Role of Sp1, HNF1α, and PXR in the Basal and Rifampicin Induced Transcriptional Regulation of Porcine Cytochrome P450 3A46

Linfeng Dong, Qingmei Chen, Xin Liu, Jikai Wen, Jun Jiang, Yiqun Deng

Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
Running title:
Transcriptional Regulation of the Porcine CYP3A46 Gene

Co-corresponding authors:
Yiqun Deng,
Tel: +86-20-38294890; Fax: +86-20-38604967; E-mail: yqdeng@scau.edu.cn

Jun Jiang,
Tel: +86-20-38604967; Fax: +86-20-38604967; E-mail: jiangjun@scau.edu.cn

Document statistics:
The number of text pages: 40
The number of tables: 0
The number of figures: 5
The number of references: 39
The number of words in Abstract: 209
The number of words in Introduction: 632
The number of words in Discussion: 1385

List of non-standard abbreviations:
CYP, cytochrome P450;
DEX, dexamethasone;
DR4, direct repeats of AGGTCA separated by four bases;
EMSA, electrophoretic mobility shift assay;
HNF, hepatocyte nuclear factor;
LETF, liver-enriched transcription factor;
PXR, pregnane X receptor;
RIF, rifampicin;
RXRα, 9-cis retinoic receptor α;
Sp1, specificity protein 1;
XREM, xenobiotic-responsive enhancer module
Abstract

Cytochrome P450 (CYP) 3A46, one of human CYP3A4 homologs, functions as a key enzyme in the metabolism of xenobiotics in pigs. However, the regulatory mechanism for the transcriptional activation of CYP3A46 in porcine liver remains unknown. In this study, we confirmed that CYP3A46 constitutively expressed in porcine primary hepatocytes, and its expression was significantly induced by rifampicin (RIF) instead of dexamethasone (DEX). We further found that a proximal GC box and a distal hepatocyte nuclear factor 1 (HNF1) binding site within the 5’-flanking region of CYP3A46 are the important cis-regulatory elements involved in regulating the constitutive expression of CYP3A46, via recruiting specificity protein 1 (Sp1) and HNF1α respectively. Furthermore, we revealed that HNF1α and pregnane X receptor (PXR) activate the RIF-mediated transcription of CYP3A46 by binding to the distal HNF1 binding site and the proximal DR4 (direct repeats of AGGTCA separated by four bases) motif, respectively. Meanwhile, HNF1α is also involved in regulating RIF-induced expression of CYP3A4 through a novel distal HNF1 binding site identified in the xenobiotic-responsive enhancer module (XREM). In summary, our data demonstrate that several transcription factors, including Sp1, HNF1α, and PXR, function in the basal and RIF-mediated transcriptional regulation of CYP3A46 by binding to their related cis-regulatory elements in the proximal promoter and distal enhancer.
Introduction

Cytochrome P450 (CYP) enzymes are a large family of heme-thiolate containing proteins which play important roles in the oxidative metabolism of xenobiotics, including therapeutic drugs, environmental procarcinogens, and toxins (Nelson et al., 1996). CYP3A4, as one of the most important CYPs in human, mainly expressed in the liver and small intestine and is responsible for the metabolism of approximately 50% of currently used drugs (Guengerich, 1999). However, the expression level and activity of CYP3A4 in human differentiate greatly between individuals due to genetic variations and environmental stimulations (Plant, 2007). The expression of CYP3A4 is remarkably induced by commonly used drugs such as the glucocorticoid dexamethasone (DEX), the antibiotic rifampicin (RIF), and the antimycotic clotrimazole, which tends to cause a high risk of adverse drug-drug interactions in patients undergoing combination drug therapy (Goodwin et al., 2002b; Zanger and Schwab, 2013).

The molecular regulatory mechanisms for the transcriptional activation of human CYP3A4 in the liver have been extensively studied. The liver-enriched transcription factors (LETFs) such as hepatocyte nuclear factor 1 (HNF1), HNF3, HNF4, CCAAT/enhancer-binding protein (C/EBP), and D-element-binding protein (DBP) as well as ubiquitous transcription factors (e.g. specificity protein 1 (Sp1), upstream stimulatory factor-1 (USF-1), and activating protein-1 (AP-1)) coordinately regulate the basal expression of CYP3A4 by binding to their cis-regulatory elements within both proximal promoter and distal enhancer (e.g. the constitutive liver enhancer
module (CLEM) (Bombail et al., 2004; Martinez-Jimenez et al., 2005; Matsumura et al., 2004; Ourlin et al., 1997; Rodriguez-Antona et al., 2003). Besides, several nuclear receptors, such as pregnane X receptor (PXR) (Lehmann et al., 1998), constitutive androstane receptor (CAR) (Goodwin et al., 2002a), glucocorticoid receptor (GR) (Pascussi et al., 2003), and vitamin D receptor (Drocourt et al., 2002), play decisive roles in the xenobiotic-activation of \textit{CYP3A4}. As an example, PXR forms heterodimer with 9-	extit{cis} retinoic receptor \(\alpha\) (RXR\(\alpha\)) under stimulations of xenobiotics such as RIF and clotrimazole, and then activates the expression of \textit{CYP3A4} by binding to its cognate response elements within the regulatory region (Honkakoski et al., 2003). Several binding sites of PXR have been identified, including the ER6 (everted repeats of AGGTCA separated by six bases) in the proximal promoter (Lehmann et al., 1998), the dNR1, dNR2 as well as eNR3A4 in the xenobiotic-responsive enhancer module (XREM) (Goodwin et al., 1999; Toriyabe et al., 2009), and the ER6 in the CLEM (Liu et al., 2008).

Pigs, one of the most important livestock in the world, are frequently and inevitably exposed to toxins, veterinary chemicals, and other pollutants. Understanding the metabolic pathways of xenobiotics and the potential drug residues in pigs is particularly important for the safety of food productions and the health of human beings. We previously reported that CYP3A46, a porcine CYP3A isoform, structurally and functionally related to human CYP3A4 (Jiang et al., 2011), catalyzes T-2 toxin (a highly toxic mycotoxin produced by \textit{Fusarium} species) to form 3’-hydroxy-T-2 toxin (a less toxic metabolite) (Wang et al., 2011). Both studies
evidence CYP3A46 as a key enzyme in the metabolism of xenobiotics. CYP3A46 mainly expressed in the liver, and its expression can be induced by RIF (Nannelli et al., 2008). Nevertheless, the regulatory mechanism is yet to be clarified for the expression of CYP3A46 in comparison with the well-studied human CYP3A4 in the basal and drug-mediated regulations.

In this study, we unveiled the regulatory mechanisms for both the basal and RIF-mediated transcriptional activation of CYP3A46 in porcine liver. We found that Sp1 and HNF1α are involved in regulating the constitutive expression of CYP3A46 by binding to the proximal GC box and the distal HNF1 binding site. Whereas, under the induction of RIF, which was used as the representative of xenobiotics, the transcription factors HNF1α and PXR bind to the distal HNF1 binding site and the proximal DR4 motif respectively, and then mediate the transcriptional activation of CYP3A46.
Materials and Methods

Ethics statement

All related experiments were performed in accordance with the recommendations in the Regulations for the Administration of Affairs Concerning Experimental Animals of Guangdong Province, China. All efforts were made to minimize suffering.

Animals and cell culture

Danish Landrace × Yorkshire × Duroc cross-breed pigs (3 days old; male) were purchased from the College of Veterinary Medicine, South China Agricultural University (SCAU). Hepatocytes were isolated by modified two-step in situ collagenase perfusion described previously (Wang et al., 2011). Porcine primary hepatocytes were then cultured in William’s E medium (Sigma-Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 mg/mL streptomycin, 10⁻⁶ mM insulin, and 10⁻⁶ mM DEX (Sigma). For induction, porcine primary hepatocytes were treated with different concentrations of DEX or RIF (Sigma) for 24 or 48 h, and then the cells were collected for RNA extraction. The control cells were incubated with 0.1% DMSO.

HepG2 cells (ATCC, HB-8065) and COS-7 cells (ATCC, CRL-1651) were maintained at 37 °C in Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin (all from Invitrogen, Carlsbad, CA, USA).
Plasmids Construction

Due to incomplete genomic information, the 5'-upstream sequence of porcine CYP3A46 was first amplified by a genome walking kit (TaKaRa, Qingdao, China), using the following primers: sp1 (ATAGAGGACACCAGGCTGGTAGC), sp2 (CTGTGGAAAAGCCTGGGATCAGGT), and sp3 (CACTGTCCCTCCGTGATTCTCTCCTC) designed based on the mRNA sequence of CYP3A46 (NM_001134824). The sequence of the PCR product was almost identical (98%) to the porcine genome sequence NW_003540597.1, which is an incomplete sequence yet. Then a 7.3-kb fragment, corresponding to bases -7235 to +85 (+1 stands for the transcriptional start site) of CYP3A46, was obtained and ligated into pMD 19-T (TaKaRa) using the following primers: -7.3k_F (CTCCCACCCTCACATTAGACTTTG) and -7.3k_R (GGCCACTGTCTCCGTGATTCTCTC) designed based on the sequence of NW_003540597.1. The sequence has been submitted to the GenBank database under the accession no. KP670896.

For promoter activity analyses, the 5'-flanking region (-7235~+85) of CYP3A46 was cloned and inserted into Mlu I/Nhe I sites of the pGL3-Basic vector (Promega, Madison, WI, USA) to generate the (-7235~+85)-luc construct. A series of 5'-truncated constructs were then made on the basis of the (-7235~+85)-luc construct, including (-6221~+85)-luc, (-4504~+85)-luc, (-2707~+85)-luc, (-2128~+85)-luc, (-565~+85)-luc, (-295~+85)-luc, (-165~+85)-luc, and (-34~+85)-luc. The primers
used for the synthesis of above DNA fragments are as follows: (-7235~+85)-luc-F (CGACGCGTCTCCCACCCCTCACATTAGACTTTG), (-6221~+85)-luc-F (CGACGCGTAACTTCGTAGCGTGGTGCATCC), (-4504~+85)-luc-F (CGACGCGTAGTGTGACCTCAGGCACTGTTGCTC), (-2707~+85)-luc-F (CGACGCGTCCTCCATAGTTTCCCCCTTGAGCAGTC), (-2128~+85)-luc-F (CGACGCGTCGCCATTCAGACGACGACGACT), (-565~+85)-luc-F (CGACGCGTGGTGGCCGAAGCTCTCTCTCTCTGTAAG), (-295~+85)-luc-F (GGAAGATCTAAGTATTTTGGAGTGAGAGCAGGT), (-165~+85)-luc-F (CGACGCTAGCAGCTGGTGTATTTCAGCAGCTG), (-34~+85)-luc-F (GGAAGATCTCCAGCAGCATAAATCTTTCCAGCCTC), and (-7235~+85)-luc-R (CTAGCTAGCGGCCACTGTCCTCCGTGATTCTCT). To further analyze the region from bases -7235 to -6220, the region itself and its serial deletions were inserted into Kpn I/Mlu I sites of the (-165~+85)-luc construct to generate the following luciferase reporter constructs: (-7235~6220)-(-165~+85)-luc, (-6638~6220)-(-165~+85)-luc, (-6507~6220)-(-165~+85)-luc, (-6426~6220)-(-165~+85)-luc, (-6507~6276)-(-165~+85)-luc, (-6287~6220)-(-165~+85)-luc, (-6279~6220)-(-165~+85)-luc, and (-6257~6220)-(-165~+85)-luc. The primers used for the synthesis of above DNA fragments are as follows: (-7235~6220)-(-165~+85)-luc-F (CGGGGTACCTCCCAGCCCTCACATTAGACTTTG), (-6638~6220)-(-165~+85)-luc-F (CGGGGTACCCTAAATGGCCAAACACTGCCCAGT),
(-6507~-6220)-(-165~+85)-luc-F
(CGGGGTACCTCACAAGTAAGCCTGGGGAAGCAG),

(-6426~-6220)-(-165~+85)-luc-F
(CGGGGTACCTCCTGCCCTCCCTCAAATTGCTC),

(-6507~-6276)-(-165~+85)-luc-F
(CGGGGTACCTCACAAGTAAGCCTGGGGAAGCAG),

(-6287~-6220)-(-165~+85)-luc-F
(CGGGGTACCGGCAGGACCATAGTCAACAATGAT),

(-6279~-6220)-(-165~+85)-luc-F
(CGGGGTACCCCATAGTCAACAATGATTAATTCAGG),

(-6257~6220)-(-165~+85)-luc-F
(CGGGGTACCAGGATTCACTTCCCCTGTGAC),

(-7235~-6220)-(-165~+85)-luc-R
(CGACGCGTGCCACCATGCTACAGAAGTTATCAGC),

(-6507~-6276)-(-165~+85)-luc-R
(CGACGCGTTATGGTCCTGCCTCTGCATCTTTG). Using the same methods, the 5’-flanking region (-362~+53) of human CYP3A4 was cloned and inserted into Bgl II/Hind III sites of the pGL3-Basic vector (Promega) to generate the (-362~+53)-luc construct. Then the region from bases -7836 to -7208 was inserted into Kpn I/Bgl II sites of the (-362~+53)-luc construct to generate the XREM-(-362~+53)-luc construct.

The primers used are as follows: CYP3A4 distal-F
(CGGGGTACCATGCTGGTTGCTGGTTTATTCTAG), CYP3A4 distal-R
(GGAAGATCTGAATGGTTATAAGATCATCTCAATGG), CYP3A4 proximal-F
(GGAAGGTAAGATCTGTAGGTGTGGCTTG), and CYP3A4 proximal-R
(CCCAAGCTTCTCTTTTGCTGGGCTATGTGCATG). All mutated and internal
inserted luciferase reporter constructs were prepared on the basis of the constructs
above with the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA,
USA). Primers used for site-directed mutagenesis are listed in Supplemental Table 1.

For over-expression, the open reading frame (ORF) region of porcine Sp1
(XM_003355406.1), HNF1α (NM_001032388.1), PXR (NM_001038005.1), and
RXRα (GACC01000108.1) as well as human HNF1α (NM_000545.5) and PXR
(NM_003889.3) were cloned and inserted into the pcDNA3.1/myc-His(-) A vector
(Invitrogen) to generate pcDNA-pSp1, pcDNA-pHNF1α, pcDNA-pPXR,
pcDNA-pRXRα, pcDNA-hHNF1α, and pcDNA-hPXR plasmids, respectively. The
corresponding restriction sites used are Xho I/Hind III for pcDNA-pSp1, BamH
I/Hind III for pcDNA-pHNF1α, pcDNA-pPXR, pcDNA-hHNF1α, and pcDNA-hPXR.
The primers used are as follows: pSp1-F
(CCGCTCGAGATGAGCGACCAAGATCACTCCATGG), pSp1-R
(CCCAAGCTTCTCTTTGGCCTTGATGGAACCTTCCATGG), pHNF1α-F
(CGCGGATCCATGCAATGCAATGAAACAGACTCC), pHNF1α-R
(CCCAAGCTTCTTGGAGGATGAGGCCATCTCCATGG), pPXR-F
(CGCGGATCCATGCAATGCAATGAAACAGACTCC), pPXR-R
(CCCAAGCTTCTTGGAGGATGAGGCCATCTCCATGG), pRXRα-F
(CCCAAGCTTCTTGGAGGATGAGGCCATCTCCATGG), pRXRα-R
(CCCAAGCTTCTTGGAGGATGAGGCCATCTCCATGG), hHNF1α-F
(CGCGGATCCGCCATGGTTTCTAAACTGAGCCAGC), hHNF1α-R
(CCCAAGCTTCTGGGAGGAAGGCCATCTGG), hPXR-F
(CGCGGATCCATGGAGGTGAGACCCAAAGAAAG), and hPXR-R
(CCCAAGCTTGCTACCTGTGATGCCGAACAACT).

For preparation of all the plasmids, KOD-plus DNA polymerase (Toyobo, Osaka, Japan) was used. All plasmids were verified by sequencing and prepared by the Endo-Free Plasmid Kit (Omega, Norcross, GA, USA).

Transfection and luciferase activity detection

HepG2 cells were seeded into 24-wells plates at a density of 5×10^4 cells/well before transfection. For each well, the cells were transfected with 0.6 μg of the corresponding luciferase reporter construct, 0.1 μg of the pRL-TK control vector (Promega), and 0.1 μg of the expression vector (if necessary) by using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. After 24 h, the cells were lysed by Passive Lysis Buffer (Promega). The luciferase activities were measured using the Dual-Luciferase Reporter Assay System (Promega) on a GLOMAX 20/20 luminometer (Promega), and the firefly luciferase activity for each construct was normalized to the Renilla luciferase activity. The results shown are representative of at least three independent experiments (each performed in triplicate).

For the drug-induction experiments, HepG2 cells were transfected as described above and subsequently cultured in serum-free DMEM with 10 μM RIF or 0.1% DMSO for another 24 h. Then the cells were lysed, and the luciferase activities were
measured as mentioned above.

For the EMSAs, COS-7 cells were first transfected with the corresponding expression vectors and then collected to extract the nuclear proteins.

RNA isolation and real-time PCR

The total RNA was extracted from porcine primary hepatocytes using TRIZOL Reagent (Invitrogen), and the first-strand cDNA was synthesized using oligo (dT)$_{18}$ primers (TaKaRa) and M-MLV reverse transcriptase (Promega). The primers used in real-time PCR were designed to span exon-exon junctions, in order to prevent the potential genomic DNA contamination. The sequences of the primer pairs are as follows: CYP3A46-F (GCGACTTTCCCCCAATAAG), CYP3A46-R (AGCGCAAAGATTGGCACC), GAPDH-F (GTCGGTTGTGGATCTGAC), GAPDH-R (TGGTCGTTGAGGGCAATG). The specificities of the primers were confirmed by sequencing the PCR products. Real-time PCR was performed on a Bio-Rad CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA) under the following steps: initial denaturation at 94 °C for 3 min, then 40 cycles of 94.0 °C/20 s, 58.0 °C/20 s, and 72.0 °C/20 s. Reaction was performed in a 20 μL mixture containing Premix Taq (TaKaRa) and SYBR (Invitrogen). The GAPDH was chosen as an internal control and used for normalization. Fold differences in the expression levels were calculated using the $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001). The results shown are representative of at least three independent experiments (each performed in triplicate).
EMSA

The nuclear extracts from COS-7 cells transfected with different transcription factors were prepared with the Nuclear Extraction Kit (Beyotime, Haimen, China). Probes used were generated by the EMSA Probe Biotin Labeling Kit (Beyotime) according to the manufacturer’s recommendation. The EMSAs were performed with the EMSA Assay Kit (Beyotime). Briefly, binding buffer and nuclear extracts (6 μg) in a total volume of 10 μL were incubated at 22 °C for 10 min to prevent the non-specific binding. Then double-stranded biotinylated probes (0.1 pmol) were added in the reaction, and the mixtures were further incubated at 22 °C for 20 min. For the competition assays, a 100-fold molar excess of unlabeled competitors were added to the mixture and incubated at 22 °C for 10 min before adding biotinylated probes. For the supershift assays, 1 μg of polyclonal antibody against Sp1 (AB61137a; Sangon Biotech, Shanghai, China), polyclonal antibody against HNF1α (AB60769a; Sangon Biotech) or rabbit IgG (as a control) was added to the mixture and incubated at 22 °C for 10 min before adding biotinylated probes. The protein-DNA complexes and the unbounded free probes were separated on 6% non-denaturing polyacrylamide [acrylamide/bisacrylamide 29:1 (v/v)] gels and detected using the chemiluminescence (Millipore, Bedford, MA, USA).

Statistical analysis
All experiments were performed independently at least three times and all data are expressed as mean ± standard deviation. Data were analyzed by one-way analysis of variance (ANOVA) followed by Turkey’s post-hoc test. Significance was defined as ***p<0.001, **p<0.01, and *p<0.05. GraphPad Prism 5.00 software (San Diego, CA, USA) was used for statistical analysis.
Results

RIF significantly induces the expression of CYP3A46 in porcine primary hepatocytes

To investigate the basal and inducible expression of porcine CYP3A46, its mRNA level was measured by real-time PCR in porcine primary hepatocytes with or without drug treatment. The expression of CYP3A46 was significantly induced by RIF, a typical CYP3A inducer, up to 5-fold when 10 μM RIF was used to treat cells for 24 h, in comparison with the expression level of CYP3A46 in control group (DMSO-treated cells) (Fig. 1). However, we did not observe any apparent inductions when DEX, another representative CYP3A inducer, was used (Fig. 1).

The proximal GC box and distal HNF1 binding site in the 5’-flanking region regulate the constitutive expression of CYP3A46

Due to incomplete genomic information, we amplified the 5’-upstream sequence of porcine CYP3A46 by genome walking as described in Materials and Methods. A unique unpublished genomic DNA sequence (7.2 kb in length) containing the 5’-flanking region of CYP3A46 has been confirmed by sequencing and uploaded in GenBank (accession no. KP670896).

According to the sequence information, truncated mutations covering the region from bases -7235 to +85 of CYP3A46 driving a luciferase reporter gene were constructed and transfected into HepG2 cells, to identify the possible cis-acting elements responsible for the basal expression of CYP3A46 (Fig. 2A). The
(-7235~+85)-luc construct transfected group exhibited a 76-fold increment of the luciferase activity compared with the pGL3-Basic vector transfected group (Fig. 2A). The deletion of the fragment from bases -7235 to -6220 attenuated the luciferase activity significantly, suggesting the existence of distal enhancers in the region (Fig. 2A). Further deletions to bases -4504, -2707, -2128, -565, and -295 respectively, resulted in gradual increment of the luciferase activities from 36-fold to 172-fold compared with the pGL3-Basic vector transfected group, indicating that negative regulatory elements may locate within these regions (Fig. 2A). Among the truncated constructs, the (-295~+85)-luc construct showed the highest promoter activity, accounting for the most transcription activation. However, the removal of the region -165~35 remarkably decreased the luciferase activity of the (-165~+85)-luc construct to 2.1%, strongly indicated that there are cis-acting elements responsible for the constitutive expression of CYP3A46 in the region from bases -165 to -35 (Fig. 2A).

Therefore, the DNA sequence from bases -165 to +85 was further analyzed by the online software MatInspector to predict the cis-acting elements in this region. Several cis-acting elements for the binding of liver-enriched and ubiquitous transcription factors are identified in this region, including one DR4 motif (usually recognized by PXR), one DR1 motif (usually recognized by HNF4α), one C/EBP binding site (usually recognized by C/EBPα), and three GC boxes (usually recognized by Sp1) (Fig. 2B). In addition, a putative TATA box is also found in bases -27 to -24 (Fig. 2B).

To confirm the functional importance of these cis-acting elements in the
transcriptional activation of CYP3A46, different mutations which destroyed the recruitment of the transcription factors respectively, were introduced into the region of -165 to +85 based on the (-165~+85)-luc construct (Supplemental Table 1). The newly generated constructs were then transfected into HepG2 cells, and their effects on promoter activities were examined by dual luciferase assay. As shown in Fig. 2C, the mutation of the proximal GC box caused a significant and drastic decrease of the relative luciferase activity, only 4% of the wild type control, which means that the promoter activity of CYP3A46 is strongly inhibited by the dysfunction of the proximal GC box. Other mutations only caused the minimal effects on the luciferase activity. It strongly evidences that the proximal GC box is the pivotal regulatory element in the proximal promoter of CYP3A46. A slight decrease of the promoter activity was detected when the middle GC box was mutated, which may be due to the partial overlap with the proximal GC box (Fig. 2C).

To further investigate the function of the region from bases -7235 to -6220 for the transcriptional activation of CYP3A46, we artificially fused this region or serial deletions to the proximal promoter (bases -165 to +85) of CYP3A46. The region from bases -7235 to -6220 acts as an enhancer, which increased the luciferase activity of the CYP3A46 proximal promoter (-165~+85) by 5-fold (Fig. 2D). Deletions to bases -6638, -6507, -6426, -6287, and -6279 respectively only caused the minimal effects on the luciferase activity, while the internal deletion of the region from bases -6277~6220 led to 70% reduction of the luciferase activity relative to that of the (-6507~6220)-(-165~+85)-luc construct (Fig. 2D). Moreover, further deletion of the
region from bases -6279 to -6258 [the (-6257~6220)-(-165~+85)-luc construct] remarkably decreased the luciferase activity of (-6279~6220)-(-165~+85)-luc construct to 25%, suggested that there are important regulatory elements responsible for the constitutive expression of CYP3A46 in the region from bases -6279 to -6258 (Fig. 2D). Using the online software JASPAR to analyze the region from bases -6279 to -6258, only one consensus regulatory element was identified as HNF1 binding site. Mutation of this HNF1 binding site drastically decreased the activity of (-6287~6220)-(-165~+85)-luc construct to 30% (Fig. 2D), proving that the HNF1 binding site is the key functional regulatory element within the distal enhancer responsible for the basal expression of CYP3A46.

Sp1 and HNF1α bind to the proximal GC box and the distal HNF1 binding site, respectively

The GC box and the HNF1 binding site are known to be recognized by the transcription factors Sp1 and HNF1α, respectively. To determine whether Sp1 and HNF1α bind to the proximal GC box and the distal HNF1 binding site in the 5′-flanking region of CYP3A46, EMSAs were carried out with the nuclear extracts from Sp1 or HNF1α over-expressed COS-7 cells. When the nuclear extracts from Sp1-transfected COS-7 cells were incubated with the labeled wild-type (WT) probe corresponding to the putative GC box, two shifted bands named shift 1 and 2 were detected (Fig. 3A, lane 2). The formation of shift 1 was competitively disrupted by the addition of a 100-fold excess of the unlabeled WT competitor (Fig. 3A, lane 3) but not
the unlabeled mutant (MT) competitor (Fig. 3A, lane 4). Moreover, the shift 1 was supershifted by the incubation with the antibody against Sp1 in the reaction (Fig. 3A, lane 5). These results indicate that Sp1 specifically binds to the proximal GC box in the 5’-flanking region of CYP3A46. Additionally, the band of shift 2 disappeared in the competition assays but not the supershift assays, suggesting the existence of an unknown protein specifically binding to the flanking sequences of the GC box within the WT probe (Fig. 3A). Using the same method, we further confirmed the binding of HNF1α to the distal HNF1 binding site. As shown in Fig. 3B (lane 2), adding nuclear extracts from HNF1α over-expressed COS-7 cells in the reaction led to the formation of a single protein-DNA complex with the labeled WT probe corresponding to the putative HNF1 binding site. This shifted band was disappeared by the addition of unlabeled WT competitor (Fig. 3B, lane 3), while the MT competitor possessing four mutations within the HNF1 binding site was unable to abolish the formation of the complex (Fig. 3B, lane 4). Moreover, a supershifted complex was observed when a specific antibody against HNF1α was added in the binding reaction (Fig. 3B, lane 5). These results show that HNF1α specifically binds to the distal HNF1 binding site in the 5’-flanking region of CYP3A46.

HNF1α and PXR activate the RIF-mediated transcription of CYP3A46

To analyze the regulatory mechanisms for RIF-induced expression of CYP3A46, HepG2 cells were transfected with the deletion constructs used in Fig. 2A and treated with 10 μM RIF or DMSO for 24 h. Compared with the DMSO-treated cells, no
induction was observed in the RIF-treated cells, which were transfected with the
(-7235~+85)-luc construct only, (data not shown). However, co-transfection of
pcDNA-PXR and the (-7235~+85)-luc construct caused a 1.4-fold induction of the
luciferase activity in the RIF-treated cells, compared with the DMSO-treated cells
(Fig. 4A). The removal of bases -7235 to -6220 abolished the inductive effect of RIF
on the luciferase activity, suggesting that the region from bases -7235 to -6220 is
required for RIF-induced expression of CYP3A46 (Fig. 4A).

To further analyze the region from bases -7235 to -6220, a second set of deletion
mutants used in Fig. 2D were co-transfected with pcDNA-PXR into HepG2 cells, and
then the cells were treated with 10 μM RIF or 0.1% DMSO for 24 h. As shown in Fig.
4B, co-transfection of pcDNA-PXR and the (-7235~6220)-(-165~+85)-luc construct
resulted in a 2-fold induction of the luciferase activity in the RIF-treated cells,
compared with the DMSO-treated cells. Progressive deletions to base -6279 did not
influence the inductive effect of RIF on the luciferase activity, whereas the internal
deletion of the region from bases -6277~6220 abolished the inductive effect of RIF.
Moreover, further deletion of the region from bases -6279 to -6258 [the
(-6257~6220)-(-165~+85)-luc construct] showed almost no response to RIF
induction, compared with the (-6279~6220)-(-165~+85)-luc construct, strongly
indicated that there are important regulatory elements responsible for the RIF-induced
expression of CYP3A46 in the region from bases -6279 to -6258. As presented in Fig.
2D, the region from bases -6279 to -6258 contains a HNF1 binding site. Mutation of
the HNF1 binding site destroyed the inductive effect of RIF on the luciferase activity
of the (-6287~-6220)-(-165~+85)-luc construct (Fig. 4B). These results with the EMSA results shown in Fig. 3B indicate that HNF1α mediates the RIF-induced expression of CYP3A46 by binding to the distal HNF1 binding site.

The DR4 motif is known to be recognized by PXR. Since that the inductive effect of RIF on CYP3A46 requires PXR, we further mutated the putative DR4 motif identified in Fig. 2B to confirm whether the DR4 motif is the functional cis-acting element involved in regulating the RIF-induced expression of CYP3A46. As expected, mutation to the DR4 motif eliminated the inductive effect of RIF on the luciferase activity of (-6287~-6220)-(-165~+85)-luc construct (Fig. 4B). Whether the DR4 motif is recognized by the PXR/RXRα heterodimer was further investigated by EMSAs. As shown in Fig. 4C, a shift band was detected, when the nuclear extracts from PXR and RXRα co-transfected COS-7 cells were incubated with the labeled WT probe corresponding to the DR4 motif. The formation of the shift was competitively disrupted by the addition of a 100-fold excess of the unlabeled WT competitor but not the unlabeled MT competitor, suggesting that PXR/RXRα complex specifically binds to the DR4 motif. No shift band was formed when nuclear extracts from PXR or RXRα transfected COS-7 cells were used, indicating that PXR and RXRα need to form heterodimer to bind to the DR4 motif. In short, our results show that PXR is also involved in regulating the RIF-induced expression of CYP3A46 by binding to the proximal DR4 motif.

HNF1α is also necessary for the transcriptional activation of human CYP3A4
induced by RIF

To investigate whether HNF1α is also involved in regulating the transcription of human CYP3A4 induced by RIF, we scanned the XREM of human CYP3A4 and found a putative HNF1 binding site adjacent to the reported PXR binding site eNR3A4 (Toriyabe et al., 2009). To elucidate the role of the HNF1 binding site in the RIF-induced transcriptional activation of human CYP3A4, we performed transient transfection assays with the XREM-(-362~+53)-luc construct and the HNF1 binding site mutated construct. Consistent with the previous report (Goodwin et al., 1999), co-transfection of XREM-(-362~+53)-luc construct and pcDNA-hPXR caused a 11-fold induction of the luciferase activity in the RIF-treated cells, compared with the DMSO-treated cells (Fig. 5A). However, mutations to the HNF1 binding site in the XREM-(-362~+53)-luc construct led to a remarkable decrease of the activity of XREM-(-362~+53)-luc construct (Fig. 5A). These results imply that the HNF1 binding site is a key regulatory element responsible for the RIF-induced transactivation of human CYP3A4. Furthermore, we performed EMSAs to examine the binding of HNF1α to the HNF1 binding site. As expected, nuclear extracts from HNF1α over-expressed COS-7 cells formed a specific shift band with the labeled WT probes corresponding to the putative HNF1 binding site (Fig. 5B). Its binding specificity was further confirmed with the competition and supershift assays (Fig. 5B). Our results reveal that HNF1α is also necessary for the RIF-induced transcriptional activation of human CYP3A4 by binding to the distal HNF1 binding site.
Discussion

In the previous study, we demonstrated CYP3A46, like its homolog (CYP3A4) in human, is an important drug-metabolizing enzyme in pigs. In this study, we focused on the regulatory mechanism of its transcriptional activation and identified the related cis-acting elements and trans-acting factors. To our knowledge, this is the first report comprehensively uncovering the molecular regulatory mechanisms for the constitutive and inducible expression of CYP3A46 in porcine liver.

Sp1, one of the Sp family transcription factors, is ubiquitously expressed in different tissues and binds to GC box to transactivate various kinds of genes (Li et al., 2004). One putative binding site for Sp1 has been identified in the proximal promoter of CYP3A4 (Bombail et al., 2004). This element only functioned in regulating the metyrapone or phenobarbital-mediated transcriptional activation of CYP3A4 but had no effect on the basal transcription of CYP3A4 (Bombail et al., 2004). In our study, three putative Sp1 binding sites (GC box) located in the proximal promoter of CYP3A46 have been identified, only the proximal GC box is the prerequisite for the basal transcription of CYP3A46, which is recognized by Sp1. In contrast to the study of CYP3A4, the proximal GC box has no regulatory effect on the RIF-induced expression of CYP3A46.

HNF1α is a liver-enriched transcription factor, but is also expressed in other tissues, such as kidney, intestine, stomach, and pancreas (Cheung et al., 2003). It specifically binds to a consensus 13 bp DNA sequence GTTAATNATTANC and functions as a key transcription factor to regulate the expression of many
liver-enriched genes (Cheung et al., 2003; Ktistaki, 1997). HNF1α regulates the basal expression of CYP3A4 by binding to the distal HNF-1 consensus site in the CLEM (-11.4 kb to -10.5 kb) (Matsumura et al., 2004). In agreement with that, we identified a HNF-1 consensus site (from bases -6279 to -6258) in the distal enhancer of CYP3A4, and this element was specifically recognized by HNF1α and involved in regulating the constitutive expression of CYP3A4. More interestingly, we found that HNF1α also mediates the RIF-induced transcriptional activation of CYP3A4 through this distal HNF1 binding site. Meanwhile, we identified a novel HNF1 consensus site (from bases -7622 to -7596) within XREM, which can be recognized by HNF1α and involved in RIF-induced expression of CYP3A4. These results confirmed that HNF1α plays evolutionary conserved but versatile roles in the regulations of both basal and inducible expression of CYP3A4 and CYP3A4.

PXR belongs to the nuclear receptor (NR) superfamily, and is mainly expressed in the liver and intestine, to a less extent in the kidney and lung (LeCluyse, 2001). It usually forms a heterodimer with RXRα and binds to direct or everted repeats of AGGTCA separated by three (DR3), four (DR4) or six (ER6) bases to transactivate a large set of phase I/II drug-metabolizing genes and drug transporter genes (Tolson and Wang, 2010). Numerous studies have demonstrated that PXR mediates the RIF-induced transactivation of CYP3A4 by binding to multiple interacting cis-regulatory elements including the ER6 in the proximal promoter (Lehmann et al., 1998), the dNR1, dNR2 and eNR3A4 in the distal XREM (Goodwin et al., 1999; Toriyabe et al., 2009) as well as the ER6 in the CLEM (Liu et al., 2008). In the
present study, we also found that PXR is involved in regulating the inducible expression of CYP3A46 by RIF. However, only one functional DR4 element in the proximal promoter was identified.

LETFS are well known to be important regulators in the coordination of PXR and CAR-mediated response to xenobiotics. For example, HNF4α, which binds to the DR1 element adjacent to the PXR response element in the distal module, is critically involved in the PXR-mediated transcriptional activation of CYP3A4 by interacting with PXR (Li and Chiang, 2006; Liu et al., 2008; Tirona et al., 2003). In this study, we found another LETFs HNF1α, which is required for the PXR-mediated transcriptional activation of CYP3A46 under RIF induction. We further identified a novel HNF1 binding site adjacent to the reported PXR binding site eNR3A4, which is also crucial for PXR-mediated transcriptional activation of CYP3A4. In fact, it has been reported that HNF1α can modestly alter PXR-mediated activation of the CYP3A4 promoter (Tirona et al., 2003). Several studies suggested that HNF1α can facilitate chromatin remodeling (Rollini and Fournier, 1999; Viollet et al., 2001). Whether HNF1α regulates the RIF-induced transactivation of CYP3A4 and CYP3A46 through facilitating chromatin remodeling or interacting with PXR is still unknown and needs to be further studied.

Our data showed that the maximal induction of CYP3A46 was observed at 24 h, when 10 μM RIF was used to treat porcine primary hepatocytes. Higher doses of RIF or longer time of RIF treatment did not produce further increases in the CYP3A46 mRNA expression. In fact, similar dose- and time-dependent inductions of CYP3A4
were observed when RIF was used to treat both human primary hepatocytes and HepG2 cells (Goodwin et al., 1999; Raucy, 2003). The difference is that the maximal induction of \textit{CYP3A4} was observed at 48 h when 10 μM RIF was used (Raucy, 2003). Higher doses of RIF or longer time of RIF treatment may tend to increase cellular toxicity and ultimately weaken its inductive effect on the expression of CYP3As.

In human primary hepatocytes, RIF treatment induced the expression of \textit{CYP3A4} up to 100-fold (Li and Chiang, 2006). However, RIF only induced the expression of \textit{CYP3A46} for 4 times in the porcine liver (Nannelli et al., 2008). Our studies drew similar results that the expression of \textit{CYP3A46} at the mRNA level was induced by RIF only up to 5-fold. It has been suggested that the number of interacting \textit{cis}-regulatory elements correlates to the drug-induction effect on the target gene (Toriyabe et al., 2009). Given that several PXR binding sites presented in the \textit{CYP3A4} promoter while only one functional PXR binding site in the proximal promoter of \textit{CYP3A46}, we believe that the different numbers of PXR binding sites may account for the different inductive effects of RIF on the expression of \textit{CYP3A46} and \textit{CYP3A4}.

In fact, the insertion of the PXR binding site eNR3A4 of human \textit{CYP3A4} adjacent to the HNF1 binding site in the \textit{CYP3A46} reporter (-6287~6220)(-165~+85)-luc greatly enhanced the response of the reporter to RIF from 2-fold to 5-fold, while the abilities of RIF to activate hPXR or pPXR were the same (Supplemental Figure 1).

As reported, DEX is a representative inducer of \textit{CYP3A4} but not a potent inducer of porcine CYP3A (Monshouwer et al., 1998). In the present paper, we observed the similar phenomenon that RIF rather than DEX induced the expression of \textit{CYP3A46}.

\[\text{Equation} \]
In contrast to the other xenobiotic inducers of CYP3A4, DEX plays a dual role in CYP3A4 expression, consisting of a low-DEX component of low amplitude and a high-DEX component of high amplitude (Pascussi et al., 2001). The low-DEX component induces the expression of CYP3A4 through GR-mediated activation of PXR and CAR, while the high-DEX component transactivates CYP3A4 directly through the regulation of PXR (Pascussi et al., 2001). This dual role of DEX did not work on the inducible expression of CYP3A46, because a high concentration of DEX (50 μM) still had no inductive effect on the expression of CYP3A46. The regulatory effects of GR, PXR, and CAR may be different between human and pigs under the stimulation of DEX.

Similar to human CYP3A subfamily, porcine CYP3As consist of four genes: CYP3A22, CYP3A29, CYP3A39, and CYP3A46. Their expression patterns and inducible aspects are different, indicating the underlying of different regulatory mechanisms (Nannelli et al., 2008; Shang et al., 2013; Yao et al., 2012). However, related research is limited. Recently, Li et al. reported that PXR was required for the IFNγ and IFNα-mediated inductive effects on porcine CYP3A29, but they did not observe the binding of PXR to any cis-regulatory elements (Li et al., 2014a; Li et al., 2014b). Here, we not only found PXR accounting for the inducible effect on the expression of CYP3A46 by RIF, but also confirmed the binding of PXR to the DR4 element in the proximal promoter of CYP3A46. Further studies are still required to clarify the regulatory mechanisms for the transcriptional activation of different porcine CYP3A isoforms.
In summary, the present paper systematically studied the regulatory mechanisms for the basal and inducible expression of CYP3A46, and clearly demonstrated that several key trans-acting factors, including Sp1, HNF1α, and PXR function in the basal and RIF-mediated regulation of CYP3A46.
Authorship Contributions

Participated in research design: Linfeng Dong, Jun Jiang, and Yiqun Deng.

Conducted experiments: Linfeng Dong, Qingmei Chen, and Xin Liu.

Performed data analysis: Linfeng Dong, Jun Jiang, and Yiqun Deng.

Wrote or contributed to the writing of the manuscript: Linfeng Dong, Jikai Wen, Jun Jiang, and Yiqun Deng.
References

Li T and Chiang JY (2006) Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and

-General Subjects 1770: 478-488.

Footnotes

This work was supported by the National Natural Science Foundation of China [31201716]; the Program for Changjiang Scholars and Innovative Research Team in University [IRT13063]; and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) [20124404120012].
Figure Legends

Fig. 1. RIF significantly induces the expression of CYP3A46 in porcine primary hepatocytes.

Porcine primary hepatocytes were treated with different concentrations of DEX and RIF for 24 h or 48 h as described in Materials and Methods. Real-time PCR was used to detect the mRNA levels of CYP3A46. The ratio of CYP3A46 to GAPDH in 0.1% DMSO treated group was set to 1, and the values of other groups were normalized relative to this value. The experiment was performed three times independently, and similar results were obtained. The data shown are derived from a representative experiment expressed as the mean ± S.D. Statistical significance was calculated by one-way ANOVA, and significance was defined as ***p<0.001.

Fig. 2. The proximal GC box and distal HNF1 binding site in the 5'-flanking region regulate the constitutive expression of CYP3A46.

(A) Deletion analysis of the CYP3A46 5'-flanking region. A series of deletion mutants were generated and transfected into HepG2 cells as described in Materials and Methods. Schematic representations of the deletion constructs are shown on the left, and the indicated positions are relative to the transcriptional start site. The luciferase activities were measured after transfection using the Dual-Luciferase Reporter Assay System, and the firefly luciferase activity for each construct was normalized to the Renilla luciferase activity. The results, illustrated on the right, represent the fold change of each deleted construct relative to the pGL3-Basic plasmid (Basic). The
experiment was performed four times independently, and similar results were obtained. The data shown are derived from a representative experiment expressed as the mean ± S.D. Statistical significance was calculated by one-way ANOVA, and significance was defined as ***p<0.001 or *p<0.05. (B) Schematic diagram showing the putative transcription factor binding sites in the proximal promoter (bases -165 to +85) region of CYP3A46. The transcriptional start site is designated as +1. The transcription factor binding sites, predicted by the online software MatInspector, are indicated with boxes. (C) Mutation analysis of the CYP3A46 proximal promoter. The putative transcription factor binding sites in the proximal promoter (bases -165 to +85) region of CYP3A46 were mutated one by one as described under Materials and Methods, and their activities were analyzed by Dual-Luciferase Reporter Assay System. The data were analyzed and shown as described in A. (D) Deletion and mutation analyses of the CYP3A46 distal 5’-upstream sequence. Deleted and mutated fragments of the region from bases -7235 to -6220 were prepared as outlined in Materials and Methods. All fragments were then ligated to the proximal promoter (bases -165 to +85) of CYP3A46 to form the different chimeric CYP3A46-luciferase reporter gene constructs as shown on the left. The constructs were transfected into HepG2 cells, and the activities of which were detected as described under Materials and Methods. The data shown on the right were analyzed and shown as described in A. The gray box indicates mutated HNF1 element. Its sequence is shown below with the mutated bases underlining.
Fig. 3. Sp1 and HNF1α bind to the proximal GC box and the distal HNF1 binding site, respectively.

The ability of the potential GC box and the HNF1 binding site to be recognized by Sp1 and HNF1α, respectively, was investigated using EMSAs as described under Materials and Methods. The nuclear extracts from COS-7 cells transfected with Sp1 (A) or HNF1α (B) were used. The sequences of the wild-type (WT) probes/competitors and mutant (MT) competitors used in each experiment are shown above the gel. In the competition assays, unlabeled WT or MT competitors were added to the binding reaction 100-fold molar excess. In the supershift assays, specific antibody against Sp1 or HNF1α was added to the mixture and incubated before adding biotinylated probes.

Fig. 4. HNF1α and PXR mediate the RIF-induced transcriptional activation of CYP3A46.

(A) Identification of the RIF-responsive region in the 5’-upstream sequence of CYP3A46. Different deletion constructs of CYP3A46 and pcDNA-pPXR were co-transfected into HepG2 cells and the cells were subsequently cultured in the presence of RIF (10 μM) or DMSO (0.1%) for 24 h. The luciferase activities were detected and normalized as described in the legend of Fig. 2A. Each column represents the fold induction of the normalized luciferase activities in the RIF-treated cells relative to the DMSO-treated cells. The experiment was performed four times independently, and similar results were obtained. The data shown are derived from a
representative experiment expressed as the mean ± S.D. Statistical significance was calculated by one-way ANOVA, and significance was defined as ***p<0.001. (B) Further deletion and mutation analysis of the RIF-responsive region in the 5’-upstream sequence of CYP3A4. Deletion and mutation constructs were co-transfected with pcDNA-pPXR into HepG2 cells, and the luciferase activities were detected and analyzed as described in A. (C) Binding of pPXR/pRXRα to the proximal DR4 motif in EMSAs. EMSAs were performed with nuclear extracts from pcDNA-pPXR/pRXRα over-expressed COS-7 cells and biotinylated oligonucleotides corresponding to the proximal DR4 motif. The sequences of the WT probe/competitor and MT competitor used in the experiment are shown above the gel. The consensus binding sites are shown in capital, and the mutated nucleotides are underlined. In the competition assays, unlabeled competitors were added to the binding reaction 100-fold molar excess.

Fig. 5. HNF1α is also necessary for the transcriptional activation of human CYP3A4 induced by RIF.

(A) Mutation analysis of the putative HNF1 binding site in the XREM of human CYP3A4. The sequence of the putative HNF1 binding site is shown and the mutated bases are indicated. The XREM-(−362~+53)-luc construct or HNF1 binding site mutated construct was co-transfected with pcDNA-hPXR. Transfected HepG2 cells were then cultured in the presence of RIF (10 μM) or DMSO (0.1%) for 24 h before harvest. The luciferase activities were detected and normalized as described in the
legend of Fig. 2A. Each column represents the fold induction of the normalized luciferase activities in the RIF-treated cells relative to the DMSO-treated cells. The experiment was performed four times independently, and similar results were obtained. The data shown are derived from a representative experiment expressed as the mean ± S.D. Statistical significance was calculated by one-way ANOVA, and significance was defined as ***p<0.001. (B) Binding of HNF1α to the HNF1 binding site in EMSAs. EMSAs were performed with nuclear extracts from HNF1α over-expressed COS-7 cells and biotinylated oligonucleotides corresponding to the HNF1 binding site. The sequences of the WT probe/competitor and MT competitor used in the experiment are shown above the gel. The consensus binding sites are shown in capital, and the mutated nucleotides are underlined. In the competition assays, unlabeled competitors were added to the binding reaction 100-fold molar excess. In the supershift assays, specific antibody against HNF1α was added to the mixture and incubated before adding biotinylated probes.
Figure 1

CYP3A46 mRNA/GAPDH mRNA (fold induction)

- DMSO
- 10 μM DEX
- 50 μM DEX
- 10 μM RIF
- 20 μM RIF
- 50 μM RIF

Time points:
- 24 h
- 48 h

Significance levels:
- * * *
Figure 3

(A) WT: ccccagCTCCACCCACTtccc
MT: ccccagATAGATCCACTtccc

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotinylated probe</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nuclear extract</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100*WT competitor</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100*MT competitor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sp1 antibody</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

(B) WT: cacaGTCAACAAATGATTAATTcaggat
MT: cacaGTCAACAAATGATAGGATcaggat

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotinylated probe</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nuclear extract</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100*WT competitor</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100*MT competitor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HNF1α antibody</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Arrow labels:
- **Supershift**
- **Shift**
- **Free probe**