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vivo corrdation (IVIVC), maximum plasma concentration (Cmax), Unbound maximum plasma

concentration (Crex,u), acute kidney injury (AKI).
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Abstract

In humans, creatinineis formed by a multistep processin liver and muscle and eliminated viathe
kidney by a combination of glomerular filtration and active transport. Based on current
evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally
localized organic cation transporter 2 (OCT2) and the organic anion transporter 2 (OAT2), and
effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1
(MATE1) and MATEZ2K. Drug induced elevation of serum creatinine (SCr) and/or reduced
creatinine renal clearance (CL) is routinely used as a marker for acute kidney injury (AKI).
Interpretation of elevated SCr can be complex, because such increases can be reversible and
explained by inhibition of renal transporters involved in active secretion of creatinine or other
secondary factors such as diet and disease state. Distinction between these possibilities is
important from a drug development perspective as increases in SCr can result in the termination
of otherwise efficacious drug candidates. In this review, we discuss the challenges associated
with using creatinine as a marker for kidney damage. Furthermore, in order to evaluate whether
reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition
data, an in depth in vitro-in vivo correlation analysis was conducted for sixteen drugs with in
house and literature in vitro trangporter inhibition datafor OCT2, MATE1 and MATE2K, as well
as total and unbound maximum plasma concentration (Crax and Craxy) data measured in the

clinic.
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Introduction

Serum creatinine (SCr), an endogenous cation produced mainly by muscle metabolism, is the
most widely used marker to assess renal injury (Tschuppert et a., 2007). Traditional monitoring
for nephrotoxicity relies upon SCr measurements (Waikar et al., 2012). Creatinine is primarily
filtered through the kidney through the glomeruli, but depending on a number of factors ~10-
40% is actively secreted by the proximal tubule cells through transporter-mediated active uptake
and efflux (Levey et a., 1988; Breyer and Qi, 2010). Therefore, alterations in glomerular
filtration rate (GFR) and/or proximal tubular secretion of creatinine can lead to increases in SCr
and decreases in the estimated creatinine clearance. Elevation of SCr often results in reduction
of drug dose (Arya et a., 2013; Arya et a., 2014) and may lead to discontinuation of the
development of potentially promising drug candidates. Therefore, it is critical to distinguish
clinically relevant increases in SCr due to renal toxicity from the non-pathologic increase in SCr
attributed to the inhibition of renal transporters. Mild to moderate and reversible elevation of
SCr and decrease in creatinine renal clearance (CL) has been reported, which can be attributed
to inhibition of creatinine transporters without affecting renal function per se (Arya et al., 2013;
Arya et a., 2014). This is supported by the clinical observation that several drugs such as
cobicistat (Lepist et al., 2014), pyrimethamine (Opravil et a., 1993), cimetidine (Dubb et al.,
1978), and trimethroprim (Berglund et al., 1975) lead to increased levels of SCr without
affecting kidney function. Such observations have also been reported for several recently
approved drugs, including crizotinib (Brosnan et al., 2014; Camidge et a., 2014) and
dolutegravir (Koteff et al., 2012). Understanding the mechanism of active secretion of SCr and
how drugs may interfere with this process is therefore important from both a drug devel opment

and clinical practice perspective where SCr is used as a marker of kidney injury.
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Acute kidney injury (AKI) is a common condition that complicates up to 7% of all-hospital
admissions and 25% of intensive care unit admissions (Klevens et a., 2007; Vaidya et al., 2008;
Mingimaet a., 2011). While progress has been made in understanding the pathophysiology of
AKI and in the clinical care of patients with AKI, mortality rates have remained unchanged at
50-70% over the past 50 years (Mingima et al., 2011). Despite routine monitoring of systemic
drug levels and renal function using traditional blood and urinary markers of kidney injury (e.g.
creatinine, blood urea nitrogen, tubular casts, urinary concentrating ability), 10-20% of patients
receiving aminoglycoside therapy, for instance, will develop AKI (Rybak et al., 1999). The lack
of sensitive and specific markers of AKI limits the ability for early detection and intervention in

drug-induced nephrotoxicity.

In the kidney, the elimination of drugs and endogenous compounds, such as creatinine, is the net
result of passive glomerular filtration and reabsorption, as well as transporter-mediated active
tubular secretion and/or reabsorption. The magor transporters in human proximal tubule cells
that play a role in the uptake of drugs and endogenous compounds from blood into proximal
tubule cells are the organic cation transporter 2 (OCT2), and the organic anion transporters 1 and
3 (OAT1 and 3; Figure 1). In the apical membrane, mgor efflux transporters involved in the
excretion of drugs into the urine are the multidrug and toxin extrusion protein 1 (MATEL) and
MATEZ2K, and the multidrug-resistance protein MDR1 P-glycoprotein (P-gp). Inhibition of
these trangporters may alter systemic and tissue exposure of drugs, metabolites, and endogenous
compounds, which may subsequently lead to clinically significant drug-drug interactions (DDIs).
This can be of concern from a drug efficacy or safety perspective (Giacomini et al., 2010;
Hillgren et a., 2013). Other transporters, such as the breast cancer resistance protein (BCRP),

are also expressed in the proximal tubule (Figure 1), but their clinical significance is less well
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defined (Giacomini et al., 2010; Giacomini and Huang, 2013; Hillgren et al., 2013). In general,
drug transporters are promiscuous in substrate recognition and in addition to the charge of drugs,
other factors, such as polar surface area, molecular weight, and number of hydrogen bond donors
and acceptors, contribute to substrate specificity (Chang et al., 2006). Excdlent reviews on renal
transporters have been published previously and the reader is referred to these for further details

(Masereeuw and Russdl, 2010; Morrissey et al., 2013).

In this review we provide: 1) An overview of the biosynthesis and disposition of creatinine in
humans; 2) The current knowledge of transporters involved in the active renal secretion of
creatinine; 3) A discussion on potential mechanisms that could result in increased levels of SCr;
4) A retrospective analysis to assess the correlation of eevation of SCr and inhibition of the
renal transporters OCT2, MATEL and MATEZ2K, and a discussion on the challenges associated
with the identification of reliable biomarkers for AKI; and 5) A discussion on whether creatinine

is a predictive and sensitive biomarker for DDIs attributed to inhibition of OCT2 and MATEs.

Markers of renal function

GFR is generaly accepted as the best index of renal function in health and disease (Levey et a.,
2015) and it can be accurately assessed by the measurement of the clearance of an exogenous
substance such as inulin, ®mTC-DPTA, '®l-i-othlamate, or *’Cr-EDTA (Korhonen, 2015).
However, as these methods are expensive and inconvenient for use in the clinical setting, GFR is
routinely estimated (eGFR) from the measurement of SCr, using a variety of equations such as

those recommended by the Modification of Diet in Renal Disease (MDRD) study (National
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Kidney, 2002), and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (Levey

et al., 2009), which take into account the impact of age, gender, and race on SCr.

The accuracy of the GFR estimate relies heavily upon the laboratory measurement of SCr. The
inter-laboratory differences in the measurement of SCr have been widely documented (Miller et
al., 2005; Seronie-Vivien et al., 2005). Miller et al. compared 50 methods of creatinine
measurements in 5624 laboratories with an isotope-dilution mass spectrometry (IDMS) reference
method and reported large bias and discrepancies between the methods and laboratories (Miller
et a., 2005). For example, measurements ranged from 0.87-1.21 mg/dL for the 0.90 mg/dL
creatinine reference sample. To put this into context, usng the MDRD equation, a 0.1 mg/dL
change in creatinine for a 60-year-old woman causes a 10% change in calculated GFR. More
recently, the introduction of calibration standards which can be traced to the “gold standard”
isotope-dilution mass spectrometry (IDMS) method has helped resolve these concerns

(Korhonen, 2015).

During the last decade, there has also been increasing interest in cystatin C as an additional
endogenous marker of renal function. Cystatin C, produced at a constant rate by human
nucleated cdlls, is freely filtered, not actively secreted, or dependent on muscle mass or diet
(Nyman et al., 2015). Equations combining serum cystatin C and creatinine have been proposed

to provide a more accurate estimate of GFR (Inker et al., 2012).

Biosynthesis and disposition of creatinine
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Creatinineis a product of the degradation of creatine, which is an organic nitrogenous compound
playing an important role in cellular energy metabolism. Creatine is derived from dietary
sources and de novo synthesis. Asillustrated in Figure 2, the biosynthesis of creatine in humans
accounts for ~50% of the daily requirement and is a two-step process: first guanidinoacetate is
formed from arginine and glycine precursors, under the control of L-arginine-glycine
amidinotransferase (AGAT), followed by the guanidoacetate methyl transferase (GAMT)
catalyzed transfer of a methyl group from S-adenosyl-methionine to produce creatine. AGAT
and GAMT activities have been reported in many tissues. However, they are most highly
expressed in kidney and liver, respectively (Edison et al., 2007; Beard and Braissant, 2010).
Cregtine synthesis is balanced with that of dietary intake through feedback inhibition of AGAT.
On a creatine free diet, this pathway is fully active. However, when creatine is ingested through
the diet, AGAT is partially repressed and guanidinoacetate synthesis, and thus subsequent
creatine synthesis, is reduced (Heymsfield et al., 1983). Once synthesized, creatineis released
into blood circulation where it is taken up into muscle and other tissues by the Na'-Cl™ dependent
creatine transporter SLC6A8 (Verhoeven et al., 2005). The majority (98%) of the total body
creatine pool is found in skeletal muscle, with small amounts also found in brain, kidney, and
liver (Heymsfield et al., 1983). Approximately 1.7% of the total creatine pool (creatine and
phosphocreatine) dehydrates to creatinine per day (Edison et al., 2007) and permeates through

the cell plasma membrane into the blood circulation.

As a low-molecular-weight cation (MW=113), creatinine is eliminated solely by renal excretion
through a combination of glomerular filtration and tubular secretion, with minimal binding to

plasma proteins and metabolism. Glomerular filtration, the passive process of ultrafiltration of
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plasma from blood as it crosses the glomerular capillaries, accounts for the large majority of the
renal elimination of creatinine (Levey et a., 2015), whereas the secretory component is
estimated to be 10-20% of total creatinine elimination in some reports (Breyer and Qi, 2010) and
up to 40% in others, under normal conditions (Levey et al., 1988). Net tubular reabsorption of
creatinine is uncommon, but may occur in infants and the elderly (Musso et al., 2009). During
chronic renal failure, the proportion of creatinine excreted by glomerular filtration decreases and
the fraction undergoing tubular secretion may increase to 50-60%. In addition, under conditions
of greatly reduced GFR, up to 60% of the daily creatinine generated may be eliminated by extra
renal routes, such as degradation by intestinal microflora (Shemesh et al., 1985; Levey et dl.,

1988).

Beyond renal injury or disease, severa factors are known to impact the formation and
elimination of creatinine, including exercise, diet, emotional stress, age, fever and trauma, as
well as inhibition of the secretory component by drugs (as discussed below) (Heymsfield et al.,
1983; Levey et al., 1988). For example, creatinine excretion declines in the elderly and thisis
likely the result of several factors, including reduced muscle mass, decreased dietary protein
consumption and the net tubular reabsorption of creatinine (Heymsfield et a., 1983; Musso et al.,

2009).

Mathematical conceptsof renal clearance of creatinine
The renal clearance of creatinine is determined by its glomerular filtration, tubular secretion, and
reabsorption:

CI—cr:(:l—filtration +C|—secretion - CI—reabsorption ECI- 1

10
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Where CLjiitration, CLsecretion, CLreabsorption represents creatinine clearance by renal filtration, tubular
secretion, and reabsorption, respectively.
CL¢ can be described by EQ.2 (Shitara et al., 2005).
CLy= (1—FR)* (fy* GFR+ CLseretion)

=(1—FR)- (f,* GFR+ (Qr*fu' CLeerint/ Qr+fu* Clseriny))  EQ.2
Where FR, f,, GFR, Qr, CLs int represents the fraction reabsorbed, protein unbound fraction in
the blood, glomerular filtration rate, renal blood flow rate, and intrinsic clearance of tubular
secretion, respectively.
As described below, tubular secretion of creatinine involves transporter-mediated active uptake
and efflux. Therefore, CLsin: IS Saturable and may be inhibited by drugs that are inhibitors of
these transporters. FR may be in part saturable (Shitara et al., 2005), but the mechanism(s)
contributing to reabsorption of creatinine, particularly, the role of transporters, are not well
understood.
Imamura et a (Imamura et al., 2011) established mechanistic models to describe the renal
elimination of creatinine. The model analysis suggested that active tubular secretion contributed
significantly to the renal elimination of creatinine (30-60%), whereas the significance of

reabsorption depended on the models used.

Transportersinvolved in active renal secretion of creatinine

Several drugs are reported to impact creatinine secretion, thereby causing transient increase in
SCr without altering GFR (Table 2 and see below). The current hypothesis is that these changes

are explained by the reversible inhibition of transporters involved in tubular secretion of

11
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creatinine (German et al., 2012). We summarize in the sections below the current knowledge of
the role of transporters in the uptake of creatinine into the proximal tubular cells of the kidney
and efflux into the urine.

Transportersinvolved in creatinine uptake in the kidney

Renal uptake of creatinine has been studied by members of the SLC22A family, such as the
organic cation transporters OCT2 and OCT3, and organic anion transporters OAT1, OAT2, and
OATS3. Comprehensive reviews on these organic cation and anion transporters can be found in
several publications (Jonker and Schinkel, 2004; Koepsdll et al., 2007; Burckhardt, 2012; Nigam

et al., 2015).

Expression and function of OCT2, OCT3, OAT1, OAT2 and OAT3

OCT2 is a renal organic cation uptake transporter primarily localized in the basolateral
membrane of the whole segment of the renal proximal tubule cells. It plays a major rolein renal
uptake of mostly cationic compounds, but also transports some anionic and zwitterionic
compounds (Jonker and Schinkel, 2004). On the contrary, OCT3 is recognized as an
extraneuronal monoamine transporter (Jonker and Schinkel, 2004). It is widely expressed in
many tissues, such as liver, kidney, skeletal muscle, placenta and heart, as well as in glial cells
and epithelial cells of the choroid plexus, and neurons. OCT3 transports a wide range of
monoamine neurotransmitters, hormones and steroids (Wu et al., 1998). OCT3 mRNA was
detected in human kidney cortex; however, its level was much lower compared to OCT2
(Motohashi et al., 2002). Therefore, at least based on mMRNA analysis, the importance of OCT3
in trangport of cationic compounds in kidney is much less compared to OCT2 (Motohashi et .,

2002). Nevertheless, recent studies in Oct3 (-/-) knockout mice demonstrate that deletion of

12

20z ‘0z |Udy UOSfeUINOr 13dSY e BIo'sfeuIno fipdsepuwip Woly papeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on January 29, 2016 as DOI: 10.1124/dmd.115.067694
This article has not been copyedited and formatted. The final version may differ from this version.

DMD # 67694

Oct3 has an impact on pharmacokinetic and pharmacological effects of its substrates, such as

metformin (Chen et al., 2015).

OATL1, OAT2, and OAT3 are renal organic anion uptake trangporters located in the basolateral
membrane of proximal tubules (Motohashi et al., 2002). OAT1 and OAT3 have overlapping
substrate specificities, and are responsible for the uptake of many anionic drugs, such as
antibiotics, antivirals, diuretics, uricosurics, statins, ACE inhibitors and antineoplastic drugs
(Burckhardt, 2012). In contrast to OAT1 and OATS3, therole of OAT2 isless well characterized.
More studies have emerged in this decade focusing on OAT2 expression in human kidney as
well asitsrolein renal tubular handling of drugs (Cheng et al., 2012; Lepist et a., 2014; Shen et
a., 2015). OAT2 isexpressed in the basolateral membrane of renal proximal tubule cells as well
as in the sinusoidal membrane of hepatocytes (Kobayashi et al., 2005; Cheng et al., 2012). One
group showed that OAT2 was localized in both basolateral and apical membranes of human and
cynomolgus monkey renal proximal tubules, but only in the apical membrane of rat proximal
tubules (Shen et a., 2015). These findings suggest species differences for OAT2/Oat2
localization and possibly a role in reabsorption of OATZ2 in primates. Species differences in
OAT?2/Oat2 localization make rodents a poor transatable model to predict effects in primates for
subdtrates of this transporter. OAT2 has many substrates in common with OAT1 and OATS3.
However, several antiviral drugs eiminated exclusively in the urine were preferentialy
transported by OAT2 and not by OAT1 and OAT3 (Cheng et al., 2012). OAT1, OATZ2, and
OAT3 mRNA are present in human kidney cortex, with highest mRNA level observed for

OATS3, and different mMRNA levels for OAT1 and OAT2 in two separate reports (Motohashi et
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a., 2002; Cheng et a., 2012). However, it is not known whether these differences in mRNA

levels trandate into different amount of transporter protein.

Transportersinvolved in creatinine uptake

Creatinine has been reported to be an in vitro substrate for OCT2 (Urakami et al., 2004; Imamura
et a., 2011; Ciarimboli et al., 2012; Lepist et a., 2014), with a Michaelis constant (Kn,) range
from 2 mM to 56 mM, suggesting low affinity transport. Based on the physiological
concentration of creatinine in plasma (30-85 uM), OCT2-mediated transport of creatinine will
not be saturable, which is especially important for patients with reduced GFR (Urakami et al.,
2004). In vivo studies using Oct1/2 double knockout mice showed the significance of Oct in
creatinine secretion; creatinine clearance and renal accumulation of exogenous creatinine were
35-fold and 23-fold lower in Octl/2 knockout mice compared to wild type mice, respectively
(Ciarimboli et al., 2012). One group, however, questioned the role of Oct2 in creatinine
transport as they did not observe significant difference in creatinine secretion in Octl/2 knockout
mice compared to control mice (Eisner et a., 2010). This discrepancy may be explained by the
use of ketamine by Eisner et al. which has the potential to interfere with creatinine secretion
(Ciarimboli et al., 2012). It should be noted that species differences may complicate the
translation of the contribution of OCT2/Oct2 in creatinine transport from rodents to humans. For
instance, in mouse, both Octl and Oct2 are expressed in kidney, while in humans, only OCT2 is
expressed in kidney whereas OCT1 is predominantly expressed in liver (Jonker and Schinkel,
2004). More direct evidence of creatinine as an OCT2 substrate came from genome-wide
association studies (GWAYS) showing acute elevation of SCr (24% increase) in cancer patients

following treatment with cisplatin, a known substrate and inhibitor of OCT2. The effect of
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cisplatin on creatinine secretion is attributed primarily to competitive inhibition of OCT2

transport (Ciarimboli et al., 2012).

In a genetic association study, an intergenic single nucleotide polymorphism (SNP) (rs2504954;
T->G), located on chromosome 6 in the region between the OCT2 and OCT3 genes, was
significantly associated with higher SCr level (Ciarimboli et al., 2012). Another non-coding
SNP (rs2279463; T>C) in the OCT2 gene was associated with creatinine metabolism (Kottgen et
a., 2010). On the other hand, a coding SNP in OCT2 (rs316019; S270A) has been associated
with reduced cisplatin-induced nephrotoxicity (Filipski et a., 2009) and reduced renal
elimination of metformin (Wang et al., 2008), but not with altered SCr levels. Anintronic OCT2
SNP (rs316009; G->A), a highly correlated polymorphism to rs316019, showed a strong
association with tubular creatinine secretion and end-stage renal disease (Reznichenko et al.,
2013). Taken together, both in vitro and in vivo dataindicate arole of OCT2 in tubular secretion

of creatinine.

Cregtinine has also been reported to be an in vitro substrate for OCT3 (Imamura et al., 2011,
Ciarimboli et al., 2012; Lepist et a., 2014). Similar to OCT2, OCT3 trangports creatinine with a
Km in the mmolar range (~1.9 mM for OCT2 and ~1.3 mM for OCT3) (Lepist et al., 2014).
Clinically significant polymorphisms have been identified in OCT3. It is unknown, however,
whether these SNPs have an impact on creatinine secretion or not (Aoyama et al., 2006; Sakata
et al., 2010). Based on current evidence, OCT3 is likely less important than OCT2 for creatinine

uptake in kidney.

15
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Opposing the traditional view of organic cationic pathways as the sole mechanism of creatinine
secretion in kidney, creatinine has been reported to be an in vitro substrate for OAT2 (Ciarimboli
et a., 2012; Lepist et al., 2014; Shen et a., 2015). A comprehensive anaysis to identify the
transporters for creatinine was performed, in which each transporter’s mRNA and function were
measured (Lepist et al., 2014). Creatinine showed somewhat higher affinity towards OAT2 (K,
= 986 uM), as compared to OCT2 and OCT3. Other groups also observed higher affinity
transport of creatinine by OAT2 compared to that by other transporters (Shen et al., 2015).
OAT2 might contribute to creatinine secretion, and possibly reabsorption in human renal

proximal tubules, but clinical data are needed to support this hypothesis.

The role of OAT3 in creatinine secretion is unclear. Contradictory findings were observed in
vitro in OATS3 transfected cell lines (Urakami et al., 2004), and kinetic data have not been
reported. The involvement of mouse Oat3 in creatinine secretion is also unclear. Vallon et al.
showed that creatinine was transported by mouse Oat3 using Xenopus laevis oocytes, and renal
creatinine clearance was significantly reduced in Oat3 (-/-) compared to wild-type mice (Vallon
et al., 2012). However, Ciarimboli et al. did not observe any creatinine uptake by mouse Oat3 in
a transfected cell line (Ciarimboli et al., 2012). The contribution of OAT3 to renal creatinine
uptake in human was estimated to be very low based on a relative activity factor evaluation
(Imamura et a., 2011). For OAT1, several reports showed that creatinine was not a substrate for
this transporter (Urakami et a., 2004; Imamura et al., 2011; Ciarimboli et al., 2012; Lepist et al.,

2014).

Trangportersinvolved in creatinine efflux in the kidney
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Creatinine trangport has been studied by members of the SLC47A family, such as MATEL and
MATEZ2K, and SLC22A family members, such as organic cation and carnitine transporters

OCTN1 and OCTNZ2, and organic anion transporter OAT4.

Expression and function of MATEL, MATE2K, OCTN1, OCTN2 and OAT4

MATEs are proton/organic cation antiporters. MATEL is highly expressed in the kidney, liver,
adrenal gland, skeletal muscle and several other tissues, while MATE2K is specifically
expressed in kidney (Masuda et al., 2006). Both MATEL and MATEZ2K play arole in the renal
tubular secretion of cationic drugs and endogenous compounds in humans (Y onezawa and Inui,
2011). OCTN1 and OCTN2 are organic cation transporters expressed in many tissues. They are
localized at the brush border membrane of the proximal tubules in kidney and play arole in L-
carnitine tissue distribution and renal reabsorption (Wu et al., 1999; Tamai, 2013). OAT4 isaso
located at the brush border membrane of proximal tubules and mediates the bidirectional
transport of urate and some organic anions, in a substrate dependent manner (Miyazaki et al.,

2005; Hagos et al., 2007).

Transportersinvolved in creatinine efflux

Creatinine has been reported to be a substrate for MATEL and MATEZ2K (Tanihara et al., 2007).
While MATEs function as efflux transporters in vivo, MATEs are often evaluated as uptake
transporters by manipulating extracellular pH in vitro. Ininterpreting in vitro datafor MATES, it
is assumed that the intra and extracellular binding sites have an equal affinity for substrates and
inhibitors. In vitro studies suggest that MATEL and MATE2K are involved in tubular secretion

of creatinine (Tanihara et a., 2007; Lepist et a., 2014; Shen et al., 2015). The uptake window of
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creatinine by MATEs at extracellular pH 8.4 was relatively low, and only ~ 2-3 fold higher in
MATE1L and 1.3-3 fold higher in MATEZ2K transfected cells compared to control cells (Tanihara
et al., 2007; Lepist et al., 2014; Shen et al., 2015). Intracellular acidification by pretreatment with
ammonium chloride enhanced the uptake of creatinine by MATEL and MATE2K (Tanihara et
a., 2007). Kinetic analyses showed that creatinine has low affinity towards MATEL and
MATEZ2K, with K, values of ~10 mM and ~21 mM, respectively (Shen et al., 2015). Orthologs
of human MATEL1, but not MATEZ2K, have been identified in rats and mice (Y onezawa and Inui,
2011). When studying the nephrotoxicity of cisplatin, a significant increase in creatinine was
observed in cisplatin-treated Matel knockout mice compared to control mice. In addition, the
combination of pyrimethamine, a selective inhibitor of mouse Matel, with cisplatin significantly
increased creatinine levels compared to cisplatin alone in wild type mice. Both studies indirectly

suggested arole of Matel in creatinine transport, at least in mice (Nakamura et a., 2010).

Severa polymorphisms have been identified in MATEL (rs111060524-G64D, rs111060526-
A310V, rs111060527-D328A, rs111060528-N474S), and MATE2K (rs111060529-K64N and
rs111060532-G211V) in Japanese subjects, and these variants were associated with loss of
transport activity of TEA and metformin in vitro (Kgjiwara et al., 2009). Other MATEL SNPs
(rs35646404 -T159M and rs35790011-V 338I) have also been described with similar reduction in
transport activity of TEA and metformin in other subjects from various ethnic groups (Meyer zu
Schwabedissen et a., 2010). The effect of these MATEL and MATE2K variants on creatinine

transport remains to be elucidated.
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To date, no reports have demonstrated creatinine transport by OCTN1 and/or OCTN2. It is
unclear whether creatinine is reabsorbed by proximal tubular cells through OAT4, as OAT4
functions as a bidirectional transporter (Hagos et al., 2007), suggesting that it could be involved
in excreting substrates into urine and/or reuptake of substrates from urine into cells. Using
different transfected cell lines, some observed creatinine uptake by OAT4 (Imamura et al.,
2011), but this was not confirmed by others (Lepist et al., 2014).

In summary, based on current evidence, OCT2, MATE1 and MATE2K are the major
transporters involved in renal creatinine secretion. OAT2 also could be involved based on in

vitro evidence, but itsin vivo relevance in humansis not clear yet.

Inhibition of renal transportersand elevation of SCr: an IVIVC analysis

In drug development, it is desirable to devel op approaches to understand underlying mechanisms
for interactions of drug candidates with active renal secretion of creatinine and to subsequently
distinguish clinically relevant increases in SCr due to impairment of renal function from non-
pathologic increases in SCr caused by inhibition of renal transporters. We therefore conducted a
retrospective analysis to evaluate whether an in vitro-in vivo correlation (1VI1VC) exists between
inhibition of the renal transporters OCT2, MATEL, MATEZ2K, OATZ2, and OCT3 and elevations
of SCr and /or decreasesin CL. Inthisanalysis(Tables 1 and 2), atotal of 16 compounds were
identified that showed: 1) >10% reversible elevation of SCr without a significant change of
measured GFR (cimetidine, pyrimethamine, trimethoprim, dronedarone, DX-619, dolutegravir,
cobicistat, ritonavir, ranolazine, rilpivirine, and telaprevir); 2) >10% reversible eevation of SCr,
without reported data on changes in GFR (amiodarone, vandetanib); and 3) No significant

elevation of SCr and GFR and/or other renal toxicity markers at clinically relevant exposure as
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negative in vivo controls (famotidine, ranitidine, and raltegravir). In vitro inhibition data (1Cso
or K; values) for human OCT2, MATEL, MATE2K, OATZ2, and OCT3 were collected for these
compounds from the University of Washington DDI database
(https://www.druginteractioninfo.org). The range of 1Csp or K; valuesis summarized in Table 1.
To better understand the correlation between in vitro inhibition of OCT2 and MATEs, and the
elevation of SCr, in vitro ICsy values for inhibition of OCT2, MATEL1 and MATE2K for 15
compounds listed in Table 1 were measured at Merck Research Laboratories using metformin as
the probe substrate and the method described by Rizk et al. in CHO-K1-OCT2, CHO-K1-
MATEL, and MDCKII-MATEZ2K cdlls (Rizk et a., 2013). Although creatinine is an idea in
vitro probe for IVIVC evaluations, its assay window in OCT2 and MATEs uptake assays is
relatively low (our unpublished observations) (Lepist et al., 2014; Shen et al., 2015), and

thereforeit is unsuitable for measuring 1Cso values.

IVIVC analysisin this review will be focused on OCT2 and MATES. In vitro inhibition data for
OAT2 and OCT3, which were recently identified as renal creatinine transporters, are currently
available only for a few compounds (Table 1). These compounds generally show weak
inhibition of OAT2 and OCT3 compared to MATESs and/or OCT2, suggesting that inhibition of
these transporters might be clinically less relevant. Indomethacin is a relatively potent in vitro
inhibitor of OAT2 (ICso = 2.1 uM) (Shen et al., 2015). However, the effect of indomethacin on
elevation of SCr in several clinical studiesis controversial (Prescott et al., 1990; Al-Waili, 2002).
In femal e healthy volunteers, indomethacin (150 mg daily for 3 days) had no significant effect on
SCr, GFR, or renal blood flow (Prescott et al., 1990). However, indomethacin was reported to

increase SCr in neonates (Al-Waili, 2002). Asindomethacin is a potent prostaglandin synthesis
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inhibitor, it is likely that mechanisms other than transporter inhibition could result in the

observed elevation of blood creatinine (Al-Waili, 2002).

In vitro inhibition data with OCT2, MATE1 and MATEZ2K in the literature showed high
variability for several compounds (Table 1). For instance, the in vitro 1Cso or K; for ritonavir
with MATEL showed a 193-fold variability, and inhibition of OCT2 by trimethoprim and
cimetidine showed a 101- and 99-fold variability, respectively. The reasons for this high
variability are not understood, but could be caused by the use of different probe substrates, and
differences in in vitro systems and assay conditions. For example, remarkable substrate-
dependent difference in 1Cso values for inhibition of MATE2K by trimethroprim were reported
(47-fold, metformin vs. N-methylnicotinamide as probes) (Muller et al., 2015), and for OCT2
inhibition by vandetanib (13-fold, MPP" vs. metformin as probes) (Shen et al., 2013) when the
studies were conducted in the same laboratory using the same in vitro system. Substrate-
dependent inhibition of OCT2, MATEL, and MATE2K has been systematically systemically
evaluated with several prototypic substrates (Belzer et a., 2013; Martinez-Guerrero and Wright,
2013), suggesting that both OCT2 and MATESs have multiple drug binding sites. In contrast to
such substrate dependent inhibition, several other studies have shown consistent K; or 1Cso
values with selected OCT2/MATEs inhibitors across different probe substrates. For instance, 1to
et a. reported no markedly substrate dependence in cimetidine K; values for OCT2, MATEL, and
MATEZ2K with five probe substrates (Ito et al., 2012b). Likewise, similar 1Cso values were
obtained with cobicistat for OCT2 and MATEL using TEA and creatinine as probe substrates
(Lepist et al., 2014). Nevertheless, development of predictive DDI models for OCT2 and
MATESs need to take into account the potential for substrate dependence of ligand interactions

with these proteins. Furthermore, different in vitro systems and assay conditions may have a
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marked effect on 1Csp variability. For example, in studies where metformin was used as probe
subgtrate, ritonavir 1Cso for MATEL was 0.08 uM when pre-incubating MATEL1 transfected HEK
293 cellsfor 30 min in a30 mM NH4CI buffer to create an artificial pH gradient (Wittwer et al.,
2013), whereas the 1Csp was 15.4 uM when using MATEL transfected Hel a cells without pre-

incubation with NH4Cl (Meyer zu Schwabedissen et al., 2010).

In Table 2, the risk for in vivo inhibition of OCT2, MATE1 and MATE2K was assessed by
comparing total and unbound maxima plasma concentrations (Crax and Crexy) Of test
compounds with in vitro ICsy values (Crax/1Cso and Crax, //1Cs0). A cut-off of Crax/ICso > 0.1
and Cax o/1Cs0 > 0.1 was used to predict the risk for in vivo inhibition of respective transporters.
As the relative contribution of these transporters (fraction transported) and the rate-determining
step for renal secretion of creatinine are not well known, we assume that OCT2, MATEL, and
MATEZ2K are contributing equally to the renal secretion of creatinine. Therefore, in assessing
the existence of an IVIVC, inhibition of any of the above transporters was considered as an
indication of in vivo inhibition of creatinine secretion as the worst case scenario. As shown in
Table 2, using our in house ICsp data, Ciex/ICso (> 0.1) provided a reasonably good prediction for
the elevation of SCr for this set of compounds as there were no false negative predictions. Use
of Crax/ICs0 (> 0.1) resulted in four false negatives (dronedarone, cobicistat, rilpivirine, and
telaprevir). Both Cuux/1Csp and Crux o/ ICsp resulted in a false positive prediction for famotidine

(40mg QD for 7days) and ranitidine.

Considering the variability of 1Cso and K; values reported in the literature, using lowest 1Cs; or
Ki values for OCT2, MATEL, and MATEZ2K available for 11 compounds (Table 1), Crax/ICso (>
0.1) provided a reasonably good prediction for the elevation of SCr, whereas Cpax/1Cso (> 0.1)

resulted in a false negative prediction for cobicistat (data not shown). Likewise, using the
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highest 1Csp or K; values reported for OCT2, MATEL, and MATE2K, Cu/ICso (> 0.1) till
provided a good prediction of the elevation of SCr, whereas Cyux o/ICso (> 0.1) resulted in false
negative prediction for cobicistat, dolutegravir, ritonavir, and vandetanib. Use of either the
lowest or highest ICsg literature values, Crax/ICso and Crax o/ ICso both resulted in false positive
predictions for famotidine (40mg QD for 7days) and ranitidine (data not shown). However,
Hibma et al. (Hibma et al., 2015) have recently reported an elevation of SCr and a reduction in
CL by famotidine in humans at a single dose of 200 mg and multiple doses of 160 mg, which
were 4-5 fold higher than in a previous report (Ishigami et al., 1989) (Table 2). The reason for
the lack of IVIVC for these two compounds at clinically relevant exposure is unclear. As there
are no mgjor circulating metabolites for ranitidine and famotidine, it is lesslikely for metabolites
to cause transporter inhibition. An effect on reabsorption of creatinine cannot be excluded,

however.

Currently, Crax/ICs0 > 0.1 is being recommended by the FDA for OCT2 (CDER, 2012.) and the
International Transporter Consortium (ITC) for OCT2 and MATESs (Hillgren et al., 2013) as the
cut-off value to assess the risk for DDIs with OCT2/MATESs transporters. For prediction of
transporter related DDIs, it is critical to use relevant inhibitor concentrations, which are unbound
inhibitor concentrations at the site of interactions with the transporter of interest. As such, Crux.u
will be the relevant concentration for predicting DDI with OCT2, which is localized in the
basolateral plasma membrane of renal proximal tubule cells, whereas it may not be adequate to
predict DDIs for efflux transporters, such as MATES, as these are localized in the apical plasma
membrane. For example, if the inhibitor is actively taken up by the proximal tubule cells, Craxu
may under-estimate the inhibitory effects for efflux transporters. Thus, unbound intracellular

inhibitor concentrations in relevant tissues would be more relevant for prediction of efflux
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transporter related DDIs. However, the methodologies to measure and/or predict such values are

currently still limited (Chu et al., 2013).

|'s creatinine a sensitive biomarker for renal cationic transporter-related DDI s?

Determining the impact of perpetrator drugs on plasma concentration or urinary excretion of
suitable endogenous biomarkers is a valuable tool to assess the risk for drug interactions early in
drug development (e.g. Phase | clinical trials). Recently, some endogenous probes for studying
renal cationic trangporter related DDIs have been identified. Ito et a. have found that the
endogenous metabolite N-methylnicotimide (NMN), a substrate for OCT2, MATE1 and
MATEZ2K, could be used as an endogenous probe to study the DDIs related to OCT2/MATES
inhibition in humans (Ito et al., 2012a). Pyrimethamine, a potent inhibitor of MATEL1 and
MATE2K near completely diminished tubular secretion of NMN (renal clearance 403 vs. 119
mi/min), but had minimal effect on plasma exposure of NMN. Furthermore, Muller et al.
(Muller et al., 2015) reported that trimethoprim, another OCT2/MATESs inhibitor, decreased
NMN renal clearance by 19.9% without significant impact on NMN plasma AUC. The
magnitude of trimethoprim-induced renal clearance reduction was positively correlated between
NMN and metformin in 12 subjects, suggesting the potential use of NMN as endogenous probe
for DDIsinvolving OCT2/MATESs. Using untargeted metabolomics analysis of urine specimens
from healthy subjects and mice treated with or without pyrimethamine, Kato et al. (Kato et al.,
2014) found that thiamine, a vitamin B1, which is essential for carbohydrate metabolism and

neural function, isaso a potential biomarker for inhibition of MATEL and MATEZ2K.

To evaluate if creatinine can be used as a biomarker to assess OCT2/MATEs related DDIs, we

searched the literature for examples where clinical DDIs can be mechanistically explained by
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inhibition of OCT2 and/or MATES, and the changes in SCr or CL. were measured in the same
clinical studies. As shown in Table 3, observed DDIs with several OCT2/MATEs inhibitors
(cimetidine, pyrimethamine, trimethoprim, and vandetanib) at the dose indicated correlated with
a 10-30% elevation in SCr or adecrease in CL. This was not the case for ranitidine, however,
as it caused DDIs with procainamide and triamterene without affecting SCr levels. Interestingly,
famotidine, a recently reported MATEL selective inhibitor, significantly increased SCr (200mg
QD and 160mg g4hr) without affecting the plasma exposure of metformin (Hibma et al., 2015).
The latter likely is explained by the opposing effects of the famotidine-induced increase in both
metformin absorption and renal clearance. Elevation of SCr by cimetidine was variable and less
sensitive in some DDI studies at the clinically relevant dose of 300-400 mg. Considering the
weak to moderate change of SCr associated with OCT/MATESs related DDIs and that a range of
other factors may potentially impact SCr exposure, as we have discussed elsewhere in this
review, SCr does not appear to be a biomarker with sufficient sensitivity to assess the risk, either
gualitatively or quantitatively, of inhibition of OCT2 or MATEs in humans. Follow-up
mechanistic studies such as transporter inhibition experiments are still useful, however, in cases

where increases in SCr exposure are observed.

| s serum creatinine an appropriate marker for renal injury?

Traditional monitoring for nephrotoxicity relies upon the measurement of SCr.  However, SCr
retains poor specificity for AKI and isinsensitive to the degree of AKI for three reasons. First, a
large amount of nephron loss can occur without significant changes in SCr due to residual renal

reserve. Thisfact is most clearly evident in kidney donors in whom no significant change in SCr
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occurs despite a loss of 50% of functioning renal mass (Bosch et al., 1983). Second, the rate of
rise in SCr following a renal insult is delayed due to the kinetics of creatinine production from
muscle turnover and accumulation secondary to reduced glomerular filtration. At anormal GFR
of 120 mL/min, the serum half-life of creatinine is approximately 4 hours; however, at a GFR of
30 mL/min the half-life extends to 16 hours and will therefore not reach steady state for nearly 3
days (Waikar and Bonventre, 2009). Third, as previously discussed, SCr is influenced by a
number of other factors including inhibition of tubular secretion by drugs, weight, gender, age,
muscle metabolism, hydration state, and protein intake (Blantz, 1998). Reduced muscle mass
secondary to malnutrition or immobility is a frequently observed clinical problem that severely
limits the utility of SCr as a marker of kidney function. Based on the limitations of SCr, there
has been great interest in the identification of alternate markers of renal function. To date, a
number of promising biomarker candidates have been identified, characterized, and validated
using models of kidney injury in animals or described for various clinical settings in humans
such as sepsis, cardiac bypass surgery, and contrast media exposure (Fuchs and Hewitt, 2011;
Waring and Moonie, 2011; Vanmassenhove et a., 2013). Importantly, the utility of these new
biomarkers in detecting drug-induced AKI clinically in ether the patient-care or drug
development setting has not been established. Presently, urine biomarkers have been agreed by
regulatory agencies to be used for nonclinical phases of drug development, and on a case-by-case
bass for clinical drug development research investigation (Dieterle et al., 2010). Clinical
gualification of novel AKI urine biomarkers for use during clinical drug development is

currently on-going.

Conclusions
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Based on the in vitro and pharmacogenomic evidence available, OCT2 is one of the transporters
involved in the uptake of creatinine into kidney proximal tubule cells, but its quantitative
involvement is unknown. More recent in vitro data suggests that OAT2 aso transports
creatinine efficiently, but to what extent this is relevant in humans is not yet clear. Following
uptake into the kidney, MATEL and MATE2K mediate the efflux of creatinine into the urine.
Important questions that remain are whether uptake or efflux is rate-determining in the active
secretion of creatinine, what the relative contribution is of each transporter in this process, and
whether there are yet unidentified transporters involved in creatinine excretion and/or
reabsorption. Similar to hepatobiliary transport, it is generally hypothesized that uptake is the
rate-limiting step for active tubular secretion, if the luminal efflux is markedly greater than the
basolateral efflux. In this case, the inhibition of the luminal efflux should have less impact on
the overall systemic intrinsic clearance. However, this cannot explain the significant elevation of

SCr by pyrimethamine, a selective inhibitor of MATEs relativeto OCT2.

Currently, the effect of drugs on creatinine transport is measured in cell lines transfected with
individual transporters. Recently, a quintuple in vitro transporter model expressing
OAT2/OCT2/OCT3/IMATEL/MATEZ2K has been explored to evaluate the impact of test
compounds on creatinine transport (Zhang et al., 2015), but more data are needed to establish the
predictive value of thismodel. Development and use of holistic models and integrated systems,
for instance, immortalized cell lines derived from human kidney with preserved activity of
transporters and drug metabolizing enzymes, may provide more physiologically relevant models
to study the interaction of drugs with the renal secretion of creatinine in the future (Schophuizen

et al., 2015).
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Overdl, high variability of in vitro transporter inhibition data, not limited to OCT2/MATES, has
become a significant concern and may limit IVIVE using universal cut-off values for transporter
perpetrator decision trees which trigger clinical DDI studies (Bentz et al., 2013). Although the
underlying mechanisms for 1Cso variability can be complex, proper standardization of in vitro
inhibition assays by, for example, the use of clinicaly relevant probe substrates, and

standardized incubation conditions, and cell lines will be helpful for improving IVIVE.

In an attempt to establish an IVIV C between inhibition of OCT2, MATEL and MATEZ2K, several
false negatives were identified using a cut-off for the ratio of Cpax J/ICs0 OF Crax o/ Kj of > 0.1
The true positive rate was higher if total (bound plus unbound) drug concentrations were used for
the analyses. Since only unbound drug will be available for interactions with transporters, this
suggests that the free drug concentration measured in plasmais lower than in the proximal tubule
cells or that mechanisms other than inhibition of MATEs and OCT2 contribute to the effects on
creatinine. For example, although cobicistat is an inhibitor of MATEL in vitro, thisinhibition is
not predicted to be clinically significant based on Cax /I Cso data. Remarkably, famotidine and
ranitidine were identified as inhibitors of MATES and OCT2-mediated creatinine transport in
vitro, whereas no effect on creatinine was observed at clinically relevant exposures. Currently,
we have no good explanations for the lack of 1VIVC for these compounds. In the future, use of
mechanistic models may improve the prediction of in vivo interaction of drug molecules with

creatinine renal transporters.

Due to potential interactions of drug molecules with creatinine secretion along with several other
limitations, an alternative method to estimate GFR would be desirable. Despite ongoing efforts
to identify more sensitive and specific markers for renal function and injury, currently, use of

creatinine to estimate GFR is still a practical approach. As such, if atrangent and /or reversible
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elevation of SCr was observed during drug development, understanding the potential interaction
of drug molecules with active renal secretion of creatinine and carefully monitoring renal

function with aternate markers such as cystatin C would be recommended.

Since organic cation transporters such as OCT2 and MATEs are known to transport endogenous
compounds (Jonker and Schinkel, 2004), it would be valuable from a drug development
perspective if changes in these compounds could be used as biomarkers for assessing DDIs
involving inhibition of these transporters. In the case of the kidney, excretion of such
biomarkers would need to be excreted to a significant extent by active transport (as opposed to
GFR), levels should not be affected by secondary factors such as diet and disease, not be
sensitive to diurnal effects, and would need to be sdlective for the transporter(s) of interest.
Based on these criteria and our retrospective analysis of in vitro and clinical data, creatinine is
not an optimal biomarker as its synthesis involves multiple steps, externa factors such as diet
and exercise affect plasma levels, and the contribution of active transport to clearance is
relatively small and not consistent between patient populations. However, mechanistic studies
to explain increases in creatinine in the absence of a decrease in GFR will continue to be

important.
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Legendsfor Figures

Figure 1. Membrane transporters expressed on human renal proximal tubule cells

The transporters located in the basolateral plasma membrane include organic anion transporter 1
(OATL; SLC22A6), OAT3 (SLC22A8), OAT2 (SLC22A7), organic cation transporter 2 (OCT2;
SLC22A2), OCT3 (SLC22A3), and organic anion transporting polypeptide 4C1 (OATPACL,
SLCO4CL). Transporters located in the apical membrane include P-glycoprotein (P-gp; MDR1,
ABCB1), multidrug and toxin extrusion protein 1 (MATEL; SLC47A1), MATE2K (SLC47A2),
breast cancer resistance protein (BCRP;, ABCG2), multidrug resistance protein 2 (MRPZ;
ABCC2), MRP4 (ABCC4); OAT4 (SLC22A11), urate transporter 1 (URAT1; SCL22A12),
peptide transporter 1 (PEPT1; SLC15A1) and PEPT2 (SLC15A2), organic cation/carnitine

transporter 1 (OCTN1; SLC22A4) and OCTN2 (SLC22A5).

Figure 2: Schematic representation of the biosynthesis and disposition of creatine and

creatinine.

Figure 3: Schematic representation of renal elimination of creatinine and the transporters

known to transport creatinine in vitro
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Table 1. In vitro inhibition (ICso or K;) of selected compounds on human OCT2, MATE1, MATE2K, OAT2, and OCT3

Inhibitors OCT2 ICso or K; (LM) MATEL ICso or K; (uM) MATE2K ICso or K; (M) OAT21Cs, | OCT3 ICso
orKi (uM) | or K (uM)

Probe Reported Probe Reported Probe Reported | Reported Reported

Metformin | inthe Metformin | in the Metformin in the in the in the

(10 pm)® literature® | (5 uM)? literature® | (5 uM)® literature® | literature® | literature®
Cimetidine 29+0.7 16.6-1650 | 0.6 £0.05 0.2-16.3 5.610.7 2.1-46.6 22-72.8 9.8-111
Pyrimethamine | 0.61+0.04 | 4.8-23.6 0.02+ 0.077-0.63 | 0.045+0.003 | 0.046- - -

0.002 0.52

Famotidine 21.6+3.4 36.1-1800 | 0.45+0.03 | 0.6-0.76 6.61£0.9 9.7-36.2 - 6.7-14
Ranitidine 11.7+1.3 30.5-79 8.2+0.6 8.3-25.4 21+2 25 - 62-290
Trimethoprim 19.8+1.5 13.2-1327 | 0.51+0.03 3.31-29.1 0.14+0.02 0.61-28.9 | NI 12.3
Dronedarone 1.9+0.3 - 0.46+0.02 - 8.9+1.7 - - -
DX619 - 0.94-1.29 - 0.82-4.32 - 0.1 - -
Dolutegravir 0.21+£0.04 0.066-1.93 | 3.6x0.7 4.67 12.5+1.6 >100 >100 >100
Cobicistat 37.9£4.9 8.24-33 0.98+0.19 0.99-1.87 20.5£3.0 335 >100 >100
Ritonavir 24.8+3.4 20-25 0.28+0.05 0.08-15.4 40.1+6.5 23.7 >20 300
Ranolazine 47 +9 - 16.8£1.5 - 5018 - - -
Rilpivirine 0.38+0.05 5.13 0.25+0.04 - 0.28+0.08 - - -
Amiodarone 47+1.1 >1000 1.0+£0.2 - >50 - - >1000
Raltegravir >100 >100 >100 >100 >100 >100 - -
Telaprevir >100 6.35 6215 22.98 >100 - - -
Vandetanib 0.4+0.05 5.5-73.4 0.06 +0.01 | 0.16-1.23 0.04+0.01 |0.3-1.26 - -

-: Data are not reported or available. °: Data generated at Merck & Co for inhibition of OCT2, MATE1 and MATE2K using metformin as the probe
substrate in CHO-K1-OCT2, CHO-K1-MATE1, and MDCKII-MATE2K cells using the method described by Rizk et al (Rizk et al., 2013). ®. Data

obtained from the University of Washington DDI database (https://www.druginteractioninfo.org).
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Table 2. Effect of selected compounds on SCr, CL., and GFR in humans and the correlation with in vitro inhibition of OCT2, MATE1

and MATE2K

Inhibitors Dosing SCr CLo( | GFR Markers Cinax f, Conan/ 1Cs0° C max/1Cs0° References
regimen M%) | %) N for GFR (uM) OoCT MATE1 | MATE | OCT2 MATE1 | MATE

2 2K 2K

Cimetidine 400 mg 13-26 | 20 NS Ler- 8-12 0.8 4.14 | 20.00 2.14 3.31 16.00 1.71 (Hilbrands et

(QDSs) EDTA; al., 1991)
inulin (Dutt et al.,
1981)

Pyrimethamine | 50-100mg 18-26 | 25-27 NS inulin 2.3° 0.13 3.77 | 115.00 | 51.11 | 0.49 14.95 6.64 (Kusuhara et

SD - al., 2011)
(Opravil et
al., 1993)

Famotidine 40mg QD, NS NS - - 0.39 0.8 0.02 | 0.87 0.06 0.01 0.69 0.05 (Ishigami et
7days al., 1989)

Famotidine 200mg SD; | SI SI - - 1.25 0.8 0.06 | 2.78 0.19 0.05 2.22 0.15 (Hibma et
160mg q4h al., 2015)

Ranitidine 300mg QD NS NS - - 3.72 0.85 0.32 | 0.45 0.18 0.27 0.39 0.15 (Motyl,

2004)

Trimethoprim | 20mg/kg/d | 31 16 NS 'Cr-EDTA | 34- [ 056 |[0.35 |13.53 |49.29 | 020 |7.58 27.60 | (Naderer et
ay (10 iothalama | 6.9 al., 1997;
days); te Arya et al.,
200mg BID 2014)

Dronedarone 400mg bid | 10-15 | 18 NS Sinistrin 0.30 0.02 0.16 | 0.65 0.03 0.003 | 0.013 0.001 | (Tschuppert
7days PAH et al., 2007)

DX-619 800mg (ad) | 30-40 | 26 NS iohexol 20.5- | 0.29- | 23.4 | 26.83 220.0 | 8.19 9.39 77.0 (Sarapa et
[4 days] 22 035 |0 al., 2007)

Dolutegravir 50mg (qd 9-17 10-14 NS lohexol 6.7- 0.01 62.3 | 3.64 1.05 0.62 0.04 0.01 (Koteff et al.,
or bid, 14 CystatinC | 13.1 8 2012)
days)

Cobicistat 150 mg 10.5, 8—-14, | NS lohexol 1.55 0.03 0.04 | 1.58 0.08 0.001 | 0.05 0.002 | (Cohen et
QpD, 23 9-20 al., 2011;
7d, p.o. German et

al., 2012);
(Aryaetal.,,
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2014)
Ritonavir 100mg QD | - 25 NS lohexol 2.16 0.015 | 0.09 | 7.71 0.05 0.001 | 0.12 0.001 | (Deray et al.,
1998;
German et
al., 2012;
Lepist et al.,
2014)
Ranolazine 1000 mg 12 10 NS Sinistrin 6.01 0.38 0.13 | 0.36 0.12 0.05 0.14 0.05 (Arya et al.,
BID, 5 d, 2014)
p.o.
Rilpivirine 25mg (qd, 10 - NS CystatinC | 0.6 0.005 | 1.58 | 2.40 2.14 0.01 0.01 0.01 Drug label;
96 weeks) (Maggi et al.,
2014)
Amiodarone 400mgQD | 11 - - - 0.8- 0.04 0.49 | 2.30 0.05 0.02 0.09 0.002 | (Pollak et al.,
2.3 1993)
Raltegravir 400mg BID | NS NS - - 3.38 0.17 <0.0 | <0.03 <0.03 | <0.01 | <0.01 <0.01 | Drug label;
3 (Rizk et al.,
2013; Maggi
et al., 2014)
Telaprevir 750mg q8h | SI - NS Cystatin C, | 5.82 0.04- | <0.0 | 0.09 <0.06 | 0.01 0.02 <0.01 | (Suzuki et
L-FABP, 024" | 6 al., 2013;
NAG Matsui et
al., 2015)
Vandetanib 300mg 15 - - - 0.33 0.1 0.83 | 5.50 8.25 0.08 0.55 0.83 (Shen et al.,
QD 2013)

-: Data are not reported or available. NS: Not significant (either statistically or clinically). S: Significantly increased compared to baseline level; : IC50

used are generated at Merck & Co and shown in Table 1, except for DX-619, for which lowest ICso values obtained from the literature are used

(see Table 1). °: highest f, values are used to estimate C ma, /ICso as the worst case scenario. Data generated at Merck & Co 50mg oral SD
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Table 3. Examples of transporter related DDIs involving OCT2, MATE1, and/or MATE2K and correlation with transient elevation of

sCr
Perpetrator Perpetrator dose regimen Victim Victim dose regimen | % Change % Change in Elevation | References
in AUC renal CL of SCr
and/or %
decrease
of Clcr
cimetidine 400 mg QID [8 days] gabapentin 1200 mg QD [4 days] | 23.7 -17.8 Yes; (Lal et al.,
Clerd, 10% | 2010)
cimetidine 800 mg BID [6 days] glycopyrronium 100 ug Inhalation SD | 19.2 -22.1 - (Dumitras et
al., 2013)
cimetidine 400 mg BID [6.5 days] metformin 500 mg SD 54.2 -44.6 No; Clcr (Wang et al.,
NS 2008)
cimetidine 400 mg BID [5 days] metformin 250 mg QD [10 days] | 46.2 -28.3 No® (Somogyi et
al., 1987)
cimetidine 300 mg TID [5 days] varenicline 2 mgSD 29.7 -25.1 Yes; (Feng et al.,,
Cler 5- 2008)
10%
dolutegravir 50 mg BID [7 days] metformin 500 mg BID [12 days] | 145 - Yes; SCr 1 | (Zong et al.,,
2014)
pyrimethamine | 50 mg SD metformin 250 mg SD 35.3 -35 Yes; (Kusuhara et
Clerd,20% | al., 2011)
ranitidine 150 mg BID procainamide 1gSD 13.7 -18.5 - (Somogyi and
Bochner,
1984)
ranitidine 150 mg BID [4 days] triamterene 100 mg/day QD [8 -24 -51 No; NS (Muirhead et
days] Clcr al., 1988)
trimethoprim 200 mg TID [6 days] metformin 500 mg TID [10 days] | 37 -32 Yes; (Grun et al.,
Clerd, 20%; | 2013)
SCr 1M23%
trimethoprim 200 mg TID[5 days] metformin 850 mg QD [2 doses] | 29.5 -26.4 Yes; (Muller et al.,
Clerd,16.9 | 2015)

%
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vandetanib 100 mg QD [3 21-day- cisplatin 75 mg/m2 SD [3 21- 32.7 - - (Blackhall et
cycles] day-cycles] al., 2010)
vandetanib 800 mg SD metformin 1000 mg SD 733 -52 Yes; SCr (Johansson
T 8-29%, | etal., 2014)

% a time-dependent variation of SCr was observed.
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-: Data are not reported or available. NS: Not significant statistically.
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