b not applicable
Figure 1
Figure 2

[Graph showing the formation rate of BPAS (pmol/mg cytosolic protein/min) at different Bisphenol A concentrations (µM) for different groups (Female near-term, Male near-term, Female early-stage, Male early-stage, Adult ewes, Adult humans).]
Figure 3
Figure 4