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ABSTRACT (247/250 words) 

BCRP limits intestinal absorption of low-permeability substrate drugs and mediates biliary 

excretion of drugs and metabolites.  Based on clinical evidence of BCRP-mediated drug-drug 

interactions (DDIs) and the c.421C>A functional polymorphism affecting drug efficacy and 

safety, both the FDA and EMA recommend preclinical evaluation, and when appropriate, 

clinical assessment of BCRP-mediated DDIs.  Although many BCRP substrates and inhibitors 

have been identified in vitro, clinical translation has been confounded by overlap with other 

transporters and metabolic enzymes.  Regulatory recommendations for BCRP-mediated clinical 

DDI studies are challenging, as consensus is lacking on the choice of the most robust and 

specific human BCRP substrates and inhibitors and optimal study design.  This review proposes 

a path forward based on a comprehensive analysis of available data.  Oral sulfasalazine (1000 

mg, IR tablet) is the best available clinical substrate for intestinal BCRP, oral rosuvastatin (20 

mg) for both intestinal and hepatic BCRP, and intravenous rosuvastatin (4 mg) for hepatic 

BCRP.  Oral curcumin (2000 mg) and lapatinib (250 mg) are the best available clinical BCRP 

inhibitors.  To interrogate the worst-case clinical BCRP DDI scenario, study subjects harboring 

the BCRP c.421C/C reference genotype are recommended.  In addition, if sulfasalazine is 

selected as the substrate, subjects having the rapid acetylator phenotype are recommended.  In 

the case of rosuvastatin, subjects with the OATP1B1 c.521T/T genotype are recommended, 

together with monitoring of rosuvastatin cholesterol lowering effect at baseline and DDI phase.  

A proof-of-concept clinical study is being planned by a collaborative consortium to evaluate the 

proposed BCRP DDI study design.  
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Introduction 

Breast cancer resistance protein (BCRP, ABCG2) is an ATP-binding cassette efflux 

transporter comprised of a homodimer of two half subunits (Giacomini et al., 2010).  BCRP is 

expressed in the small intestine, liver, blood-brain barrier, testis, placenta and mammary glands 

(Endres et al., 2006) and limits systemic and organ exposure of relevant substrates.  BCRP 

transports endogenous and exogenous substrates with diverse physicochemical properties, which 

generally include a positive and/or negative charge, but otherwise span a large range of 

molecular weight, lipophilicity, and permeability (Mao and Unadkat, 2005; Ni et al., 2010; 

Robey et al., 2011).  However, the impact of BCRP on pharmacokinetics is the most pronounced 

for compounds with low passive permeability (Poirier et al., 2014).   

From a drug disposition perspective, BCRP functions primarily as an apical efflux pump 

in enterocytes, attenuating intestinal absorption of low-permeability substrate drugs, and as a 

canalicular efflux pump, transporting substrates from hepatocytes into bile.  Unlike intestinal 

BCRP, which is rate-determining in the absorption of low-permeability substrate drugs, in the 

liver, uptake is generally rate-determining in hepatic clearance of drugs that predominantly rely 

on carrier-facilitated transport into the liver prior to excretion into bile via BCRP.  However, 

when a basolateral efflux mechanism is operational (e.g. MRP4), BCRP biliary excretion can 

become rate-determining in systemic drug clearance when it is impaired to a sufficiently large 

extent (Pfeifer et al., 2013a; Pfeifer et al., 2013b).  Such shifting of the rate-determining step in 

hepatobiliary clearance is a kinetically complex phenomenon and is best described with both 

systemic pharmacokinetic data, as well as a measure of hepatic drug exposure, which in humans 

can be assessed directly (e.g. imaging of a metabolically-stable drug) or indirectly using a 

hepatic pharmacodynamic biomarker (e.g. cholesterol for statins). 
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Pharmacogenetic studies identified a c.421C>A (p.Q141, rs2231142) single nucleotide 

polymorphism (SNP) of BCRP that results in reduced activity (Giacomini et al., 2013).  In vitro 

studies demonstrated that this BCRP variant exhibits maintained mRNA expression, but 50-70% 

reduced protein expression and function due to enhanced susceptibility to proteasomal 

degradation (Kondo et al., 2004; Furukawa et al., 2009).  Several marketed drugs including 

sulfasalazine, rosuvastatin, and atorvastatin have increased systemic exposure due to impaired 

BCRP activity in carriers of this functional polymorphism (Giacomini et al., 2013).  For 

example, rosuvastatin demonstrated 2.4-fold higher exposure in homozygous BCRP c.421A/A 

individuals compared to homozygous c.421C/C individuals (Keskitalo et al., 2009b).  In addition 

to changes in the pharmacokinetic profile, clinical studies involving BCRP c.421A/A 

homozygous carriers demonstrated an increased incidence of gefitinib side effects (Cusatis et al., 

2006).  

BCRP has been demonstrated to be an important mediator of drug-drug interactions 

(DDIs) in humans (Giacomini et al., 2010).  For example, the herbal product curcumin increased 

sulfasalazine oral exposure 3.2-fold.  This clinical DDI has been attributed to BCRP inhibition, 

because it could be replicated in wild-type, but not Bcrp-knockout mice, clearly proving Bcrp to 

be the DDI mechanism (Shukla et al., 2009; Kusuhara et al., 2012).   

The clinical evidence of BCRP inhibition as a mechanism of DDIs with potential safety 

and efficacy consequences prompted the International Transporter Consortium (ITC) to highlight 

BCRP as an important transporter to evaluate during drug development (Giacomini et al., 2010).  

Subsequently, the FDA and EMA recommended that all investigational drugs should be 

evaluated as substrates (victims) or inhibitors (perpetrators) of BCRP, and when warranted, that 

victim and perpetrator DDI potential should be characterized in humans (FDA, 2012; EMA 
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2012).  The exception to the BCRP substrate evaluation is when the drug candidate meets 

biopharmaceutical classification system 1 criteria, where intestinal solubility and permeability 

are too high for oral absorption to be attenuated by BCRP efflux (FDA, 2012; EMA 2012).  

These regulatory recommendations are reasonable and justified by overall clinical evidence 

supporting BCRP as a contributor to, although typically not the sole site of, victim and 

perpetrator DDIs.   

Many drugs from various therapeutic areas have been identified as substrates or inhibitors 

of BCRP in vitro, yet clinical DDIs attributed directly and specifically to BCRP are limited due 

to overlap with other transport, as well as metabolic, pathways (Poirier et al., 2014).  For 

example, the 8-fold increase in atorvastatin exposure during tipranavir and ritonavir co-

administration was attributed mechanistically to inhibition of BCRP, OATP1B1 and CYP3A4 

(Pham et al., 2009); however, quantification of the relative contribution of each of these 

pathways to the overall DDI is challenging.  Since well-characterized clinical BCRP substrate 

probes and inhibitors are lacking, DDIs attributed solely to BCRP are rare.  As a consequence, a 

consensus is lacking on how to optimally evaluate clinical BCRP victim and perpetrator DDI 

potential. 

Recognizing the challenges faced by the pharmaceutical industry regarding the clinical 

evaluation of BCRP-mediated drug disposition and DDIs, the intent of this review is 1) to 

identify the best available clinical probes and inhibitors that can be used to understand the 

contribution of BCRP to intestinal, hepatic, or overall systemic drug disposition in humans, and 

2) to propose a clinical study design to test the validity of the selected substrate/inhibitor pairs to 

evaluate BCRP-mediated DDIs, as well as delineate organ-specific BCRP contributions in 

humans.  
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Clinical Relevance of BCRP Polymorphisms  

Impaired BCRP activity is associated with a non-synonymous SNP, c.421C>A  

(Furukawa et al., 2009).  Clinically, this polymorphism is linked to increased exposure to 

rosuvastatin, sunitinib, an active metabolite of leflunomide, sulfasalazine, flavopiridol, 

diflomotecan and gefitinib (Giacomini et al., 2013).  For example, homozygous carriers of the 

variant allele (c.421A/A) showed up to a 3.5-fold increase in sulfasalazine oral exposure 

compared to homozygous carriers of the reference allele (c.421C/C) (Yamasaki et al., 2008; 

Kusuhara et al., 2012).  Clinical examples of elevated statin exposure in homozygous carriers of 

the c.421C>A SNP range from 1.7-fold increase for both atorvastatin and fluvastatin to 2.4-fold 

increase for rosuvastatin (Keskitalo et al., 2009a; Keskitalo et al., 2009b).   

In general, the effect of the BCRP c.421C>A variant on the pharmacokinetics of most 

BCRP substrates has been relatively modest; however, a major limitation of many of these 

studies is the low number of subjects homozygous for this SNP due to low population frequency 

of the recessive allele.  For example, intravenous diflomotecan exhibited 3-fold higher 

intravenous exposure in c.421C/A (n=5) versus c.421C/C carriers (n=15) but no change in AUC 

following oral drug administration (Sparreboom et al., 2004), while rosuvastatin exposure was 

1.8-fold higher in a combined cohort of c.421C/A and A/A (n=5 C/A and n=2 A/A) versus 

c.421C/C carriers (n=7) (Zhang et al., 2006) (Table 1).  In contrast, no effect of the c.421C/A 

SNP was observed on the oral pharmacokinetics of the following BCRP substrates: 

nitrofurantoin, lamivudine, pravastatin, pitavastatin, and intravenous irinotecan (Ferrante et al., 

1991; de Jong et al., 2004; Han et al., 2007; Ieiri et al., 2007; Jada et al., 2007; Adkison et al., 

2008; Keskitalo et al., 2009a; Zhou et al., 2013).  Lack of effect of BCRP c.421C>A on 

pravastatin exposure (Keskitalo 2009a) stands in contrast to rosuvastatin (which has comparable 
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low passive permeability to pravastatin) and supports the hypothesis that P-gp and MRP2 play 

more prominent roles than BCRP in pravastatin absorption.   

The above examples highlight the critical importance of thoughtful design of BCRP 

pharmacogenetic studies when intended to be used in lieu of traditional DDI inhibitor studies to 

delineate the victim DDI potential of a BCRP substrate drug.  As demonstrated by the above 

examples, the number of study subjects in typical DDI studies is not high enough to randomly 

enroll enough carriers of the BCRP c.421A/A and c.421C/A genotypes, making a post-hoc 

comparison of BCRP genotype effects impossible.  As such, when BCRP pharmacogenetic 

studies are intended to be used as a substitute for a DDI study with a BCRP inhibitor, subjects 

must be genotyped during enrollment, and the study should be powered with an equal and 

adequate number of subjects in each of the three groups (C/C, C/A, A/A).  The two sulfasalazine 

BCRP pharmacogenetic studies by Yamasaki et al. and Adkison et al. provide good examples of 

how to proactively investigate victim DDI potential of a BCRP substrate drug in a properly 

designed study (Yamasaki et al., 2008; Adkison et al., 2010) (Table 2). 

Recently, several null allelic mutations in the BCRP gene were reported to correlate with 

the Junior(a-) blood group antigen (Saison et al., 2012; Zelinski et al., 2012).  The Junior(a-) 

phenotype has been associated with clinically relevant adverse events, including transfusion 

reactions and fetal anemia.  This phenotype has been detected at a low frequency in individuals 

of northern European and Romani ancestry and in Bedouin Arabs, but at a relatively higher 

frequency in Asians, particularly Japanese (0.02-1.7%) (Zelinski et al., 2012; Tanaka et al., 

2014).  All of these mutations result in non-functional protein, thereby identifying individuals 

with the Junior(a-) blood group as a population lacking BCRP activity. 
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As BCRP deficiency has recently been elucidated as the mechanism underlying the 

Junior(a-) phenotype, these populations have not yet been used to study BCRP-mediated drug 

disposition in humans.  Initial investigations into the safety and efficacy implications of BCRP 

deficiency demonstrated conflicting results with respect to elevated blood concentrations of uric 

acid (no change and hyperuricemia) (Matsuo et al., 2009; Saison et al., 2012); however, uric acid 

disposition  is complex and involves several transporters besides BCRP, thus these conflicting 

findings are not entirely surprising (Reginato et al., 2012).   

Theoretically, the Junior(a-) population may provide an opportunity to tease out the 

contribution of BCRP by comparing the effect to healthy controls; however, such a clinical study 

paradigm remains to be established.  In practice, these studies would have to be conducted in 

Japan, where the prevalence of the Junior(a-) phenotype is sufficiently high and the phenotype 

and study subject recruitment is enabled by tracking of this phenotype by blood banks.  
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Potential Clinical BCRP Probe Substrates 

Based on studies with BCRP-transfected polarized cell lines and membrane vesicles 

generated from BCRP over-expressing cells, many marketed drugs and dietary/natural 

constituents have been identified as substrates of BCRP.  A list of 81 substrates was evaluated 

based on reported efflux ratios >2 in cell monolayers and/or reported Km values <10 μM (Table 

3).  These substrates have a broad range of physicochemical properties, with passive 

permeability ranging from low to high (0.07-21.8 x 10-6 cm/s).  Many BCRP substrates are 

extensively metabolized, whereas others are excreted unchanged.  The contribution of other 

transporters to the disposition of these substrates is common (Poirier et al., 2014).  In contrast to 

the numerous BCRP substrates identified in vitro, the number of potential clinical substrates is 

limited.  Theoretically, the ideal clinical probe substrate should be selective for BCRP with 

minimal contribution from other transporters and metabolizing enzymes in order to minimize the 

complexity in data interpretation and enable extrapolation to other BCRP substrate drugs.  

Analogous to digoxin safety studies for P-glycoprotein inhibitor drugs, if the candidate BCRP 

probe substrate has a narrow therapeutic window and/or identified safety concerns, then the DDI 

will have direct clinical relevance by informing dose adjustment for the substrate drug.  An 

example of the latter is the case of statins where increased exposure can result in myopathy 

(Egan and Colman, 2011).  Several potential clinical BCRP substrates for consideration are 

described below. 

Sulfasalazine.  Sulfasalazine, an anti-inflammatory and immunomodulatory drug used to 

treat ulcerative colitis, rheumatoid arthritis, and Crohn’s disease (Azulfidine Prescribing 

Information, 2011), has been proposed as a clinical probe for intestinal BCRP .  Sulfasalazine is 

restricted largely to the gastrointestinal tract due to low permeability, low solubility, and efficient 

intestinal BCRP efflux.  As such, oral bioavailability at therapeutic doses is low (<10%) and 
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highly variable.  The low fraction of a sulfasalazine oral dose that is absorbed into the systemic 

circulation is mostly excreted unchanged in urine (via glomerular filtration) and bile (Azulfidine 

Prescribing Information, 2011; Giacomini et al., 2010).   

Sulfasalazine is metabolized extensively by bacteria in the distal small intestine and colon 

to sulfapyridine, which is relatively well absorbed and cleared predominantly by N-

acetyltransferase (NAT) 2.  Inhibition of intestinal BCRP reduces sulfapyridine formation by 

increasing sulfasalazine absorption, which in turn decreases sulfasalazine exposure to intestinal 

bacteria.  As such, the metabolite-to-parent AUC ratio is a more sensitive indicator of intestinal 

BCRP modulation in humans than parent sulfasalazine AUC, but only in intermediate and rapid 

acetylator phenotypes (Yamasaki et al., 2008).  Specifically in NAT2 rapid acetylators, the range 

of BCRP clinical effect is ~10-fold as measured by the decrease in sulfapyridine-to-sulfasalazine 

AUC ratio, while the clinical magnitude of parent sulfasalazine AUC increase is ≤3.5-fold 

(Yamasaki et al., 2008). 

A wealth of preclinical data support sulfasalazine as an essentially specific probe for 

intestinal BCRP, although a potentially small contribution from P-gp and MRP2 has been 

proposed (Zaher et al., 2006; Dahan and Amidon, 2009; Zamek-Gliszczynski et al., 2012).  

Overall, Bcrp-knockout rodent data support BCRP limiting sulfasalazine oral bioavailability by 

at least an order of magnitude, while MRP2 and perhaps P-gp attenuate intestinal absorption by a 

lesser extent (≤2 to 3-fold).  However, the fact that sulfasalazine intestinal absorption is not 

strictly limited by BCRP cannot be ignored in the interpretation of sulfasalazine interaction data, 

especially considering possible overlap between BCRP and P-gp, as well as BCRP and MRP2, 

inhibitors.  
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The possibility of uptake transporter(s) contributing to sulfasalazine absorption has been 

proposed, and intestinal OATP2B1 has been shown to transport sulfasalazine in vitro (Kusuhara 

et al., 2012; Tomaru et al., 2013).  Intestinal uptake could be an important consideration 

concerning interpretation of DDI data should a decrease in sulfasalazine exposure be observed.  

Furthermore, saturation of uptake transporter(s) may underlie pharmacokinetic differences 

between sub-therapeutic and therapeutic doses, which cannot be explained by drug solubility 

alone (Kusuhara et al., 2012). 

Topotecan.  Topotecan is a topoisomerase inhibitor for second-line treatment of patients 

with metastatic ovarian carcinoma and small cell lung cancer, available in both intravenous and 

oral formulations (HYCAMTIN® Prescribing Information (06/18/2014; 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/200199s003lbl.pdf and 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020981s006lbl.pdf).  Although oral 

absorption is limited by intestinal BCRP (Jonker et al., 2000; Kruijtzer et al., 2002), topotecan is 

a substrate for other efflux transporters as well, including P-gp and MRP2 (Lin et al., 2011).  

Nonetheless, in P-gp-knockout mice, the nonspecific BCRP and P-gp inhibitor, elacridar, 

increased topotecan oral exposure 6-fold, thus demonstrating a major role of Bcrp in limiting 

topotecan oral absorption (Jonker et al., 2000).  Co-administration of elacridar with topotecan to 

cancer patients increased plasma exposure 2- to 3-fold (Kruijtzer et al., 2002), which is the upper 

limit of the possible increase in humans, where baseline bioavailability is 40% (HYCAMTIN® 

Prescribing Information (06/18/2014; 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020981s006lbl.pdf).  The effect of 

BCRP c.421C>A SNP on the pharmacokinetics of topotecan showed 1.3-fold higher oral 

bioavailability in c.421C/A versus c.421C/C individuals, a modest effect that would be expected 
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to increase in patients who are c.421A/A homozygous but were not included in this study 

(Sparreboom et al., 2005).  Although topotecan has some attractive characteristics as a BCRP 

probe substrate, due to its safety profile as a cytotoxic agent, topotecan is impractical for routine 

use in healthy volunteer BCRP DDI studies. 

Statins.  The physicochemical properties of statins, such as atorvastatin, cerivastatin, 

fluvastatin, pitavastatin, rosuvastatin, and pravastatin, are similar with respect to molecular 

weight, pKa, and anionic charge, but differ in terms of lipophilicity.  Consequently, the 

involvement of a variety of metabolizing enzymes and drug transporters in statin disposition 

differs based on a statin’s lipophilic versus hydrophilic character (Elsby et al., 2012; Shitara et 

al., 2013).  Likewise, passive permeability varies with lipophilicity, and on one extreme is low 

for pravastatin and rosuvastatin, while on the other is high for cerivastatin and fluvastatin (Jones 

et al., 2012; Menochet et al., 2012; Li et al., 2014).  With respect to clearance pathways, 

cerivastatin, fluvastatin, simvastatin lactone, and atorvastatin are extensively metabolized, 

whereas pravastatin, rosuvastatin, and pitavastatin undergo minimal metabolism and are cleared 

mainly through biliary and urinary excretion (Elsby et al., 2012).  All statins to a varying degree 

are substrates for hepatic uptake transporters and some are BCRP substrates (Elsby et al. 2012).   

Studies in Bcrp-knockout mice have demonstrated an important role for Bcrp in the 

hepatobiliary disposition of pitavastatin and rosuvastatin (Hirano et al, 2005; Kitamura et al., 

2008).  Following intravenous infusion to Bcrp-knockout mice, the biliary excretion rate of both 

drugs was reduced by approximately an order of magnitude relative to wild-type mice.  In 

contrast, the systemic clearance of pitavastatin was not affected by Bcrp knockout, whereas that 

of rosuvastatin was reduced by approximately 2-fold.  Likewise clinically, the BCRP c.421 C>A 

polymorphism had a negligible effect on pitavastatin pharmacokinetics (Ieiri et al., 2007).  
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Pitavastatin is a sensitive clinical probe for OATP1B1 DDI study (Prueksaritanont et al., 2014), 

but it is not recommended as a clinical probe in BCRP DDI study because of a minimal role of 

this transporter in its absorption, disposition and clearance.  Although the most pronounced 

effects on Cmax  is reported for fluvastatin and rosuvastatin, the high permeability of fluvastatin 

combined with less compelling BCRP pharmacogenetic effects and DDI potential relative to 

rosuvastatin preclude consideration of this statin as a sensitive probe for intestinal BCRP-

mediated DDI studies (Hirano et al., 2005; Ieiri et al., 2007; Elsby et al., 2012). 

Rosuvastatin has limited ability to permeate cellular membranes via passive diffusion due 

to low lipophilicity (LogD7.4 = -0.33) (Kitamura et al., 2008; Menochet et al., 2012).  Intestinal 

absorption is ≤3.2-fold limited by BCRP in both preclinical species and humans (Karibe et al., 

2014; Prueksaritanont et al., 2014).  Rosuvastatin is primarily cleared by the liver (72%) and to a 

lesser extent by the kidneys (28%) (Elsby et al., 2012).  Several hepatic uptake transporters 

(OATP1B1, OATP1B3, and sodium-taurocholate co-transporting polypeptide) contribute to its 

distribution in the liver, while BCRP and MRP2 secrete rosuvastatin into the bile, such that it can 

undergo extensive enterohepatic recirculation (Ho et al., 2006; Kitamura et al., 2008; van de 

Steeg et al., 2013).  In addition to glomerular filtration, the tubular secretion of rosuvastatin is 

mediated by organic anion transporter 3 uptake and efflux by MRP2.   

Based on pharmacogenetic assessment of all the statins, the disposition of rosuvastatin is 

affected primarily by BCRP polymorphisms in vivo, as summarized in Table 1.  Because the 

BCRP c.421 C>A variant does not represent a complete knockout of BCRP activity, it is likely 

that more profound changes may be observed if rosuvastatin was used in DDI studies with a 

potent BCRP inhibitor or in the Junior(a-) population, which lacks BCRP altogether.  Moreover, 

reduced biliary transport of rosuvastatin via BCRP (due to either inhibition or a polymorphism) 
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may lead to more pronounced changes in hepatic concentrations compared to systemic 

concentrations.  Taken together, the evidence for BCRP as a major contributor to rosuvastatin 

disposition relative to the other statins is the strongest. However, the use of rosuvastatin as a 

BCRP DDI probe requires an appropriate clinical study design and careful consideration of 

perpetrator properties, as discussed below.  
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Clinical Evidence-Based Recommendations for BCRP Substrate Selection 

Intestinal Probe Substrate.  Four clinical studies have employed oral sulfasalazine as an 

intestinal BCRP probe to investigate the pharmacokinetic effects of BCRP inhibitors and the 

c.421C>A SNP in humans (Urquhart et al., 2008; Yamasaki et al., 2008; Adkison et al., 2010; 

Kusuhara et al., 2012) (Table 2 and Table 4).  Although the number of human DDI studies is 

limited, important lessons can be drawn for future study design, specifically with respect to 

subject population, dose, formulation, and study endpoints.  These considerations are discussed 

in detail below. 

Population variability in sulfasalazine exposure can be large, as high as 81-fold (Adkison 

et al., 2010) (Table 4).  As such, it is critical that clinical sulfasalazine interaction studies use a 

crossover design.  To maximize the observed human intestinal BCRP interaction effects, study 

subjects with high BCRP and NAT2 activities should be enrolled, i.e., BCRP c.421C/C 

homozygous carriers and rapid NAT2 acetylators (Yamasaki et al., 2008).  Rapid NAT2 

acetylators provide the greatest sensitivity (~10-fold) for determination of clinical DDIs in terms 

of the sulfapyridine/sulfasalazine AUC ratio, followed by intermediate acetylators (~3-4-fold) 

versus slow acetylators, who show no apparent change in the ratio (Yamasaki et al., 2008).  

Notably, an unexpected increase in the sulfapyridine/sulfasalazine AUC ratio, or a decrease not 

commensurate with the increase in oral sulfasalazine exposure, may be indicative of NAT2 

inhibition, which should be further investigated.  In summary, intestinal BCRP DDI studies with 

sulfasalazine should enroll BCRP c.421C/C homozygous, rapid acetylator subjects and measure 

both parent and sulfapyridine oral exposure.  As discussed in the preceding section, the 

sulfapyridine/sulfasalazine AUC ratio decrease appears to be a more sensitive measure of 

intestinal BCRP inhibition than parent drug exposure increase, and it is recommended that the 

DDI be reported using both endpoints. 
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The choice of sulfasalazine dose and formulation used for intestinal BCRP interaction 

studies also merits careful consideration (Table 2).  BCRP pharmacogenetic and inhibition 

effects on oral sulfasalazine exposure were readily apparent and statistically significant 

following oral administration of a 2000 mg dose as immediate release (IR) tablets (Yamasaki et 

al., 2008; Kusuhara et al., 2012).  In contrast, following oral administration of 500 mg 

sulfasalazine enteric coated tablets, systemic pharmacokinetics were not altered by BCRP 

pharmacogenetics or by oral co-administration of the BCRP inhibitor, pantoprazole (Adkison et 

al., 2010).  The exact mechanistic reasons for why sulfasalazine administered as enteric coated 

tablets is not sensitive to BCRP modulation remain unknown.  One plausible explanation is that 

this type of formulation releases drug further down the GI tract, where relative BCRP expression 

is up to 2-fold lower (Englund et al., 2006; Enokizono et al., 2007b; MacLean et al., 2008) and 

much less concentrated per unit of surface area (Pang, 2003), such that sulfasalazine is released 

past BCRP in the upper small intestine (Adkison et al., 2010).  Although the extended release 

formulation appears to be the most likely culprit for the lack of BCRP impairment effect in the 

Adkison et al. (2010) study, because three independent clinical studies using sulfasalazine 

immediate release tablets or suspension showed consistent pharmacokinetic changes (Urquhart et 

al., 2008; Yamasaki et al., 2008; Kusuhara et al., 2012), further work is needed to provide an 

unequivocal mechanistic explanation for the negative findings of Adkison et al. (2010).  Other 

formulations have been evaluated, including an oral suspension prepared from crushed IR 

tablets.  At a therapeutic dose of 1000 mg, oral exposure was 1.6-fold higher following 

administration of the suspension versus IR tablet but was not statistically significant (Urquhart et 

al., 2008; Kusuhara et al., 2012).  However, following oral administration of a 0.1 mg suspension 

(microdose) versus a 2000 mg IR tablet, the dose-normalized exposure was an order of 
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magnitude higher for the microdose suspension compared to the IR tablet, an effect possibly 

attributed primarily to potential saturation of the speculated intestinal absorptive transporter(s) at 

the therapeutic dose and secondarily to solubility effects (Kusuhara et al., 2012).  Since the 

apparent fraction absorbed is greater for the microdose suspension, the magnitude of the 

intestinal BCRP DDI is not as large as that observed for the therapeutic IR tablet (AUC ratio of 

2.0 vs. 3.2) (Kusuhara et al., 2012).   

Total daily doses of up to 2000 mg appear to be reasonably well tolerated in most 

subjects; however, gastric side effects are common, with about one-third of subjects experiencing 

these side effects to some degree and increasing with dose level (Azulfidine Prescribing 

Information, 2011; Kusuhara et al., 2012).  Serious side effects such as Stevens-Johnson 

syndrome can occur and have been observed following a single dose.  To avoid unnecessary 

adverse event complications, DDI studies involving sulfasalazine should exclude subjects with 

known “sulfa” allergy, viral infections, a weakened immune system, a history or family history 

of Stevens-Johnson syndrome, or with the HLA-B *1502 allele.  Based on currently available 

clinical experience, 1000 mg administered orally as IR tablets is the most optimal and practical 

sulfasalazine dosing regimen for intestinal BCRP DDI studies.  Considering the maximal (<4-

fold) clinical increase in sulfasalazine exposure due to BCRP inhibition, clinical exposure 

following administration of the 1000 mg dose would not exceed the exposure observed following 

administration of the highest approved dose level of 4000 mg/day.  Finally, while the subject 

genotyping recommendations for robust response with sulfasalazine as a marker of intestinal 

BCRP activity (BCRP c.421 C/C; NAT2 rapid acetylator phenotype, non-carriers of HLA-B 

*1502 allele) might seem onerous, these are all routine clinical genotyping tests, which add 
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insignificant cost to the overall study and do not present a serious enrollment hurdle, because the 

predominant genotype is recommended for all three genes. 

Systemic Probe Substrate.  Oral rosuvastatin represents a sensitive probe to assess the 

magnitude of inhibition of both intestinal and hepatic BCRP.  Allowing for assessment of the 

worst-case DDI scenario, a rosuvastatin BCRP DDI study should enroll subjects homozygous for 

the BCRP reference allele c.421 C/C (most prevalent in non-Asian ethnicities) and exclude any 

carriers of OATP1B1 c.521T/C or C/C.  Consideration of CYP2C9 polymorphism (rosuvastatin 

undergoes minimal metabolism via this enzyme), is not of relevance because CYP2C9*1/*3 or 

*3/*3 was reported to have no effect on rosuvastatin (or its metabolite) PK or PD (Table 1).  

Alternatively, a clinical study should consider the genotype of the subjects enrolled and 

investigate the impact of multiple genetic covariates (e.g., co-existence of OATP1B1 and BCRP 

polymorphisms in the same subject) together with ethnicity data on the BCRP DDI sensitivity.  

An adequately powered study in terms of sample size would allow for identification of multiple 

high-risk combination patterns that could cause an increase in rosuvastatin exposure in 

conjunction with reduced BCRP activity, as recently reported for simvastatin (Tsamandouras et 

al., 2014). 

Considering the complexity of rosuvastatin disposition and potential for enterohepatic 

recycling, it is evident that interpretation of increased rosuvastatin exposure in the DDI study 

following oral administration may be confounded by multiple factors. A key factor is the 

inability to differentiate between the contribution of intestinal and hepatic BCRP to the overall 

magnitude of a rosuvastatin-based interaction.  Perpetrators that are potent BCRP as well as 

OATP inhibitors represent an additional issue of concern in that either or both can result in 

elevated blood levels of rosuvastatin.  BCRP DDI study design involving oral and intravenous 
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rosuvastatin formulations in the same subjects would allow delineation of the contribution of 

intestinal and hepatic BCRP.  Based on the modeling and simulation work for compounds with 

comparable disposition to rosuvastatin (Watanabe et al., 2009; Chu et al., 2013b), the expectation 

is that the inhibition of hepatic BCRP may not cause significant changes in the plasma exposure, 

whereas drug accumulation in the hepatocytes and increase in liver exposure would occur. To 

account for this, cholesterol lowering effect of rosuvastatin will also be monitored in the control 

and inhibitor phase of the clinical studies, as a direct reflection of any changes in rosuvastatin 

liver exposure. 

Rosuvastatin is commonly administered at an oral dose of 5–40 mg/day, with the 

majority of the clinical DDIs or pharmacogenetic studies conducted using a 10 or 20 mg dose 

(Simonson et al., 2004; Keskitalo et al., 2009b; Allred et al., 2011).  Although a rosuvastatin 

intravenous formulation is not available currently, clinical data after infusion of 8 mg 

rosuvastatin have been reported as safe and well tolerated (Martin et al., 2003).  

Rosuvastatin administered orally at a dose of 20 mg represents a good clinical probe for 

both hepatic and intestinal BCRP function (Table 1).  The selected oral dose should be sufficient 

to capture BCRP DDI, while minimizing any potential safety concerns associated with increased 

exposure at the upper limit of known clinical DDIs.  Selection of a 20 mg oral rosuvastatin dose 

for the clinical DDI study can theoretically be paired with a 4 mg intravenous dose, reflecting the 

reported 20% oral bioavailability (Martin et al., 2003).  In the case of intravenous rosuvastatin, 

inhibition of hepatic BCRP would interrupt enterohepatic recycling; monitoring of the changes in 

rosuvastatin pharmacodynamic effect relative to the control data would allow assessment of its 

contribution.  Rosuvastatin DDI studies should be conducted in a cross-over design, ideally in 

subjects with the highest BCRP and OATP activity, and report rosuvastatin pharmacokinetics 
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and cholesterol lowering effect at baseline and in the presence of a perpetrator.  Comparison of 

the increase in rosuvastatin exposure after intravenous and oral administration and any changes 

in the PD effect will enable differentiation of the magnitude of hepatic and intestinal BCRP 

interaction. 
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Potential Clinical BCRP Inhibitors 

Identifying a drug or diet-derived/natural product that can be used as a selective BCRP 

inhibitor in a clinical DDI study is challenging, as currently available compounds are not 

selective for BCRP and inhibit other transporters and drug metabolizing enzymes (Leggas et al., 

2006; Lainey et al., 2012; Fujita et al., 2013; Jamei et al., 2014; Poirier et al., 2014; Shukla et al., 

2014).  Upon careful consideration of inhibition data generated from various in vitro and in vivo 

studies, there is a high likelihood that any known BCRP inhibitor will inhibit other membrane 

transporters or metabolic enzymes.  Given these limitations, the most potent and selective BCRP 

inhibitors were identified that complement the proposed BCRP substrates for their potential use 

in clinical DDI studies.  Such inhibitors were selected through a comprehensive literature search 

using the University of Washington Drug Interaction Database 

(http://www.druginteractioninfo.org) and the University of California, San Francisco-FDA 

TransPortal (http://bts.ucsf.edu/fdatransportal). 

Identifying Potential BCRP Inhibitors.  Known BCRP inhibitors with IC50 (or Ki) 

values <10 µM were identified that could potentially be used in a clinical DDI study (Table 5).  

Compounds for which the IC50 could not be obtained from the literature or considered 

impractical for use in a clinical study (e.g., cyclosporine) were not considered further.  Cmax 

values for the identified BCRP inhibitors were used to determine [I1]/IC50 values, which were 

then used to predict the potency of systemic BCRP inhibition (FDA, EMA 2012).  Similarly, 

maximum intestinal concentrations, estimated as the highest approved dose/250 mL, were used 

to calculate [I2]/IC50 values, which were used to predict the potency of intestinal BCRP 

inhibition (Supplemental Table 1) (FDA, EMA 2012).  If only a Ki was available, the IC50 was 

assumed to be equivalent to 2xKi when substrate concentration is equal to the Km (Zhang et al., 
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2008).  Drugs for which literature data supported inhibition of BCRP in vivo were included in 

the final assessment of potential inhibitors of systemic and intestinal BCRP.  To undergo further 

consideration, a compound had to meet our criteria set at [I1]/IC50>1 or [I2]/IC50>20 for a high 

likelihood of clinical inhibition, which had to be supported by literature evidence that the 

compound either inhibits or is a BCRP substrate in vivo (i.e. a competitive inhibitor), BCRP 

inhibitors were rank ordered from highest to lowest [I1]/IC50 (Table 6) and [I2]/IC50 (Table 7).   

 In addition to a rank ordering of systemic and intestinal BCRP inhibition potential, a 

detailed assessment of the inhibition potential of other transporters and drug metabolizing 

enzymes was considered (Tables 6 and 7).  The comprehensiveness of these tables reflects the 

difficulty encountered when selecting a viable substrate-inhibitor pair, as multiple inhibitory 

interactions occurring simultaneously will confound data interpretation concerning specific 

BCRP involvement in substrate pharmacokinetics.  Such potential nonselective interactions were 

carefully considered, after which most identified BCRP inhibitors were eliminated.  The final 

selected BCRP inhibitors have inherent pros and cons, which are detailed below. 

Sulfasalazine.  Sulfasalazine is a BCRP substrate with limited absorption due to efficient 

intestinal BCRP efflux into the lumen, as well as low permeability and low solubility (Azulfidine 

Prescribing Information, 2011).  Being a substrate, sulfasalazine may act as a competitive 

inhibitor of BCRP, with reported IC50 values as low as 0.46 µM (Elsby et al., 2011).  The Cmax 

range for a single 3 to 4 gram dose of sulfasalazine is 38-79 µM (Goodman et al., 2001), 

resulting in a maximum [I1]/IC50 value of 170 (Table 6), and an [I2]/IC50 value of 87,000 (Table 

7).  As such, sulfasalazine could be used as a BCRP inhibitor in a clinical study when paired with 

a BCRP substrate such as rosuvastatin.  However, sulfasalazine also inhibits OATP-mediated 

uptake, in particular OATP1B1 [IC50 = 0.56 µM (Karlgren et al., 2012b)].  As OATP1B1 is one 
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of the primary transporters responsible for taking up rosuvastatin into the liver (Simonson et al., 

2004; Ho et al., 2006; Pasanen et al., 2007), and the inhibitory potency towards OATP1B1 is 

similar to that of BCRP, OATP1B1 becomes a major confounding factor.  Therefore, 

sulfasalazine was excluded from consideration for use as a clinical BCRP inhibitor. 

Elacridar.  Elacridar was originally designed and developed as a reversal agent of P-

glycoprotein and BCRP to overcome multidrug resistance.  Although, elacridar increases the 

accumulation of several anticancer agents in preclinical tumor models (Hyafil et al., 1993; 

Agarwal et al., 2012), it is not a systemically-potent efflux inhibitor at chronically-tolerated 

doses in humans (Kalvass et al., 2013).  However in the intestine, elacridar has been shown to 

increase topotecan bioavailability via inhibition of BCRP (Kruijtzer et al., 2002; Kuppens et al., 

2007).  These observations are consistent with elacridar ranking low in terms of systemic BCRP 

inhibition ([I1]/IC50 = 1.1, Table 6), but high with respect to intestinal BCRP inhibition ([I2]/IC50 

= 9,200, Table 7).  The use of elacridar as a clinical intestinal BCRP inhibitor is precluded by the 

fact that this compound is not currently approved by the FDA or EMA for use in humans.  

Furthermore, elacridar is an even more potent inhibitor of P-gp than BCRP ([I2]/IC50 = 180,000) 

and would not be suitable for elucidating the intestinal BCRP contribution to limiting the 

absorption of dual substrates. 

Proton Pump Inhibitors.  Multiple proton pump inhibitors (PPIs) inhibit BCRP in vitro; 

however, pantoprazole and rabeprazole are the only two that meet the aforementioned criteria for 

consideration as clinical inhibitors (Tables 6 and 7); however, clinical and/or preclinical proof-

of-concept studies have not been reported.  Despite clear advantages to using an inhibitor with an 

acceptable safety profile such as pantoprazole (Remes-Troche et al., 2014) or rabeprazole 

(Zouboulis-Vafiadis et al., 2014), these drugs are not as potent BCRP inhibitors as the tyrosine 
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kinase inhibitors with respect to the [I2]/IC50 values (Table 7) where preclinical proof of concept 

has been demonstrated (Zaher et al., 2006).  Similarly, pantoprazole marginally meets the pre-

defined criterion for systemic BCRP inhibition, with an [I1]/IC50 value of 1.2 (Table 6).  As such, 

although using a PPI may minimize the safety risks, other drugs are expected to offer a superior 

in vivo inhibition profile, rendering data interpretation more straightforward.  Finally, any 

observed DDIs with PPIs are fundamentally confounded by increased gastrointestinal pH (Ware 

et al., 2013), and a separate intestinal pH control arm must be incorporated into the clinical study 

with a PPI, which is not a BCRP inhibitor to control for this effect (Adkison et al., 2010).   

Natural Products.  Several diet-derived/natural product constituents such as curcumin, 

daidzein, genistein, chrysin, 7,8-benzoflavone and glycyrrhetic acid have been shown to inhibit 

human BCRP in vitro (Zhang et al., 2005a; Yoshida et al., 2008; Merino et al., 2010; Tamaki et 

al., 2010).  In addition, a mixture of the soy isoflavones genistein and daidzein was shown to 

inhibit Bcrp in wild-type but not Bcrp-knockout mice, supporting specificity for Bcrp inhibition 

(Merino et al., 2010).  Of these constituents, only curcumin has been evaluated clinically as a 

BCRP inhibitor.  Curcumin is the principal curcuminoid in turmeric, a commonly used spice 

derived from the rhizomes of Curcuma longa, a member of the ginger family.  Curcuminoids are 

polyphenols that render turmeric yellow in color (Sharma et al., 2005).  Curcumin is a potent 

inhibitor of BCRP, with a Ki of 0.7 µM determined with membrane vesicles over-expressing 

human BCRP and sulfasalazine as the probe substrate (Kusuhara et al., 2012).  Based on the 

[I2]/IC50, curcumin is predicted to inhibit intestinal BCRP in vivo.  Several clinical studies 

involving oral curcumin have been conducted, with doses ranging from 2000 to 8000 mg (Cheng 

et al., 2001; Kusuhara et al., 2012).  Curcumin was well tolerated, with no signs of toxicity 

observed during a phase I study in which the subjects were administered oral doses of 8000 
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mg/day for 3 months (Cheng et al., 2001).  At 2000 mg/day, curcumin increased sulfasalazine 

exposure 3.2-fold, which was attributed to inhibition of intestinal BCRP (Kusuhara et al., 2012).  

Because curcumin is considered a food or dietary supplement, and thus not subject to strict 

manufacturing controls as drugs, the purity and reproducibility with respect to constituent 

composition, stability, and dissolution characteristics is not assured.  Accordingly, a natural 

products chemistry laboratory should be consulted for sourcing and analyzing the test product.   

Tyrosine kinase inhibitors.  Tyrosine kinase inhibitors (TKIs) are a relatively new 

generation of anti-cancer drugs that are generally well tolerated.  Several TKIs (erlotinib, 

gefitinib, lapatinib, nilotinib, and sunitinib) are potent BCRP inhibitors with acceptable safety 

margins to be considered for use in healthy volunteers.  One clear advantage to using a TKI as a 

clinical BCRP inhibitor is that, with the exception of sunitinib, TKIs are predicted to inhibit 

intestinal as well as systemic BCRP.  Based on the rank ordering of inhibitory potency for TKIs, 

lapatinib is the most potent when considering both intestinal and systemic inhibition of BCRP.  

Although in vitro data suggest that lapatinib may inhibit P-gp, OATP1B1, and CYP2C8 

concomitantly, these interactions are based on a high therapeutic dose of 1250 mg.  However, at 

a sub-therapeutic dose of 250 mg, based on [I1]/IC50 and [I2]/IC50 values (22 and 40,000, 

respectively), lapatinib is predicted to effectively inhibit BCRP (Table 6 and 7).  Although 

lapatinib carries a black box warning for hepatotoxicity rarely observed during chronic use in 

cancer patients (TYKERB® product label, 10/18/2013, 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022059s016s017lbl.pdf), it is well 

tolerated acutely, as doses up to 7000 mg/day have shown no dose limiting toxicities (Chien et 

al., 2014).  At clinical doses, the diarrhea associated with patient treatment would be the only 
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potential concern; however, this adverse effect typically resolves within 24-48 hours of treatment 

cessation (MacFarlane and Gelmon, 2011; Chien et al., 2014).   
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Clinical Evidence-Based Recommendations for BCRP Inhibitor Selection.   

Considering the totality of available information, two compounds emerge as potential 

clinical BCRP inhibitors for use in DDI studies.  To discern the effect of intestinal-specific 

BCRP inhibition, a single 2000 mg dose of curcumin is proposed to extensively inhibit intestinal, 

but not systemic, BCRP (Tables 6-7).  Due to poor absorption, curcumin is not detectable in 

plasma at this proposed dose (Garcea et al., 2005; Kusuhara et al., 2012), rendering the 

compound a practical choice for intestinal-specific BCRP inhibition.  The second proposed 

BCRP inhibitor is lapatinib.  Compared to a food product such as curcumin, the benefit of using 

a marketed drug to assess DDIs is that, among other things, a natural products chemistry 

laboratory need not be consulted.  The recommended sub-therapeutic oral dose of 250 mg should 

have minimal adverse effects and possibly attenuate the impact of inhibition of other transporters 

and metabolic enzymes (Castellino et al., 2012).  At this dose, lapatinib is predicted to inhibit 

both intestinal and systemic BCRP based on [I1]/IC50 and [I2]/IC50 values (Tables 6-7).   

One potential concern is that lapatinib may also inhibit OATP1B1, as rosuvastatin uptake is 

dependent on this transporter (the [I1]/IC50 is 0.29, which is marginally above the cut off value of 

0.1).  However, lapatinib is highly protein bound (>99%) so circulating levels of free drug 

available to inhibit OATP1B1 systemically will be significantly less than the total Cmax reported 

in Table 6.  Taking into account the concentration of lapatinib in the intestine and in the systemic 

circulation, lapatinib is likely to inhibit BCRP but not OATP1B1.   
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Recommendations for Clinical BCRP Drug Interaction Study Design 

This comprehensive review of potential clinical BCRP probe substrates and inhibitors 

identified two substrates and two inhibitors to assess BCRP-mediated DDIs in humans.  The two 

recommended probe substrates are sulfasalazine (1000 mg, IR, oral) and rosuvastatin (20 mg oral 

and 4 mg, intravenous), and the two inhibitors are curcumin (2000 mg, oral) and lapatinib (250 

mg, oral).  The combination of oral sulfasalazine with either inhibitor provides a substrate-

inhibitor pair to assess the extent of a potential intestinal BCRP DDI.  The dynamic range of 

sulfasalazine will provide a measure of the highest extent of an interaction due to inhibitor co-

administration.  Further, the combination of oral and intravenous rosuvastatin with both 

inhibitors will enable deconvolution of intestinal versus systemic BCRP contribution to 

rosuvastatin pharmacokinetics.  Based on these aims, a clinical study design is proposed to 

validate these approaches (Figure 1).  

Sulfasalazine Intestinal BCRP DDI.  Oral sulfasalazine (1000 mg, IR, single dose) is 

recommended to evaluate intestinal BCRP-mediated DDIs.  The study will be an open-label, 3-

period cross-over study involving 10 subjects genotyped for the BCRP reference allele and 

phenotyped for rapid NAT2 acetylator status prior to enrollment.  Sulfasalazine will be 

administered alone and in combination with oral curcumin (2000 mg, single dose) or lapatinib 

(250 mg, single dose) (Figure 1).  Subjects will undergo three treatments with at least a 1-week 

washout between treatments as follows: sulfasalazine alone, sulfasalazine plus curcumin, and 

sulfasalazine plus lapatinib.  Pharmacokinetics of both sulfasalazine and sulfapyridine will be 

determined, with the DDI reported as both an increase in sulfasalazine exposure and decrease in 

the sulfapyridine/sulfasalazine AUC ratio. 
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 Rosuvastatin Intestinal and Hepatic BCRP DDI.  Oral rosuvastatin (20 mg, single 

dose) is recommended to evaluate intestinal and hepatic BCRP DDIs, whereas intravenous 

rosuvastatin (4 mg, single dose) is recommended to evaluate hepatic BCRP DDIs.  Each 

rosuvastatin administration route will include an open-label, 3-period cross-over study involving 

subjects genotyped for the BCRP and OATP1B1 reference alleles prior to enrollment. 

Rosuvastatin will be administered alone and with oral curcumin (2000 mg, single dose) or 

lapatinib (250 mg, single dose) (Figure 1).  Treatments include intravenous rosuvastatin alone, 

intravenous rosuvastatin plus oral curcumin, intravenous rosuvastatin plus oral lapatinib, oral 

rosuvastatin alone, oral rosuvastatin plus oral curcumin, and oral rosuvastatin plus oral lapatinib.  

Inclusion of cholesterol monitoring will provide insight towards hepatic accumulation of 

rosuvastatin due to inhibition of hepatic BCRP.  Changes in rosuvastatin exposure relative to the 

control will be the DDI study endpoint. 
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Conclusions 

The regulatory recommendation to evaluate the contribution of BCRP to drug disposition 

and DDIs in clinical studies has posed challenges across the pharmaceutical industry.  These 

challenges primarily reflect the lack of selective and specific human BCRP substrates and 

inhibitors, as well as a lack of established and accepted optimal clinical study designs.  As 

described throughout this review, BCRP substrates and inhibitors suitable for human use were 

identified through a comprehensive analysis of available pharmacogenetics and DDI data.  Two 

substrates were selected to probe intestinal and/or hepatic BCRP-mediated DDIs.  Oral 

sulfasalazine (1000 mg, IR tablets) was deemed the best available probe for intestinal BCRP, 

oral rosuvastatin (20 mg) as the best available probe for both intestinal and hepatic BCRP, and 

intravenous rosuvastatin (4 mg) as the best available probe for hepatic BCRP.  Oral curcumin 

(2000 mg) and oral lapatinib (sub-efficacious 250 mg dose) were deemed the best available 

BCRP inhibitors.  Optimal study designs that would elicit the worst-case clinical BCRP DDI 

scenarios are proposed (Figure 1).  The pharmacokinetic data obtained from the proposed 9-arm 

clinical study should provide the pharmaceutical industry and regulatory agencies insight into the 

extent of BCRP-mediated clinical DDIs, as well as validate clinical study designs that enable 

optimal assessment of intestinal and combined intestinal and hepatic BCRP-mediated DDIs. 
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Table 1.  Summary of rosuvastatin BCRP pharmacogenomic studies and associated effect on its pharmacokinetics 

Dose*  Subject Race & Sex 
BCRP c.421C>A 

Genotype 
OATP1B1 Phenotype Effect of c.421C>A SNP  

 
Reference 

20 mg SD Asian Chinese male 7- CC, 5 –CA, 2-AA 

 
All subjects had OATP1B1 
521TT and CYP2C9*1/*1 

genotypes ((wild type) 

1.78-fold AUC increase in 
421CA/AA genotype 

(combined)a 
Zhang 2006 

20 mg SD 
Caucasian 

(50% female) 
16-CC 12-CA, 4-

AA 

Individuals with the 
OATP1B1 521CC genotype 

not includedb 

 
1.2-fold AUC increase in 

421CA (NS); 
2.44- and 2.3-fold AUC and 

Cmax increase, respectively in 
421AAa 

Keskitalo 2009b 

5, 10 and 20 mg SD 
(1 week washout) 

Asian Chinese 
15-CC, 15-CA, 6- 

AA 

No significant effect of 
CYP2C9*3 and OATP1B1 

c.521 T > C 

1.6-fold AUC increase in 421 
AAc 

Zhou 2013 

10 mg/day 
(min 4 weeks) 

Asian Chinese 
(52% female) 

129-CC, 108- CA, 
39-AA 

205- OATP1B1 521TT and 
62/5- TC/CC. 

Rosuvastatin plasma 
concentrations affected by 
both BCRP 421C>A and 

OATPB1 521T>C e 

 

2.2-fold increase in mean 
plasma concentrations in 

421AAa,d 
 

BCRP 421C>A (but not 
OATP1B1521 T>C) strongly 
associated with the LDL-C 

response to rosuvastatin 

Lee 2013 
 

      

*The route of administration was oral in all cases 
a Denotes significant change, p<0.05  
b Subjects had ABCB1 1199GG reference genotype 
c Dose-normalized changes (based on 5 mg)  
d 1.99-fold increase in mean plasma concentration of N-desmethyl rosuvastatin  
e No effect of CYP2C9*1/*3 or *3/*3 on rosuvastatin PK or PD 
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Table 2.  Summary of clinical studies using sulfasalazine as the intestinal BCRP probe. 

Dose / 
Formulation* 

Subject 
Race & Sex 

BCRP c.421C>A 
Genotype 

NAT2 Phenotype 
Sulfasalazine AUC 

Variability 
Effect of c.421C>A SNP 
or BCRP inhibitor on PK 

 
Reference 

2000 mg IR tablet Asian men 
12-CC, 16-CA, 
9-AA 

13-RA, 16-IA, 8-
SA 

1.9-fold (95% CI, 
genotype controlled) 

1.9-fold AUC increase in 
421CA, 3.5-fold AUC 
increase in 421AA; clear 
gene-dose effect 

Yamasaki et al., 2008 

1000 mg 
suspension (also 
tested IR tablet) 

Caucasian 
men and 
women 

9-CC, 5-CA, 0-
AA 

Not genotyped, 
sulfapyridine PK 
not studied 

20.5-fold (max/min; 
genotype controlled) 

2.4-fold AUC increase in 
421CA genotype 

Urquhart et al., 2008 

500 mg enteric-
coated tablet 

Asian men 
12-CC, 12-CA, 
12-AA 

4-RA, 20-IA, 12-
SA 

21- to 81-fold 
(max/min; genotype 
controlled) 

None (trend for 2-fold 
AUC increase in AA 
genotype, NS); no clear 
gene-dose effect; no 
significant effect of 
BCRP inhibitor (40 mg 
pantoprazole) 

Adkison et al., 2010 

2000 mg / 100 µg      
IR tablet / 
suspension 

Asian men 8-CC 
Not genotyped, 
sulfapyridine PK 
not studied 

AUC CV = 24-40% 

Curcumin (2 g*) 
increased AUC 3.2-fold 
(therapeutic dose) and 2-
fold (microdose) 

Kushuhara et al., 2012 

*The route of administration was oral in all cases 
RA – rapid acetylator; IA – intermediate acetylator, SA – slow acetylator 
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Table 3. Compounds considered as in vivo human BCRP substrates based on available in vitro data.  

Object Object Therapeutic Class Experimental System Efflux Ratio a Km (µM) 

(–)–pantoprazole Proton Pump Inhibitors 
MDCK–transfected 

cells  
0.59 1 

(+)–pantoprazole Proton Pump Inhibitors 
MDCK–transfected 

cells  
5.32 1 

2'–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

5.4 2 

3,2'–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

35.9 2 

3,3'–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

45.2 2 

3,4'–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

35.9 2 

3,5–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

12.8 2 

3,5–di–O–caffeoylquinic acid Food Products Caco–2 cells 5.1 3 
3,6–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

31.9 2 

3,7–dihydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

3.5 2 

3'–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

5.6 2 

3–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

9.7 2 

4–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

17.5 2 

5–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

48.5 2 

6–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

26.8 2 

7–hydroxyflavone–O–
glucuronide 

Food Products HeLa–transfected cells 
 

9 2 
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aconitine Herbal Medications 
MDCK–transfected 

cells 
19.8 4 

 

apixaban Anticoagulants and Antiplatelets 
MDCK–transfected 

cells 
12 5 

 

axitinib Kinase Inhibitors 
MDCK–transfected 

cells 
3.4 6 

 

barasertib hydroxy–QPA Kinase Inhibitors 
MDCK–transfected 

cells 
2.31 7 

 

boceprevir Antivirals 
MDCK–transfected 

cells 
2 8 

 

bupropion 
Dopamine–Norepinephrine Reuptake 

Inhibitors 
Membrane vesicles 

 
3 9 

canertinib Kinase Inhibitors 
MDCK–transfected 

cells 
2.8 10 

 

chlorothiazide Diuretics 
MDCK–transfected 

cells 
36 11 

 

cimetidine H–2 Receptor Antagonists 
MDCK–transfected 

cells 
3.4 12 

 

ciprofloxacin Antibiotics 
MDCK–transfected 

cells 
2.9 13 

 
dantrolene Muscle Relaxants Caco–2 cells 5 14 
daunorubicin Anthracyclines Caco–2 cells 4.9 15 
dimenhydrinate H–1 Receptor Antagonists Caco–2 cells 9.8 16 

dipyridamole Anticoagulants and Antiplatelets 
MDCK–transfected 

cells 
2.7 17 

 

dolutegravir 
HIV–Integrase Strand Transfer 

Inhibitors 
MDCK–transfected 

cells 
3.1 18 

 
edaravone sulfate Neuroprotectors Membrane vesicles 16.5 19 
erythromycin Antibiotics Caco–2 cells 8.1 15 
estradiol–17–β–glucuronide Estrogens Membrane vesicles 44.2 20 
estrone–3–sulfate Estrogens Caco–2 cells 48.5 21 6.8 22,b 
ethinyl estradiol sulfate Estrogens Membrane vesicles 2.9 23 
etoposide Topoisomerase Inhibitors Caco–2 cells 12.7 15 

flavopiridol (alvocidib) Kinase Inhibitors 
MDCK–transfected 

cells 
6 24 
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fluvastatin 
HMG CoA Reductase Inhibitors 

(Statins) 
Caco–2 cells 4.9 15 

 
furosemide Diuretics Caco–2 cells 17.5 15 

gemifloxacin Antibiotics 
MDCK–transfected 

cells  
145.69 25 

genistein Food Products 
LLC–PK1–transfected 

cells 
2 26 

 

glyburide (glibenclamide) Sulfonylureas 
MDCK–transfected 

cells 
9.3 27 13.07 28,c 

grepafloxacin Antibiotics 
MDCK–transfected 

cells 
9.14 29 

 
hematoporphyrin Photosensitizing agent Membrane vesicles 17.8 30 

hypaconitine Herbal Medications 
MDCK–transfected 

cells 
7.6 4 

 

imatinib Kinase Inhibitors 
MDCK–transfected 

cells 
2.4 24 

 
irinotecan Topoisomerase Inhibitors Caco–2 cells 3.7 15 

      –SN–38 Topoisomerase Inhibitors 
MDCK–transfected 

cells 
8.4 10 4 31,b 

      –SN–38 glucuronide Topoisomerase Inhibitors Membrane vesicles 26 31 

lamivudine 
Nucleoside Reverse Transcriptase 

Inhibitors (NRTIs) 
MDCK–transfected 

cells 
3 32 216.5 32 

lapatinib Kinase Inhibitors 
MDCK–transfected 

cells 
2.6 33 

 

mesaconitine Herbal Medications 
MDCK–transfected 

cells 
11.1 4 

 

methotrexate Antimetabolites 
MDCK–transfected 

cells 
6.78 34 681 35,b 

mitoxantrone Other Antineoplastics 
MDCK–transfected 

cells 
6.1 10 

 
nitrofurantoin Anti–Infective Agents Caco–2 cells 24.1 15 69.4 36 
norfloxacin Antibiotics Caco–2 cells 3 15 

olomoucine II Kinase Inhibitors 
MDCK–transfected 

cells 
2.27 37 

 
pemetrexed Antimetabolites Membrane vesicles 390 38 
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pitavastatin 
HMG CoA Reductase Inhibitors 

(Statins) 
Membrane vesicles 

 
5.73 39 

prazosin Alpha/Beta Adrenergic Antagonists 
MDCK–transfected 

cells 
11.1 40 

 
rivaroxaban Anticoagulants and Antiplatelets Caco–2 cells 2.82 41 

rosuvastatin 
HMG CoA Reductase Inhibitors 

(Statins) 
Caco–2 cells 83.2 40 2.02 42,b 

sildenafil Erectile Dysfunction Treatments 
MDCK–transfected 

cells 
3.59 43 22.4 43 

sorafenib Kinase Inhibitors 
MDCK–transfected 

cells 
2.7 44 

 
sulfasalazine NSAIDS Caco–2 cells 87 45 0.7 46,b 

sunitinib Kinase Inhibitors 
MDCK–transfected 

cells 
1.9 47,d 

 
      –N–desethyl sunitinib 
(SU12662) 

Kinase Inhibitors 
MDCK–transfected 

cells 
13.5 48 

 
tandutinib Kinase Inhibitors Caco–2 cells 5 49 4 49 

temocapril 
Angiotensin Converting Enzyme (ACE) 

Inhibitors 
Caco–2 cells 5.56 50 

 
teniposide Topoisomerase Inhibitors Caco–2 cells 10.8 15 
teriflunomide Other Immunomodulators Caco–2 cells 9.37 51 
topotecan Topoisomerase Inhibitors Caco–2 cells 6.9 15 213.28 52,e 

troglitazone sulfate Thiazolidinediones 
MDCK–transfected 

cells 
6.42 53 

 

ulifloxacin Antibiotics 
MDCK–transfected 

cells 
2.95 29 

 

vardenafil Erectile Dysfunction Treatments 
MDCK–transfected 

cells 
4.12 43 14.3 43 

Metabolites are listed below the respective parent compound.  Km and efflux ratio values are presented as reported in the respective references. 

a compounds with efflux ratios >2 were selected for further consideration 

b kinetic experiments were performed in membrane vesicles 

c kinetic experiments were performed in HEK–transfected cells 

d included in the list because metabolite has an efflux ratio >2 
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e kinetic experiments were performed in MDCK–transfected cells 

1 (Wang et al., 2012); 2 (Wei et al., 2013); 3 (Farrell et al., 2012); 4 (Ye et al., 2013); 5 (Zhang et al., 2013); 6 FDA (2012) Drug approval package: INLYTA® (axitinib) [FDA 
application no, (NDA) 202324].; 7 (Marchetti et al., 2013); 8 (Chu et al., 2013a); 9 (Hemauer et al., 2010); 10 (Xiao et al., 2006); 11 (Beery et al., 2012); 12 (Pavek et al., 2005); 13 
(Merino et al., 2006); 14 (Xiao et al., 2012); 15 (Lin et al., 2011); 16 (Crowe and Wright, 2012); 17 (Zhang et al., 2005b); 18 (Reese et al., 2013); 19 (Mizuno et al., 2007); 20 (Chen et 
al., 2003); 21 (Li et al., 2011a); 22 (Imai et al., 2003); 23 (Han et al., 2010); 24 (Zhou et al., 2009); 25 (Jin et al., 2013); 26 (Imai et al., 2004); 27 (Varma et al., 2014); 28 (Pollex et al., 
2010); 29 (Ando et al., 2007); 30 (Tamura et al., 2006); 31 (Nakatomi et al., 2001); 32 (Kim et al., 2007); 33 (Polli et al., 2008); 34 (Xia et al., 2007); 35 (Volk and Schneider, 2003); 36 
(Wright et al., 2011); 37 (Hofman et al., 2013); 38 (Li et al., 2011b); 39 (Hirano et al., 2005); 40 (Li et al., 2012); 41 (Gong et al., 2013); 42 (Kitamura et al., 2008); 43 (Choi and Song, 
2012); 44 (Lagas et al., 2010); 45 (Wang et al., 2008); 46 (Jani et al., 2009); 47 (Tang et al., 2012a); 48 (Tang et al., 2012b); 49 (Yang et al., 2010); 50 (Ohura et al., 2011); 51 FDA 
(2012) Drug approval package: AUBAGIO® (teriflunomide) [FDA application no, (NDA) 202992].; 52 (Li et al., 2008); 53 (Enokizono et al., 2007a) 
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Table 4. In vivo drug interaction studies involving rosuvastatin and sulfasalazine indicating at least partial contribution by BCRP. 

Object Object Dose* Precipitant 
Precipitant Therapeutic 

Class Precipitant Dose* 
% Change in 

AUCa 

sulfasalazine 2 g SD curcumin Food Products 2 g SD 220 1 

 
500 mg SD pantoprazole Proton Pump Inhibitors 40 mg SD 83 2,b 

 
100 µg SD curcumin Food Products 2 g SD 83 1 

rosuvastatin 
10 mg QD x 
10D 

cyclosporine Immunosuppressants 
75 to 200 mg BID (stable 
dose for at least 2 
months) 

610 3,c 

 
10 mg SD 

atazanavir + 
ritonavir 

Protease Inhibitors 
300 mg atazanavir + 100 
mg ritonavir QD x 6D 

210 4 

 
20 mg QD x 
7D 

lopinavir + 
ritonavir 

Protease Inhibitors 
400 mg lopinavir + 100 
mg ritonavir BID x 7D 

110 5 

 
10 mg SD eltrombopag 

Platelet Stimulating 
Agents 

75 mg QD x 5D 55 6 

 
10 mg SD 

elvitegravir + 
cobicistat 

AIDS Treatments 
150 mg elvitegravir + 
150 mg cobicistat QD x 
10D 

40 7 

 
10 mg SD 

tipranavir + 
ritonavir 

Protease Inhibitors 
500 mg tipranavir + 200 
mg ritonavir BID x 11D 

37 8 

*The route of administration was oral in all cases 

a - Values were extracted from the DIDB and calculated as the change in mean AUC values. 

b - AUC change observed with 421A/C genotype and was not statistically different from control  

c - change in AUC was calculated using healthy historical controls 
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1 (Kusuhara et al., 2012); 2 (Adkison et al., 2010); 3 (Simonson et al., 2004); 4 (Busti et al., 2008); 5 (Kiser et al., 2008); 6 (Allred et al., 
2011); 7 (Custodio et al., 2014); 8 (Pham et al., 2009)  
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Table 5.  Compounds considered as in vivo BCRP inhibitors, based on in vitro IC50 or Ki values < 10 µM 

Precipitant Therapeutic Class Ki (µM) IC50 (µM) 

afatinib Kinase Inhibitors – 0.75 1 

aripiprazole Antipsychotics – 3.5 2 

axitinib Kinase Inhibitors – 4.4 3 

curcumin Food Products – 1.6 4 

cyclosporine Immunosuppressants 6.7 5 13.4 a 

erlotinib Kinase Inhibitors 0.15 6 0.13 6 

elacridar drug distribution modulator – 0.31 7 

fluvastatin HMG CoA Reductase Inhibitors 5.43 8 10.86 a 

fumitremorgin C 
(FTC) 

None 0.55 6 0.25 6 

gefitinib Kinase Inhibitors – 1.01 9 

ivermectin Antiparasitics 1.4 10 2.8 a 

ko143 Transporter Modulators – 0.013 5 

lapatinib Kinase Inhibitors – 0.025 11 

nilotinib Kinase Inhibitors 0.69 12 1.38 a 

novobiocin Antibiotics 0.063 13 

pantoprazole Proton Pump Inhibitors – 5.5 14 

pitavastatin HMG CoA Reductase Inhibitors 2.92 8 5.84 a 

ponatinib Kinase Inhibitors – 0.013 15 

quercetin Food Products – 0.6 16 

quizartinib (AC220) Kinase Inhibitors – 0.5 17 

rabeprazole Proton Pump Inhibitors – 8.5 14 

regorafenib Kinase Inhibitors – 0.0447 18 

rilpivirine NonNucleoside Reverse Transcriptase Inhibitors – 1.5 19 

sulfasalazine NSAIDS – 0.46 13 

sunitinib Kinase Inhibitors 0.32 20 0.64 a 

tacrolimus Immunosuppressants – 6 16 

teriflunomide Other Immunomodulators – 0.146 21 
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trametinib Kinase Inhibitors – 1.1 22 

trifluoperazine Antipsychotics – 7.56 23 

vismodegib Cancer Treatments – 2.4 24 

IC50 and Ki values are presented as reported in the respective references. 

a IC50 value was calculated as 2xKi, assuming linearity 

1 FDA (2013) Drug approval package: GILOTRIF® (afatinib dimaleate) [FDA application no, (NDA) 201292];  2 (Nagasaka et al., 2012); 3 (Reyner et al., 2013); 4 (Kusuhara et al., 
2012); 5 (Xia et al., 2007); 6 (Noguchi et al., 2009); 7 (Si et al., 2013); 8 (Hirano et al., 2005); 9 (Yanase et al., 2004); 10 (Jani et al., 2011); 11 (Polli et al., 2008); 12 (Tiwari et al., 
2009); 13 (Elsby et al., 2011); 14 (Suzuki et al., 2009); 15 FDA (2012) Drug approval package: ICLUSIG® (ponatinib hydrochloride) [FDA application no, (NDA) 203469]; 16 (Saito 
et al., 2006); 17 (Bhullar et al., 2013); 18 FDA (2012) Drug approval package: STIVARGA® (regorafenib) [FDA application no, (NDA) 203085]; 19 (Weiss and Haefeli, 2013); 20 
(Kawahara et al., 2010); 21 FDA (2012) Drug approval package: AUBAGIO® (teriflunomide) [FDA application no, (NDA) 202992]; 22 FDA (2013) Drug approval package: 
MEKINIST® (trametinib dimethyl sulfoxide) [FDA application no, (NDA) 204114]; 23 (Pan et al., 2013); 24 FDA (2012) Drug approval package: ERIVEDGE® (vismodegib) [FDA 
application no, (NDA) 203388] 
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Table 6. In vitro and in vivo data and considerations for potential systemic BCRP inhibitors. 

 

Precipitant 
I1 

(µM, 
Cmax) 

Plasma 
Binding 

(%) 
Dose 

BCRP parameters Other possible systemic interactions 

Ki 
(µM) 

IC50 

(µM) 
[I1]/IC50 

In vivo PK–based 
DDI data 

Transporter
/ Enzyme 

IC50 
(µM) 

[I1]/IC50 
In vivo PK–based 

DDI data 

regorafenib 8.1 1 99.5 1 
160 
mg 

(SS) 1 
– 

0.0447 
TOP 2 

180 
No published 

inhibition data 3 

P–gp 0.8 2 10   

CYP3A4 22.2 a,2 0.36   

CYP2C8 1.2 a,2 6.8   

CYP2C9 9.4 a,2 0.86   

CYP2B6 10.4 a,2 0.78   

CYP2C19 32.8 a,2 0.25   

UGT1A1 6 2 1.4 

SN–38 glucuronide 
AUC +44% (when 
co–administered with 
irinotecan) 2 

UGT1A9 4.2 2 1.9   

sulfasalazine 79 4 >99.7 4 
3–4 g 
SD 4 

– 
0.46 

E3S 5 
170 

No effect with 
methotrexate 6, 
however in vivo 

substrate 7 

OATP1B1     0.56 8 140   

OATP1B3   12 8 6.6   

OATP2B1 3 8 26   
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lapatinib 4.2 b, 9 >99 9 

1250 
mg 
QD 

(SS) 9 

– 
0.025 

CIM 10 
170 c 

Decreased 
topotecan 

clearance, –18% 
(renal –22%) 11, 

SN–38 +45% AUC 
12 

P–gp 1.5 13 2.8 
Digoxin AUC +2.8–
fold 9 

OATP1B1 4 10 1.0 SN–38 AUC +45% 12 

CYP3A 39 14 0.11 
Midazolam AUC 
+45% (oral) +22% 
(IV) 9 

CYP2D6 13.8 14 0.30   

CYP2C8 1.2 a,14 3.5 
Paclitaxel AUC 
+23% 8 

CYP2C9 11.8 14 0.36   

CYP2C19 27.2 14 0.15   

erlotinib 6.06 15 90 15 

150 
mg 

QD x 
21D 15 

0.15 
E3S 16 

0.13 
E3S 16 

47 
No effect on 
topotecan 17 

P–gp 2 16 3.0   

OATP1B1 21 8 0.29   

OATP1B3   44 8 0.14   

OATP2B1 0.55 8 11   

CYP3A4 2.56 a,18 2.4 

2–fold increase in 
exposure of OSI–930 
23, everolimus AUC 
+21% 24, case report 
of toxicity with 
simvastatin 25 

CYP3A5 80 a,19 0.08 

2–fold increase in 
exposure of OSI–930 
23, everolimus AUC 
+21% 24, case report 
of toxicity with 
simvastatin 25 
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CYP2D6 37% 20 –   

CYP2C8 8.04 a,18 0.75 
No effect on 
paclitaxel 26 

CYP2C9 49% 20 – 
Case report of 
increased INR with 
warfarin 27 

CYP1A2 30% 20 –   

CYP2C19 42.9 21 0.14   

UGT1A1 1.28 a,22 4.7 
No effect on 
irinotecan/SN–38 28 

nilotinib 4.3 29 98 29 

400 
mg 

BID x 
15D 29 

0.69 
MTX 30 

1.38 3.1 No inhibition data 

P–gp 1.7 29 2.5   

OCT1 2.92 31 0.47   

OCT2  >30 31     

OCT3 0.345 31 4.0   

CYP3A4 0.4 32 11 
Midazolam AUC 
+30% 29 

CYP2C8 0.4 21 11   

CYP2C9 
0.264 

a,29 
16 

No effect on S–
warfarin 34 

CYP2D6 2.92 a,29 1.5   

CYP2C19 7.64 a,29 0.56   
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UGT1A1 0.28 a,33 15   

UGT1A7 7.8 a,33 0.55   

pantoprazole 6.5 35 98 35 
40 mg 
SD 35 

– 
5.5 

MTX 36 
1.2 

Sulfasalazine AUC 
+83.3% (not 

significant) with 
421A/C genotype 
37, Case report of 

toxicity with 
methotrexate 38 

P–gp 17.9 39 0.36 
No effect on digoxin 
44,45 

OATP1B1 54% 40 – 
  

CYP3A4      1 41 6.5 

No effect on 
carbamazepine 46, 
nifedipine 47, 48, 
tacrolimus 49 

CYP2D6 15 41 0.43 
No effect on 
metoprolol 50 

CYP2C9 13.0 a,42 0.50 
No effect on S–
warfarin 51, 
diclofenac 52, 53 

CYP2C19 4.1 43 0.46 
No effect on 
phenytoin 54,55, 
diazepam 56 

CYP2B6 200 41 0.03   

elacridar 
0.327 

57 
Not 

available 

400 
mg 

BID x 
3D 57 

– 
0.31 

MIT 58 
1.1 

Topotecan (IV) 
AUC +143% 59 

P–gp 
0.0156 

60 
21 

Doxorubicin AUC 
+46% 57, topotecan 
(IV) AUC +143% 59, 
paclitaxel AUC 
increase 63 

OATP1B1 <<20 61 –   

OATP1B3   >20 8 –   

OATP2B1 <20 8 –   

CYP3A4 4.9 62 0.07   
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CYP2C9 19.1 62 0.02   

CYP1A2 16 62 0.02   

CYP2C19 2.05 62 0.16   

gefitinib 0.8 64 90 64 

225 
mg 

QD x 
14D 64 

– 
1.01 

E3S 65 
0.79 No inhibition data 

CYP3A4      9.6 a,18 0.08 
No effect on 
docetaxel 66, 
everolimus 67 

CYP2D6 13.8 21 0.06 
Metoprolol AUC 
+49.5% 68 

CYP2C8 17.4 a 18 0.05   

CYP2C19 36 62 0.02   

IC50 and Ki values are presented as reported in the respective references, along with the substrate used: CIM – cimetidine, E3S – estrone-3-sulfate, MTX – methotrexate, MIT – 
mitoxantrone, TOP – topotecan. 

a – IC50 was calculated as 2 x Ki, assuming linearity 

b – Cmax for proposed 250 mg dose = 0.54 µM (Bence et al., 2005) 

c – [I1]/IC50 value for proposed 250 mg dose = 22 

1 STIVARGA® product label (05/29/2013, http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203085s001lbl.pdf); 2 FDA (2012) Drug approval package: STIVARGA® 

(regorafenib) [FDA application no, (NDA) 203085]; 3 ongoing clinical trial to investigate effect as BCRP inhibitor: http://clinicaltrials.gov/show/NCT02106845; 4 (Goodman et al., 
2001); 5 (Elsby et al., 2011); 6 (Haagsma et al., 1996); 7 (Kusuhara et al., 2012); 8 (Karlgren et al., 2012b); 9 TYKERB® product label (10/18/2013, 
http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022059s016s017lbl.pdf); 10 (Polli et al., 2008); 11 (Molina et al., 2008); 12 (Midgley et al., 2007); 13 (Sugimoto et al., 
2011); 14 FDA (2012) Drug approval package: TYKERB® (lapatinib ditosylate) [FDA application no, (NDA) 022059]; 15 (Yamamoto et al., 2008); 16 (Noguchi et al., 2009); 17 
(Stewart et al., 2014); 18 (Wang et al., 2014); 19 (Li et al., 2010); 20 (Dong et al., 2011); 21 (Kim et al., 2013); 22 (Liu et al., 2010); 23 (Macpherson et al., 2013); 24 (Bullock et al., 
2011); 25 (Veeraputhiran and Sundermeyer, 2008); 26 (Tran et al., 2011); 27 (Thomas et al., 2010); 28 (Messersmith et al., 2004); 29 FDA (2012) Drug approval package: TASIGNA® 
(nilotinib hydrochloride monohydrate) [FDA application no, (NDA) 022068]; 30 (Tiwari et al., 2009); 31 (Minematsu and Giacomini, 2011); 32 (Kenny et al., 2012); 33 (Ai et al., 
2014); 34 (Yin et al., 2011); 35 PROTONIX® product label (12/10/2013, http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020987s048,022020s010lbl.pdf); 36 (Suzuki et 
al., 2009); 37 (Adkison et al., 2010); 38 (Ranchon et al., 2011); 39 (Pauli-Magnus et al., 2001); 40 (Oostendorp et al., 2009); 41 (Moody et al., 2013); 42 (Li et al., 2004); 43 (Zvyaga et 
al., 2012); 44 (Hartmann et al., 1995); 45 (Hartmann et al., 1996); 46 (Huber et al., 1998); 47 (Bliesath et al., 1996b); 48 (Bliesath et al., 1996a); 49 (Lorf et al., 2000); 50 (Koch et al., 
1996); 51 (Duursema et al., 1995); 52 (Bliesath et al., 1996d); 53 (Bliesath et al., 1996c); 54 (Middle et al., 1995); 55 (Middle et al., 1996); 56 (Gugler et al., 1996); 57 (Planting et al., 
2005); 58 (Ahmed-Belkacem et al., 2005); 59 (Kruijtzer et al., 2002); 60 (Dickens et al., 2013); 61 (Karlgren et al., 2012a); 62 (Englund et al., 2014); 63 (Malingre et al., 2001); 64 
(Goodman et al., 2005); 65 (Yanase et al., 2004); 66 (Wilding et al., 2006); 67 (Milton et al., 2007); 68 (Swaisland et al., 2005)  
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Table 7. In vitro and in vivo data and considerations for potential intestinal BCRP inhibitors. 

Precipitant 
I2 

(µM) 
Dose 

BCRP parameters Other possible intestinal Interactions 

Ki (µM) 
IC50 

(µM) 
I2/IC50 

In vivo PK–based 
DDI data 

Transporter/ 
Enzyme 

IC50 
(µM) 

I2/IC50 
In vivo PK–based 

DDI data 

lapatinib a 5300 b 

1250 
mg 
QD 

(SS) 1 

– 
0.025 
CIM 2 

210000 c 

Decreased topotecan 
clearance, -18% 

(renal -22%) 2, SN–
38 +45% AUC 4 

P–gp 1.5 5 3500 
Digoxin AUC 
+2.8–fold 1 

CYP3A 39 6 140 
Midazolam AUC 
+45% (oral) +22% 
(IV) 1 

sulfasalazine 
a 

40000 
3–4 g 
SD 7 

– 
0.46 
E3S 8 

87000 

No effect with 
methotrexate 9, 
however in vivo 

substrate 10 

OATP2B1 3 11 13000   

regorafenib a 1300 

160 
mg 

(SS) 
12 

– 
0.0447 
TOP 13 

28000 No inhibition data 14 

P–gp 0.8 13 1600   

CYP3A4 22.2 d,13 58   

UGT1A1 6 13 210 

SN–38 glucuronide 
AUC +44% (when 
co–administered 
with irinotecan) 13 

curcumin e 22000 
2 g 

SD 10 
0.7 SSZ 

10 
1.6 

SSZ10 
14000 

Sulfasalazine 
exposure increased 

significantly 10 

P–gp ~20 15 1100 
Talinolol AUC 
+33–54% 17, 18 

CYP3A4        13.9 16 1600   

erlotinib a 1500 

150 
mg 

QD x 
21D 

19 

0.15 20 
0.13 

E3S 20 
12000 

No effect on 
topotecan 21 

P–gp 2 20 760   

OATP2B1 0.55 11 2800   

CYP3A4        2.56 d,22 600 

2–fold increase in 
exposure of OSI–
930 25, everolimus 
AUC +21% 26, case 
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report of toxicity 
with simvastatin 27 

CYP3A5 80 c,23 19 

2–fold increase in 
exposure of OSI–
930 25, everolimus 
AUC +21% 26, case 
report of toxicity 
with simvastatin 27 

UGT1A1 1.28 d,24 1200 
No effect on 
irinotecan/SN–38 
28 

elacridar a 2800 

400 
mg 

BID x 
3D 29 

– 
0.31 

MIT 30 
9200 

Topotecan AUC 
+143% 31 

P–gp 0.0156 32 180000 

Doxorubicin AUC 
+46% 29, topotecan 
AUC +143% 31, 
paclitaxel AUC 
increase 34 

OATP2B1 <20 11 –   

CYP3A4 4.9 33 580   

nilotinib a 2800 

400 
mg 

BID x 
15D 

35 

0.69 
MTX 36 

1.38 2000 No inhibition data 

P–gp 1.7 35 1700   

CYP3A4 0.4 37 7100 
Midazolam AUC 
+30% 35 

UGT1A1 0.28 d,38 10000   

gefitinib a 2000 

225 
mg 

QD x 
14D 

39 

– 
1.01 

E3S 40 
2000 No inhibition data CYP3A4        9.6 d,22 210 

No effect on 
docetaxel 41, 
everolimus 42 

sunitinib 500 

50 
mg 

QD x 
28D 

0.32 
E3S 44 

0.64 780 
No inhibition data, 
in vivo substrate 45 

P–gp 15.2 d,44 33 

Docetaxel AUC 
+44.7% 47, Case 
report of toxicity 
with colchicine 48 
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43 
CYP3A4        19.0 d,46 26 

Docetaxel AUC 
+44.7% 47  

pantoprazole 
a 

370 
40 
mg 

SD 49 
– 

5.5 
MTX 50 

67 

Sulfasalazine AUC 
+83.3% with 

421A/C genotype 51, 
Case report of 
toxicity with 

methotrexate 52 

P–gp 17.9 53 21 
No effect on 
digoxin 55, 56 

CYP3A4        1 54 370 

No effect on 
carbamazepine 57, 
nifedipine 58, 59, 
tacrolimus 60 

rabeprazole 440 

40 
mg 

AD x 
8D 61 

– 
8.5 

MTX 50 
52 

Delayed 
methotrexate 
elimination 50 

CYP3A4 4.9 54 91 
No effect on 
tacrolimus 62 

IC50 and Ki values are presented as reported in the respective references, along with the substrate used: CIM – cimetidine, E3S – estrone-3-sulfate, MTX – 
methotrexate, MIT – mitoxantrone, SSZ – sulfasalazine, TOP – topotecan. 

a – Also present in [I1]/IC50 list 

b – I2 value for proposed 250 mg dose = 1000 µM 

c – [I2]/IC50 value for proposed 250 mg dose = 40,000 

d – IC50 value was calculated as 2 x Ki, assuming linearity 

e – Curcumin also caused a small, but significant, decrease in the clearance of the CYP1A2 substrate, caffeine (–29%) (Juan et al., 2007) 

1 TYKERB® product label (10/18/2013, http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022059s016s017lbl.pdf); 2 (Polli et al., 2008); 3 (Molina et 

al., 2008); 4 (Midgley et al., 2007); 5 (Sugimoto et al., 2011); 6 FDA (2012) Drug approval package: TYKERB® (lapatinib ditosylate) [FDA application no, 

(NDA) 022059]; 7 (Goodman et al., 2001); 8 (Elsby et al., 2011); 9 (Haagsma et al., 1996); 10 (Kusuhara et al., 2012); 11 (Karlgren et al., 2012b); 12 STIVARGA® 

product label (05/29/2013, http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203085s001lbl.pdf); 13 FDA (2012) Drug approval package: 

STIVARGA® (regorafenib) [FDA application no, (NDA) 203085]; 14 ongoing clinical trial to investigate effect as BCRP inhibitor: 

http://clinicaltrials.gov/show/NCT02106845; 15 (Si et al., 2013); 16 (Appiah-Opong et al., 2007); 17 (Juan et al., 2007); 18 (He et al., 2012); 19 (Yamamoto et al., 

2008); 20 (Noguchi et al., 2009); 21 (Stewart et al., 2014); 22 (Wang et al., 2014); 23 (Li et al., 2010); 24 (Liu et al., 2010); 25 (Macpherson et al., 2013); 26 (Bullock 
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et al., 2011); 27 (Veeraputhiran and Sundermeyer, 2008); 28 (Messersmith et al., 2004); 29 (Planting et al., 2005); 30 (Ahmed-Belkacem et al., 2005); 31 (Kruijtzer et 

al., 2002); 32 (Dickens et al., 2013); 33 (Englund et al., 2014); 34 (Malingre et al., 2001); 35 FDA (2012) Drug approval package: TASIGNA® (nilotinib 

hydrochloride monohydrate) [FDA application no, (NDA) 022068]; 36 (Tiwari et al., 2009); 37 (Kenny et al., 2012); 38 (Ai et al., 2014); 39 (Goodman et al., 2005); 

40 (Yanase et al., 2004); 41 (Wilding et al., 2006); 42 (Milton et al., 2007); 43 SUTENT® product label (08/30/2013, 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021938s024s025lbl.pdf); 44 (Kawahara et al., 2010); 45 (Oberoi et al., 2013); 46 FDA (2006) Drug 

approval package: SUTENT® (sunitinib malate) [FDA application no, (NDA) 021938].; 47 (Robert et al., 2010); 48 (Abodunde et al., 2013); 49 PROTONIX® 

product label (12/10/2013, http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020987s048,022020s010lbl.pdf); 50 (Suzuki et al., 2009); 51 (Adkison et 

al., 2010); 52 (Ranchon et al., 2011); 53 (Pauli-Magnus et al., 2001); 54 (Moody et al., 2013); 55 (Hartmann et al., 1995); 56 (Hartmann et al., 1996); 57 (Huber et al., 

1998); 58 (Bliesath et al., 1996b); 59 (Bliesath et al., 1996a); 60 (Lorf et al., 2000); 61 ACIPHEX® product label (04/19/2013, 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020973s032lbl.pdf); 62 (Itagaki et al., 2004) 
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