The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide-Mediated Hepatic Clearance and may Potentiate Statin-Induced Myopathy

Heather Eng, Renato J. Scialis, Charles J. Rotter, Jian Lin, Sarah Lazzaro, Manthena V. Varma, Li Di, Bo Feng, Michael West, and Amit S. Kalgutkar

Pharmacokinetics, Pharmacodynamics, and Metabolism Department – New Chemical Entities, Pfizer Inc., Eastern Point Road, Groton, CT (H.E., R.J.S., C.J.R., J.L., S.L., M.V.V., L.D., B.F., M.W.) and Cambridge MA (A.S.K.)
Running Title: Drug-Drug interaction between statins and fusidic Acid

Address correspondence to: Amit S. Kalgutkar, Pharmacokinetics, Dynamics, and Metabolism-New Chemical Entities, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139, USA. Tel: +(617)-551-3336. E-mail: amit.kalgutkar@pfizer.com

Text Pages (including references): 38
Tables: 1
Figures: 5
References: 79
Abstract: 247
Introduction: 624
Discussion: 1594
Abbreviations used are: AUC, area under the plasma concentration–time curve; BCRP, breast cancer resistant protein; CI, confidence interval; \(C_{\text{max}}\), maximum plasma concentrations after oral dosing; CYP, cytochrome P450; DDI, drug-drug interaction; ER, efflux ratio; FA, fusidic acid; \(F_a\), fraction of the oral dose absorbed; \(f_u\), fraction unbound; HBSS, Hanks balanced salt solution; HEK, Human embryonic kidney; ITC, International Transporter Consortium; \(k_a\), absorption rate constant after oral administration; \(k_{\text{inact}}\), maximal rate of inactivation; \(K_i\), concentration at 50% \(k_{\text{inact}}\); \(k_{\text{obs}}\), rate of inactivation at individual inhibitor concentrations; LC-MS/MS, liquid chromatography tandem mass spectrometry; MDCK-LE; Madin–Darby canine kidney-low efflux; MDR1, multidrug resistant protein 1; MRM, multiple reaction monitoring; MRSA, methicillin-resistant *Staphylococcus aureus*; NADPH, reduced nicotinamide adenine dinucleotide phosphate; OATP, organic anion transporting polypeptide; \(Q_h\), hepatic blood flow; TDI, time-dependent inhibition; \(T_{\text{max}}\), time of first occurrence of \(C_{\text{max}}\); \(t_{1/2}\), half-life.
Abstract: Chronic treatment of methicillin-resistant Staphylococcus aureus (MRSA) strains with the bacteriostatic agent fusidic acid (FA) is frequently associated with myopathy including rhabdomyolysis upon co-administration with statins. Because adverse effects with statins are usually the result of drug-drug interactions (DDIs), we evaluated the inhibitory effects of FA against human cytochrome P450 3A4 (CYP3A4) and clinically relevant drug transporters such as organic anion transporting polypeptide (OATP) 1B1 and 1B3, multidrug resistant protein 1 (MDR1) and breast cancer resistant protein (BCRP), which are involved in the oral absorption and/or systemic clearance of statins including atorvastatin, rosuvastatin and simvastatin. FA was a weak reversible (IC₅₀=295±1.0 μM) and time-dependent (Kᵢ=216±41 μM and \(k_{\text{inact}}=0.0179±0.001 \text{ min}^{-1} \)) inhibitor of CYP3A4-catalyzed midazolam-1’-hydroxylase activity in human liver microsomes. FA demonstrated inhibition of MDR1-mediated digoxin transport with an IC₅₀=157±1.0 μM, and was devoid of BCRP inhibition (IC₅₀ > 500 μM). In contrast, FA showed potent inhibition of OATP1B1- and OATP1B3-specific rosuvastatin transport with IC₅₀ values of 1.59 μM and 2.47 μM, respectively. Furthermore, co-administration of oral rosuvastatin and FA to rats led to ~ 19.3-fold and 24.6-fold increase in rosuvastatin maximum plasma concentration (Cₘₐₓ) and area under the plasma concentration-time curve (AUC(0-tₗₕₛ)), respectively, which could be potentially mediated through inhibitory effects of FA on rat Oatp1a4 (IC₅₀=2.26 μM) and Oatp1b2 (IC₅₀=4.38 μM) transporters, which are responsible for rosuvastatin uptake in rat liver. The potent inhibition of human OATP1B1/1B3 by FA could attenuate hepatic uptake of statins, resulting in increased blood and tissue concentrations, potentially manifesting in musculoskeletal toxicity.
Introduction

Fusidic acid (FA, Figure 1) is an orally active bacteriostatic antibiotic with wide clinical usage in Europe and Australasia for the treatment of MRSA, and more recently, multi-resistant *Staphylococcus aureus* strains (Hall et al., 2015; Vanderhelst et al., 2013). Furthermore, in countries where FA is available, chronic oral therapy with FA is routinely used in the treatment of *Staphylococcus*-mediated prosthetic joint infections among the elderly population (Wang et al., 2012; Aboltins et al., 2007). The widespread clinical use of FA in suppressive antibiotic therapy is also associated with several cases of life-threatening rhabdomyolysis (with fatalities) upon co-administration with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin (Gabignon et al., 2013; Kearney et al., 2012; Collidge et al., 2010; Magee et al., 2010; Teckchandani et al., 2010; Herring et al., 2009; Saeed and Azam, 2009; Burtenshaw et al., 2008; O’Mahony et al., 2008; Yuen and McGarity, 2003; Wenisch et al., 2000), and more recently, rosuvastatin (Cowan et al., 2013). The package insert for sodium fusidate (Fusidin® tablets) has also been recently amended with additional warnings to reflect the adverse musculoskeletal findings (https://www.medicines.org.uk/emc/medicine/2448).

The precise cause(s) of myopathy including rhabdomyolysis remains unclear. The FA package insert and the medical literature suggests inhibition of CYP3A4 by FA as a likely mechanism of muscular side-effects (Kearney et al., 2012; Collidge et al., 2010; Teckchandani et al., 2010; Burtenshaw et al., 2008), since CYP3A4 is principally responsible for the metabolic clearance of atorvastatin and simvastatin in humans (Elsby et al., 2012; Lennernäs, 2003). However, it is now widely recognized that the systemic clearance of statins such as atorvastatin, simvastatin and rosuvastatin is predominantly determined by the hepatic uptake mediated by
OATPs (OATP1B1, OATP1B3 and OATP2B1) (König et al., 2013; Zamek-Gliszczynski et al., 2009; Kitamura et al., 2008; Neuvonen et al., 2006). According to the extended clearance classification system (Varma et al., 2015), statins fall into class 1B and 3B, wherein the OATP1B1-mediated hepatic uptake is the rate-determining step in their systemic clearance, although class 1B compounds (e.g., atorvastatin and simvastatin) are ultimately eliminated from the body as metabolites and class 3B statins (e.g., rosuvastatin) are eliminated unchanged in feces via biliary excretion. Several DDI studies indicate that OATPs inhibitors such as rifampicin and cyclosporine A exhibit a profound effect on the plasma exposure of statins (Hermann et al., 2004; Lau et al., 2007). For instance, in a microdose study, the AUC of atorvastatin was shown to be markedly increased upon co-administration with a single oral rifampicin dose, but not in the presence of an intravenous dose of itraconazole, a potent CYP3A4 inhibitor, indicating that OATP-mediated uptake in the liver is the rate-determining process in the hepatic clearance of atorvastatin (Maeda et al., 2011). Additionally, polymorphisms in \textit{SLCO1B1} (encoding OATP1B1) are known to alter transporter activity leading to significant changes in systemic exposure for some statins (Birmingham et al., 2015; Elsby et al., 2012). Furthermore, several statins including atorvastatin and rosuvastatin are substrates for ATP-dependent efflux transporters such as MDR1 and BCRP, which facilitate their oral absorption and biliary elimination (Li et al., 2011; Kitamura et al., 2008; Chen et al., 2005).

We therefore hypothesized that the higher incidences of statin-induced myopathy and rhabdomyolysis in patients on comedication with FA are principally due to its inhibitory effects on hepatobiliary transporters and metabolizing enzymes responsible for statin disposition. Consequently, we evaluated the \textit{in vitro} inhibitory potential of FA against major drug
transporters, OATP1B1, OATP1B3, MDR1 and BCRP. Furthermore, the reversible inhibition and time-dependent inhibition of CYP3A4 was assessed with FA using human liver microsomes. In addition, an oral DDI study between FA and rosuvastatin was conducted in rats to examine the relevance of the *in vitro* inhibitory effects of FA on rat Oatp1a4 and Oatp1b2 in an *in vivo* system.

Materials and Methods

General Chemicals. FA sodium salt (purity ≥ 98%), monobasic and dibasic potassium phosphate buffer, magnesium chloride, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were purchased from Sigma-Aldrich (St. Louis, MO). Commercially obtained chemicals and solvents were of high-performance liquid chromatography or analytical grade. Pooled male and female human liver microsomes (*n* = 50 donors) were purchased from BD Gentest (Woburn, MA). Midazolam was purchased from Cerilliant Corp. (Austin, TX), whereas 1'-hydroxymidazolam, and 1'-hydroxymidazolam-d₄ were synthesized at Pfizer Inc. Rosuvastatin calcium was purchased from Sequoia Research Products (Pangbourne, UK).

CYP3A4 Inhibition Studies. Reversible inhibition of human CYP3A4 by FA was evaluated in pooled human liver microsomes (protein concentration = 0.05 mg/ml) in the presence of NADPH (1.3 mM) in 100 mM potassium phosphate buffer, pH 7.4, containing 3.3 mM MgCl₂ at 37 °C open to air. The incubation volume was 0.2 ml and four replicates were included per FA concentration. Incubation mixtures contained FA at concentrations ranging from 0.1–1000 μM and midazolam (4 μM) as the probe CYP3A4 substrate. At the end of the incubation period (5 min), acetonitrile containing 1’-(d₄)-hydroxymidazolam (0.1 μg/ml) as internal standard was
added, and the mixture was centrifuged (2000 x g, 5 min at room temperature). The concentration of midazolam utilized in the assay approximated its K_M value that had been previously determined, and the incubation time was selected based on previous determinations of reaction velocity linearity (Walsky and Obach, 2004). The supernatant was mixed with an equal volume of water containing 0.2% formic acid then analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) for 1’-hydroxymidazolam using validated bioanalytical conditions established previously (Walsky and Obach, 2004). Formation of 1’-hydroxymidazolam was quantitated using Analyst version 1.6 (Sciex, Framingham, MA). Standard curve regression used linear regression with $1/x^2$ weighting. Resulting 1’-hydroxymidazolam concentrations were normalized to concentrations measured in solvent controls. IC_{50} was calculated with GraphPad version 6 (GraphPad Software, San Diego, CA) using the log(inhibitor) versus normalized response equation assuming a Hill slope of -1.0; automatic outlier determination was enabled and no curve fitting restraints were included.

To examine the ability of FA to act as a time- and concentration-dependent inhibitor of human CYP3A4, incubations were carried out with seven FA concentrations in duplicate. Inactivation kinetic experiments have been described previously (Ghanbari et al., 2006; Obach et al., 2007; Polasek and Miners, 2007). Human liver microsomes (0.3 mg/ml), MgCl$_2$ (3.3 mM), and NADPH (1.3 mM) in potassium phosphate buffer (100 mM, pH 7.4) were pre-warmed in a dry heat bath at 37 °C for 5 minutes. Incubation was initiated with the addition of inhibitor or control solvent (2 µl, final incubation volume 0.2 ml). Inhibitor stock solutions were prepared in water at 100-times the final incubation concentration. Inhibitor concentrations, between 3-500 µM, were approximately evenly spaced after applying a log transformation. At several time
points (1.0, 5.0, 10, 20, 30, and 40 minutes), an aliquot of the incubation mixture (10 µl) was transferred to a pre-warmed activity incubation mixture, consisting of midazolam (23 µM, approximately 10-fold K_M), MgCl$_2$ (3.3 mM), and NADPH (1.3 mM) in potassium phosphate buffer (100 mM, pH 7.4) at a final volume of 200 µl, resulting in a 20-fold dilution. After 6 minutes, the activity incubation was terminated by transferring 100 µl of incubated sample to 200 µl of acetonitrile containing internal standard (1'-(d$_4$)-hydroxymidazolam, 0.1 µg/ml). Samples were then vortexed and centrifuged for 5 minutes at 2000 g at room temperature. Clean supernatant was mixed with an equal volume of water containing 0.2% formic acid, and analyzed via LC-MS/MS.

LC-MS/MS Methodology for Quantitation of 1’-Hydroxymidazolam. A Sciex 6500 triple quadrupole mass spectrometer fitted with an electrospray ion source operated in positive ion mode was used to monitor for 1’-hydroxymidazolam and 1’-(d$_4$)-hydroxymidazolam. An Agilent 1290 binary pump (Santa Clara, CA) with a CTC Leap autosampler (Leap Technology, Carrboro, NC) was programmed to inject 10 µl of sample on a Halo 2.7 µm C18 2.1x30 mm column (Advanced Materials Technology, Wilmington, DE). A binary gradient was used to elute analytes and consisted of 0.1% (v/v) formic acid in water (mobile phase A) and 0.1% (v/v) formic acid in acetonitrile (mobile phase B) at a flow rate of 0.5 mL/min. Analytes were monitored using multiple reaction monitoring (MRM) mode for the mass-to-charge (m/z) transitions 342.2 → 324.2 (1’-hydroxymidazolam) and 346.2 → 328.2 (1’-(d$_4$)-hydroxymidazolam). Analytes were quantified versus a standard curve using Analyst. The linear range of the 1’-hydroxymidazolam standard curve was 1-500 nM. QC samples contained
inhibitor at the highest concentration tested in the activity incubation and indicated that FA did not suppress the 1’-hydroxymidazolam signal.

Estimation of Kinetic Constants for Time-Dependent Inhibition (TDI) of CYP3A4. The percent activity remaining was obtained by normalizing the concentration of 1’-hydroxymidazolam formed in each sample to the mean solvent control at the first time point. The natural log (ln) of the percentage remaining activity was plotted against the preincubation time. The slope (-k_{obs}) of each line was then calculated for the linear portion of the curve using GraphPad Prism v6 software. The automatic outlier elimination function was enabled. The details of the statistical TDI data analysis have been described by Yates et al. (2012) and were performed using Microsoft Excel (Redmond, WA). A statistical test was applied at each inhibitor concentration to evaluate if k_{obs} was significantly different from the solvent control (eq. 1).

\[
z = \frac{\left| k_{obs[I]} - k_{obs[0\mu M]} \right|}{\sqrt{S.E.}^2_{k_{obs[I]}} + S.E.} (eq. 1)
\]

In this equation, k_{obs[I]}, k_{obs[0\mu M]}, and S.E. represent the inactivation rate at each inhibitor concentration, inactivation rate with solvent control, and standard error, respectively. When p<0.05, there is statistically significant or measureable TDI. The K_I and k_{inact} were calculated from the nonlinear regression of a three-parameter Michaelis-Menten equation (eq. 2) using GraphPad Prism.

\[
k_{obs} = k_{obs[0\mu M]} + \frac{k_{inact} \times [I]}{K_I + [I]} (eq. 2)
\]
Cocktail Assay for Examining CYP Inhibition. Cocktail CYP IC$_{50}$ protocol has been previously described (Zientek et al., 2008). In brief, incubations were conducted in triplicate at various FA concentrations (0, 0.03, 0.1, 0.3, 1, 3, 10 and 30 µM). CYP probe substrates were 2 µM tacrine (CYP1A2), 5 µM taxol (CYP2C8), 5 µM diclofenac (CYP2C9), 40 µM S-mephenytoin (CYP2C19), and 5 µM dextromethorphan (CYP2D6). Incubations contained human liver microsomes (0.1 mg/ml) and NADPH (1.3 mM) and incubation time was 8 min. Following determination of peak area ratios in Analyst, data normalization and IC$_{50}$ curve fitting were done using IDBS E-Workbook 2013 (ID Business Solutions, London, UK).

OATP Inhibition Studies. Human embryonic kidney (HEK) 293 cells stably transfected with rat Oatp1b2, human OATP1B1 and OATP1B3 were generated at Pfizer Inc (Sandwich, UK). Rat Oatp1a4 was expressed in HEK-tetracycline inducible cells obtained through collaboration with Xenoport, Inc. (Santa Clara, CA). HEK cells transfected with the individual transporters were grown in Dulbecco’s modified Eagle’s medium containing 10% heat-inactivated fetal bovine serum. Cells were seeded at a density of 1.0 x 105 (rat Oatp1a4), 5.0 x 104 (rat Oatp1b2), or 7.0 x 104 (human OATP1B1/1B3) cells per well on BioCoat™ 96-well poly-D-lysine coated plates (Corning Inc., Corning NY). Oatp1a4-HEK293 cell were treated with 2 mM sodium butyrate and 1 µg/µl doxycycline 48 hours prior to experimentation. For inhibition assays, the uptake of 5 µM rosvastatin was investigated in the absence and presence of FA over a concentration range of 0.095–300 µM. After a 30-min preincubation with uptake buffer (Hanks balanced salt solution (HBSS) supplemented with 20 mM HEPES, pH 7.4) containing FA, cells were incubated for 3 min in triplicate at 37 °C with 0.05 ml uptake buffer containing rosvastatin with and without FA. Cellular uptake was terminated by quickly washing the cells four times.
with 0.2 ml ice-cold uptake buffer. The cells were then lysed with 100 μl of ice-cold methanol containing indomethacin (0.1 μg/ml) as the internal standard. The lysate was mixed with 100 μl water, vigorously vortex-mixed, and a 10 μl aliquot was injected onto an LC-MS/MS system. LC-MS/MS analysis was performed on an AB Sciex Triple Quad™ 4000 mass spectrometer (TurboIonSpray™ interface) with Shimadzu LC-20AD Prominence HPLC pumps (Shimadzu Scientific Instruments, Columbia, MD) and a CTC Analytics Leap Technologies HTC PAL autosampler. The HPLC flow rate was 0.3 ml/min. A gradient method was used with samples loaded onto a Phenomenex XB-C18 30 × 2.1 mm column (Phenomenex, Torrence, CA) using 0.1% formic acid in water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). Samples were eluted using a gradient that began with 10% B for the first 0.5 min, which was then linearly increased to 90% B at 1.25 min and held at this mixture for 0.25 min before reverting back to initial solvent conditions for 0.5 min to re-equilibrate the column. MRM transitions used for monitoring rosuvastatin and indomethacin in negative ion mode were 480.3 → 418.2 and 356.0 → 311.8, respectively. Collision-induced dissociation spectra were acquired with Analyst version 1.6.2, and MultiQuant version 3.0.2 was used for quantitation.

Multidrug Resistant Protein (MDR1) and Breast Cancer Resistant Protein (BCRP) inhibition protocol. Madin–Darby canine kidney (MDCK) II-MDR1 cells were acquired from Dr. Piet Borst (The Netherlands Cancer Institute, The Netherlands, Amsterdam), whereas MDCKII-LE-BCRP cells (Di et al., 2011) were generated at Pfizer Inc. MDR1 and BCRP inhibition studies were conducted using previously described methodology. Briefly, MDCKII-MDR1 and MDCKII-LE-BCRP cells were grown in minimum essential medium α nucleosides (Life Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum, 1%
minimum non-essential amino acids solution, 1% GlutaMAX™ and 1% penicillin-streptomycin prior to seeding into Millipore 96-well cell culture insert plates (EMD Millipore Corporation) for MDR1 and Corning HTS Transwell 96-well plates. The MDCKII-MDR1 and MDCKII-LE-BCRP cells were cultured on the inserts with 75 µl medium per well on the apical side and 36 ml for all 96 wells on the basolateral side. The effect of multiple concentrations of FA (0.1–500 µM) on the bidirectional permeability of digoxin (10 µM) and pitavastatin (2 µM) across MDCKII-MDR1 and MDCKII-LE-BCRP cells, respectively, was measured to determine inhibitory effects. The cell culture medium was removed, and the cells were rinsed with HBSS and preincubated for 10 min to allow the cells to adjust to the buffer. The donor solutions, containing digoxin or pitavastatin in HBSS at a single concentration alone and in the presence of increasing concentrations of FA, were added to the donor chambers (apical – 75–100 µl or basolateral – 250–300 µl). HBSS or HBSS containing the matching donor concentrations of FA were added to the receiver chambers. After 90 min incubations, aliquots (50–60 µl) were taken from the receiver chambers to determine the translocated amount of digoxin or pitavastatin. Samples were taken from the donor chambers before and after incubation to determine the initial concentration \((C_0) \) (5–10 µl + 190–295 µl HBSS). An internal standard solution, 120 and 180 µl of 0.5 µg/ml internal standard (CP-628374, MW = 687.04) in 100% methanol, was added to the receiver and donor samples, respectively. The samples were analyzed by LC-MS/MS to determine the peak area for digoxin, pitavastatin and the internal standard. LC-MS/MS protocols for the analysis of digoxin and pitavastatin have been published (Hirano et al., 2005; Yao et al., 2003). All incubations assessing the inhibitory effect of FA on MDR1 and BCRP were conducted in triplicate.
Apparent permeability values (P_{app}) were calculated according to the following equation:

$$P_{app} = \frac{dx}{dt} \times \frac{1}{C_0 \times A}$$ \hspace{1cm} \text{(eq. 3)}$$

Where dx is the amount of compound in the receiver compartment, dt is the incubation time, and A is the area of the filter of the transwell plate.

Efflux ratio (ER) values were calculated according to the following equation:

$$\text{Efflux Ratio} = \frac{P_{app,B-A}}{P_{app,A-B}}$$ \hspace{1cm} \text{(eq. 4)}$$

Percent efflux values were calculated according to the following equations:

$$\text{Percent Efflux}_{\text{substrates}} = \frac{ER_{\text{probe+inhibitor}}}{ER_{\text{probe}}} \times 100\%$$ \hspace{1cm} \text{(eq. 5)}$$

From the percent efflux ratios of probe, IC$_{50}$ values for inhibition of efflux of probe substrates were determined with GraphPad Prism 6 using the following equation as described by Rautio et al (2006).

$$\text{Activity} = \frac{100\%}{1 + \left(\frac{I}{IC_{50}}\right)^s}$$ \hspace{1cm} \text{(eq. 6)}$$

where I is the inhibitor concentration and s is the slope factor. The IC$_{50}$ values for inhibition of uptake and efflux transporters were determined by fitting the percentage of inhibition-concentration data into the Hill equation.
Prediction of DDI potential of FA using a Static (R) Model. The magnitude of DDI arising via inhibition for OATP1B1-mediated hepatic uptake (R value) by FA was calculated using the equation (Giacomini et al., 2013; Tweedie et al., 2013):

\[
R = 1 + \frac{I_{in,max,u}}{K_i} \quad (eq. 7)
\]

Where \(K_i\) would represent the inhibition constant for OATP1B1 by FA and \(I_{in,max,u}\) represents the estimated maximum unbound FA concentration at the inlet to the liver and is defined as follows (Ito et al., 2002).

\[
I_{in,max,u} = f_{u,b} \times \left(C_{max} + \frac{k_a \times F_a \times F_g \times dose}{Q_h} \right) \quad (eq. 8)
\]

\[
k_a = \frac{0.693}{\text{absorption } t_{1/2}} \quad (eq. 9)
\]

Where, \(f_{u,b}\) is the unbound fraction of FA in blood and is assumed to be equal to \(f_u\) in plasma (i.e., the blood-to-plasma ratio is assumed to be unity), \(C_{max}\) is the maximal systemic exposure after oral dosing, \(F_a\) is fraction of the oral dose absorbed from the gut to the portal vein, \(F_g\) is the fraction of the absorbed inhibitor dose escaping gut wall extraction, \(k_a\) is the oral absorption rate constant, and \(Q_h\) is the human hepatic blood flow of 97 l/h/70 kg (Yang et al., 2007).

DDI Study Between Rosuvastatin and FA in Rats. For the rat pharmacokinetic DDI study between rosuvastatin and FA, oral doses targeted \(I_{in,max,u}\) above the human OATP1B1 IC_{50} value of 1.59 \(\mu\)M (assumed to be equal to \(K_i\)) for FA. Oral pharmacokinetics parameters \(C_{max}\) and time
of occurrence of C_{max} (i.e., T_{max}) of 1.32 µg/ml and 0.25 h, respectively, for a 100 mg/kg oral dose of FA in rats, were obtained from the literature (Degenhardt et al., From Mouse to Man: The pharmacokinetics of CEM-102 (Fusidic acid). ICAAC 2009 Poster, http://www.cempra.com/products/taksta-cem-102/). For setting doses, linear increases in C_{max} values from 1.32 µg/ml to 3.3 µg/ml (1.32 µg/ml x 2.5) for FA were assumed. Absorption $t_{1/2}$ was estimated as $T_{\text{max}}/5$, or 0.05 h for FA. The fraction of the oral dose absorbed (F_a) was assumed as 1.0 leading to a dose of 250 mg/kg for FA. FA rat plasma f_u was 0.015 (Pfizer in-house measurement), while blood to plasma ratio was set at unity. We anticipated $I_{\text{in, max,u}}$ value to be 12 µg/ml (24 µM) for FA in rats. A low victim drug dose, 3 mg/kg rosuvastatin, was selected such that $I_{\text{in, max,u}}$ would be less than its OATP1B1 K_M or 9 µM (Sharma et al., 2012).

Pharmacokinetics studies were done at BioDuro, Pharmaceutical Product Development Inc. (Shanghai, PRC); animal care and in vivo procedures were conducted according to guidelines from the BioDuro Institutional Animal Care and Use Committee, respectively. Male jugular vein-cannulated Wistar-Hannover rats (246–259 g) were purchased from Vital River (Beijing, China). Animals were housed individually during the course of the pharmacokinetics experiments. Animals were fasted overnight before dosing and fed after collection of the 4 hour blood samples, whereas access to water was provided ad libitum. Test compounds were administered orally as suspensions to rats ($n = 3$) in 0.5% carboxymethylcellulose (m/v) in water. Doses were 3 mg/kg rosuvastatin and 250 mg/kg FA; dose volume was 5 mL/kg for both compounds. Group 1 received control vehicle 15 minutes prior to rosuvastatin and group 2 received FA 15 minutes prior to rosuvastatin. Blood was collected into cold tubes containing K$_2$EDTA, stored on wet ice, and centrifuged at 2000 g for 10 min at 4 °C to obtain plasma.
Plasma was mixed with an equal volume of 0.1 M sodium acetate buffer pH 4.0, to prevent ex vivo interconversion between rosuvastatin and its lactone (Macwan et al., 2012), and stored frozen until analysis. Blood samples were taken prior to administration of test compound or vehicle and at various time points after dosing. Blood sampling schedules were: group 1 (-0.25 hr dose control vehicle, 0 hr dose rosuvastatin) 0, 0.083, 0.25, 0.5, 1, 2, 4, and 7 h and group 2 (-0.25 hr dose FA), -0.0167, -0.083 hr, (0 hr dose rosuvastatin), 0.083, 0.25, 0.5, 1, 2, 4, and 7 hr. Aliquots of buffered plasma (50 µl) were transferred to 96-well plates on wet ice then acetonitrile (200 µl) containing 0.1% acetic acid and an internal standard (25 ng/ml terfenadine) was added to each well. Samples were vortexed for 1 minute, and centrifuged at 2000 g for 15 minutes. Supernatant was removed and mixed with 10 volumes of water containing formic acid (0.1%). These samples were analyzed by LC-MS/MS, and concentrations of analyte in plasma were determined by interpolation from a standard curve.

A Sciex 4000 or 5500 triple quadrupole mass spectrometer fitted with an electrospray ion source operated in positive ion mode was used to monitor for analytes and internal standard. Shimadzu LC-20AD pumps with a CTC Leap autosampler were programmed to inject 3 or 8 µl of sample on a Phenomenex Kinetics 2.6 µm C18 3x30 mm column at room temperature. A binary gradient was used to elute analytes and consisted of 0.05% (v/v) formic acid and 5 mM ammonium acetate in water (mobile phase A) and 0.1% (v/v) formic acid in acetonitrile (mobile phase B) at a flow rate of 0.5 ml/min. For rosuvastatin, the initial mobile phase composition was 25% B held for 0.4 min, ramped to 95% B over 0.3 min and held for 1 min, and mobile phase was returned to initial conditions for 1.3 min. For FA, the initial mobile phase composition was 25% B held for 0.4 min, ramped to 95% B over 1.8 min and held for 0.3 min, and mobile phase
was returned to initial conditions for 1 min. Analytes were monitored using MRM mode for the mass-to-charge (m/z) transitions 482.2 → 258.2 (rosuvastatin), 534.5 → 457.4 (FA) and 472.4 → 436.4 (terfenadine). LC-MS/MS analysis was done using Analyst Software 1.5 or 1.6. Watson LIMS 7.4 (Thermo Scientific, Waltham, MA) was used for standard curve regression using linear regression with 1/x^2 weighting. Linear range of each analyte was: rosvustatin 0.5-1000 ng/ml and FA 10-10,000 ng/ml.

Determination of Pharmacokinetic Parameters. Pharmacokinetic parameters were determined with noncompartmental analysis using Watson LIMS 7.4. \(C_{\text{max}} \) and \(T_{\text{max}} \) values in plasma were estimated directly from the individual plasma concentration-time curves, with \(T_{\text{max}} \) defined as the time of first occurrence of \(C_{\text{max}} \). The AUC from \(t=0 \) to last sampling point was estimated using the linear trapezoidal rule. The terminal slope (\(k_{\text{el}} \)) of the ln(concentration) versus time plot was calculated by linear least-squares regression and the half-life (\(t_{1/2} \)) was calculated as 0.693 divided by the absolute value of the slope.

Statistical Analysis. An unpaired one-tailed Student’s \(t \)-test was used to assess significance of differences in the DDI studies, comparing test group to control. In instances where parameters possessed unequal variances (\(p<0.05 \)), analysis was performed with Welch’s correction. In all cases, \(p<0.05 \) was predetermined as the criterion for significance. All statistical analysis was performed using GraphPad Prism version 6.

Results

Inhibition of CYP3A4 by FA. The ability of FA to inhibit CYP3A4-catalyzed midazolam-1’-hydroxylase activity was examined in human liver microsomes. Co-incubation of FA (0.1–1000
μM) with midazolam (4 μM) in human liver microsomes resulted in weak reversible inhibition of CYP3A4 activity. The corresponding IC₅₀ was 295 ± 1.0 μM (Figure 2). FA also demonstrated weak time- and concentration-dependent inhibition of midazolam-1’-hydroxylase activity in human liver microsomes with estimated K_1 and k_{inact} values of 216 ± 41 μM and 0.0179 ± 0.001 min⁻¹, respectively (Figure 2). Virtually no reversible inhibition (IC₅₀ > 30 μM) of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 activities in human liver microsomes was noted with FA in the cocktail IC₅₀ assay.

Inhibition of major drug transport proteins by FA. Inhibitory potency of FA against major human hepatobiliary transporters, including OATP1B1, OATP1B3, MDR1 and BCRP was tested *in vitro* using transporter-transfected cell lines. FA demonstrated potent inhibition of rosuvastatin uptake by OATP1B1 and OATP1B3 with IC₅₀ values of 1.59 (95% confidence interval (CI), 1.48–1.78) μM and 2.47 (95% CI, 2.01–3.02) μM, respectively (Figure 3). On the other hand, FA demonstrated weak inhibition (IC₅₀ = 157 μM, 95% CI, 105.2–234.1) of MDR1-mediated digoxin transport (Figure 4), while showing no inhibitory effects on BCRP-mediated transport of probe substrate pitavastatin (IC₅₀ > 500 μM). Additionally, FA inhibited rosuvastatin uptake by the corresponding rat transporters rOatp1a4 and rOatp1b2 with IC₅₀ values of 2.26 (95% CI, 2.00–2.54) μM and 4.38 (95% CI, 2.30–8.36) μM, respectively (Figure 3).

The magnitude of clinical DDI (calculation of R value) for inhibition of OATP1B1-mediated hepatic was estimated using a static model (equations 7–9) depicted in the *Materials and Methods* section. The total FA C_{max} at the clinically efficacious dose (500 mg, three times daily)
of FA ranges from 50–100 µg/ml (https://www.medicines.org.uk/emc/medicine/2448) i.e. $C_{\text{max,u}}$
600-1200 ng/ml or 1.16-2.32 µM (plasma f_u value of 0.012 (Pfizer data on file), molecular
weight of FA = 516.7). T_{max}, reported by Still et al. (2011), was 2 h, resulting in k_a of 1.7 h$^{-1}$, and
F_a and F_g were set to unity. As such, the assumptions around F_a and F_g in the estimation of
$I_{\text{in, max,u}}$ are reasonable considering that the pharmacokinetics of FA in humans are prototypic of
carboxylic acid-based drugs with a low plasma clearance (0.3 ml/min/kg) and an oral
bioavailability > 90% (Turnidge, 1999). The corresponding $I_{\text{in, max,u}}$ and R values were ~ 1.4–2.5
µM and 1.9–2.6, respectively, utilizing a OATP1B1 inhibition K_i value equal to its IC$_{50}$ value of
1.59 µM, which is a reasonable assumption (Cheng and Prusoff, 1973) considering that the
human OATP inhibition studies utilized a rosuvastatin substrate concentration approximately 4-
fold below its previously estimated K_m value of 20 µM (Pfizer data on file). The K_M value for
rosuvastatin uptake in HEK-OATP1B1 cells, generated in our laboratory, is in good agreement
with a previously reported value of ~ 13 µM (van de Steeg et al, 2013). Suffice to say, our
prediction of K_i (equal to the OATP1B1 IC$_{50}$ value) also assumes that OATP1B1 inhibition by
FA is competitive in nature. This is due to the fact that our OATP inhibition studies instituted a
preincubation step with FA to capture any time-dependent OATP inhibitory component like the
one been noted with cyclosporine (Amundsen et al., 2010; Shitara et al., 2012; Gertz et al.,
2013).

DDI Study in Rats. To assess potential DDI between rosuvastatin and FA, a single-dose oral
DDI study was conducted with male Wistar-Han rats. The plasma concentration-time profile of
rosuvastatin after administration of rosuvastatin alone or in combination with FA is presented in
Figure 5. The administration of FA (250 mg/kg), 0.25 hour (~ T_{max}) before the dosing of
Rosuvastatin (3 mg/kg), resulted in a significant increase (~25-fold) in rosuvastatin systemic exposure (i.e., AUC(0-tlast) of 15 ± 5.8 versus 369 ± 90 ng.h/ml, respectively) (Table 1).

Treatment with FA also caused a substantial increase (~19-fold) in the C_{max} (from 7.63 ± 3.99 to 147 ± 54.5 ng/ml). The $t_{1/2}$ of rosuvastatin was similar between the two treatments (i.e., 2.3 versus 3.5 hour). Following oral administration at 250 mg/kg (see Figure 5, inset), systemic exposure of FA as assessed from AUC(0-tlast) was 15167 ng.h/ml. The corresponding C_{max} was 5233 ng/ml and occurred at a $T_{\text{max}} = 1.6$ h ($k_{a} = 0.036$ min$^{-1}$), which is longer than the previously reported value of 0.25 h) (Degenhardt et al., From Mouse to Man: The pharmacokinetics of CEM-102 (Fusidic acid). ICAAC 2009 Poster, http://www.cempra.com/products/taksta-cem-102/).

Discussion

Contrary to speculations in the product label, FA was a weak reversible and weak time-dependent inhibitor of CYP3A4 activity in human liver microsomes. Although systematic clinical DDI studies between FA and drugs metabolized by CYP3A4 have not been performed, our data suggests that muscular toxicity of statins is unlikely to be mediated via inhibitory effects of FA on hepatic CYP3A4 activity, especially in light of the relatively low unbound maximal systemic concentrations (1.16–2.32 μM) at its efficacious dosing regimen. Rather, our present work demonstrates that musculoskeletal toxicity may arise through FA’s inhibitory effects on OATP in the liver, which could inhibit hepatic uptake and lead to excessive blood and tissue levels of statins in the clinic in a manner similar to that noted with other OATP inhibitors (Moßhammer et al., 2014). This hypothesis is attractive because it collectively accounts for the
rhabdomyolysis noted with all statins including rosuvastatin, which is not metabolized by CYP3A4 (Martin et al., 2003), and as such, is not prone to DDIs via CYP inhibition (Neuvonen, 2010).

The inhibitory effects of FA against OATPs are consistent with a previous report by De Bruyn et al., (2013) wherein, a high-throughput OATP1B1 and OATP1B3 inhibition assay monitoring for sodium fluorescein uptake, noted inhibition by FA (OATP1B1 and OATP1B3 inhibition of 39.5% and 58.3% at a single FA concentration of 10 μM). In hindsight, the inhibitory effects of FA against OATP isoforms with potency comparable to established inhibitors (Izumi et al., 2015) are not altogether surprising. FA contains a lipophilic (molecular weight = 516.7, calculated topological surface area = 104 Å², calculated LogP = 7.28, LogD(7.4) = 2.66) steroidal nucleus with a carboxylic acid (pKa = 5.7) group (Turnidge, 1999). These structural and physicochemical attributes are in accordance with known structure-activity relationships for OATP interaction properties of small molecule xenobiotics including drugs (Varma et al., 2012; Karlgren et al., 2012a and 2012b). Furthermore, because FA shares structural features with adrenocorticoids and bile salts (e.g., cholate and taurocholate), it is possible that Na⁺-taurocholate cotransporting polypeptide (expressed at the sinusoidal membrane of hepatocytes), which is also involved in statin uptake (Vildhede et al., 2014; Bi et al., 2013), is prone to inhibition by FA.

The assessment of OATP1B-mediated DDIs with certain chemotypes (e.g., anionic small molecule drug candidates) has become a critical aspect of early drug development as recognized in draft guidance issued by the regulatory agencies in the United States (Center for Drug Evaluation and Research, 2012), the European Union (Committee for Human Medicinal
Products, 2012) and the International Transporter Consortium (ITC) (Giacomini et al., 2013; Tweedie et al., 2013). These guidance documents/perspectives acknowledge OATP1B1 and OATP1B3 as two of the seven clinically relevant transporters and provide basic methodology towards the prediction of the DDI magnitude with OATP inhibitors. One such methodology utilizes the static (R) model: $R = (1 + I_{in,\text{max},u}/K_i)$, wherein the likelihood of DDI due to OATP inhibition would increase with an R value > 1.25. The magnitude of DDI resulting from inhibition of OATP1B1-mediated hepatic uptake by FA was approximated to be $\sim 1.9–2.6$ suggesting that FA could potentially cause clinical DDI with drugs (e.g., statins) that are prone to hepatic uptake by OATPs.

Efflux transporters MDR1 and BCRP are expressed at the canalicular membrane, and are involved in the biliary efflux of statins (Li et al., 2011). These transporters are also expressed on the apical membrane of the enterocytes and are known to limit the intestinal absorption of several statins (Shitara et al., 2013). Inhibition of intestinal and/or biliary efflux (in addition to OATP inhibition) by cyclosporine A has been speculated as a potential factor for clinical DDIs with rosuvastatin, which is not susceptible to CYP metabolism (Jamei et al., 2014). In our studies, virtually no inhibitory effect ($IC_{50} > 500 \mu M$) of FA was discerned on BCRP-mediated transport of pitavastatin, while modest inhibition of digoxin transport by MDR1 ($IC_{50} = 157 \mu M$) was noted with FA. Taking into account the low unbound systemic FA concentrations, the weak MDR1 inhibition discerned in vitro is unlikely to translate into meaningful DDIs via inhibition of statin biliary efflux by MDR1. However, DDIs arising from inhibition of intestinal MDR1 by FA cannot be ruled out. For orally administered drugs, the ITC guidance (Tweedie et al., 2013) recommends the use of $[I/IC_{50}]_2/MDR1$ criterion to predict the DDI via intestinal MDR1.
inhibition, where $[I]_2$ represents intestinal inhibitor concentration expressed as total daily dose (in mol)/250 ml (Fenner et al., 2009). Applying this criterion to FA (total daily dose = 1500 mg, molecular weight = 516.7, MDR1 IC$_{50}$ = 157 μM) yields $[I]_2$/MDR1 IC$_{50}$ ratio of ~ 74, which exceeds the “cutoff” value of 10. Overall, this suggests that inhibition of MDR1 at the intestine could have contributed to the observed interaction for substrate drugs such as atorvastatin (Chen et al., 2005).

To date, there are no reports of clinical DDI studies on FA. Therefore, we decided to examine the likelihood of a DDI upon oral administration of rosuvastatin (3 mg/kg) in the absence or presence of FA using rats as an in vivo model. As a prelude to the in vivo DDI studies, the inhibitory effects of FA on rosuvastatin uptake by rat Oatp isoforms were initially examined. Previous studies have shown that rosuvastatin is a substrate of rOatp1a1, rOatp1a4, and rOatp1b2, respectively, in vitro (Ho et al., 2005; 2006). Although there is no direct evidence on the percentage contribution of each isoform to the active hepatic uptake of rosuvastatin in vivo in rats, our internal transcriptomic BodyMap studies of rat liver have shown that the expression of Oatp1a4 and Oatp1b2 isoforms is significantly greater than Oatp1a1 (Pfizer data on File), which is also consistent with previous studies on mRNA expression of Oatp transporters in mice (Klaassen and Aleksunes, 2010). Consequently, we focused our attention on assessing inhibition of rat Oatp1a4- and Oatp1b2-mediated rosuvastatin transport by FA. Our in vitro studies demonstrated that FA inhibited rosuvastatin uptake mediated by rOatp1a4 and rOatp1b2 with IC$_{50}$ values of 2.26 μM and 4.38 μM, respectively. Co-administration with FA (250 mg/kg) also led to ~ 19.2-fold and 24.6-fold increase in rosuvastatin C_{max} and AUC$_{(0-t\text{last})}$, respectively. The $I_{\text{in, max, u}}$ value of ~ 3.9 μM estimated for FA was lower than the anticipated
value of 24 μM due to a longer T_{max} of 1.6 h (instead of the reported value of 0.25 h). Nevertheless, the $I_{\text{in,max,a}}$ value is within the range of Oatp1a2/1b4 IC$_{50}$ values, and since Oatp-mediated hepatic uptake is the rate-limiting step in rosuvastatin clearance in rats (as is the case in humans), it is tempting to speculate that the origins of the DDI between rosuvastatin and FA are at least partially mediated through inhibition of rosuvastatin uptake by FA. In rats, Oatp-mediated uptake clearance of rosuvastatin is limited by hepatic blood flow (He et al., 2014), and thus a large AUC ratio (observed AUC ratio in our present study ~ 25) is expected upon complete inhibition of transporter-mediated uptake. In the case of humans, the hepatic extraction of rosuvastatin is ~ 60% of hepatic blood flow (Martin et al., 2003) suggesting that the magnitude of rosuvastatin-FA interaction in humans could be relatively smaller than that observed in our in vivo rat DDI study.

Against this backdrop, the synergistic contribution of FA metabolites towards inhibition of hepatobiliary transporters in humans and rodents cannot be excluded. Examination of the excretion routes in humans reveals minimal biliary, fecal, and renal excretion of unchanged FA (Godtfredsen and Vangedal, 1966; Singlas et al., 1988; Reeves, 1987) suggesting that metabolism is the principal elimination mechanism of FA in humans. Preliminary metabolite identification studies (Godtfredsen and Vangedal, 1966) using human bile revealed the presence of acyl glucuronide and dicarboxylic acid (derived from oxidation of one of the terminal methyl group) metabolites, which accounted for ~ 15% and ~ 10% of the administered oral dose of FA, respectively. Contribution of these FA metabolites to the in vivo inhibition of hepatobiliary transport with similar or greater potency could potentially exacerbate the magnitude of DDI in the clinic and in the rat model used to probe the DDI potential of FA.
FA, though widely used throughout the world for decades, has never been approved in the United States. Given the need for a safe oral methicillin-resistant MRSA antibiotic, there has been a growing interest in pursuing FA for systemic treatment of serious infections in the United States. Oral FA has been recently studied in comparison to linezolid in a phase 2 clinical trial for the treatment of acute bacterial skin infections with comparable clinical success (Craft et al., 2011). Phase 2 clinical studies evaluating the potential of oral FA in the treatment of prosthetic joint infections (http://www.cempra.com/products/taksta-cem-102/) are also in progress in the United States (Fernandes and Pereira, 2011). Considering the current usage and the imminent availability of FA in the United States, our studies provide a strong basis for the need to conduct relevant DDI studies with FA in the clinic.

Finally, our present findings also raise an intriguing possibility that the clinical cases of hyperbilirubinemia/jaundice noted with FA use (Humble et al., 1980; Kutty et al., 1987; Haddad et al., 1993) could be potentially linked to its inhibitory effects on the OATP1B1- and OATP1B3-mediated bilirubin transport into the liver. Hepatic uptake of bilirubin by OATPs constitutes the first step in the multifaceted elimination process of the heme breakdown product (Cui et al., 2001); a combination of inhibitory effects on bilirubin uptake and/or bilirubin glucuronidation in the liver has emerged as a common theme amongst drugs associated with clinical hyperbilirubinemia (Chiou et al., 2014).
Acknowledgments

The authors thank Honglei Zhao and Brian Holder for technical assistance.
Authorship Contributions

Participated in research design: Heather, Eng, Renato J. Scialis, Manthena V. Varma, Li Di, Jian Lin, Bo Feng, and Amit S. Kalgutkar

Conducted in vitro experiments: Heather Eng, Renato J. Scialis, Charles J. Rotter, Sarah Lazzaro, and Michael West

Performed data analysis: Heather Eng, Renato J. Scialis, Charles J. Rotter, Sarah Lazzaro, Jian Lin, Manthena V. Varma, Li Di, Bo Feng, and Amit S. Kalgutkar

Wrote or contributed to the writing of the manuscript: Heather Eng, Renato J. Scialis, Charles J. Rotter, Sarah Lazzaro, Jian Lin, Manthena V. Varma, Bo Feng, Li Di, and Amit S. Kalgutkar
References

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K\text{I}) and the concentration of the inhibitor which causes 50 per cent inhibition (IC\text{50}) of an enzymatic reaction. Biochem Pharmacol 22:3099-3108.

Figure Legends

Figure 1. Structure of fusidic acid (FA).

Figure 2. Reversible (panel A) and time-dependent (panel B) inhibition of CYP3A4-catalyzed midazolam-1’-hydroxylase activity in human liver microsomes by FA. Panel A): Competitive inhibition plot of % activity remaining (1’-hydroxymidazolam formation) versus log of FA concentration. Values are plotted as the mean (n=4) and error bars indicate the standard deviation. Curve fitting was used to determine IC₅₀. Panel B): Time dependent inhibition, natural log of % activity remaining (1’-hydroxymidazolam formation) versus FA concentration. Concentrations are shown in the legend. Linear regression was used to calculate the negative slope (k_obs) at each FA concentration. Panel B, inset): Time dependent inhibition k_obs were plotted versus FA concentrations and a three-parameter nonlinear regression was performed to calculated Kᵢ and k_inact. The solid line illustrates the line of best fit and the dotted lines represent the 95% confidence band.

Figure 3. Concentration-dependent inhibition of human OATP1B1 and OATP1B3 (Panel A) and rat Oatp1a4 and Oatp1b2 (Panel B) uptake transporters by FA. Transporter inhibition was investigated by determining the uptake of rosvuastatin (5 μM) in the HEK cell line overexpressing the respective transporters. Data are expressed as mean of three replicates and error bars represent standard deviations.
Figure 4. Concentration-dependent inhibition of human MDR1 by FA. Inhibition of MDR1 activity was investigated by determining the digoxin efflux across MDR1-MDCKII monolayers. Data are expressed as mean of 3 replicates. The solid line illustrates the line of best fit and the dotted lines represent the 95% confidence band.

Figure 5. Mean plasma concentration–time profile of rosuvastatin in male Wistar-Han rats after a single oral dose of rosuvastatin (3 mg/kg) and following a single oral dose of rosuvastatin (3 mg/kg) dosed 0.25 h after oral FA (250 mg/kg). Data are expressed as mean ± S.D. (n = 3 animals). Control rosuvastatin animals are represented with circles and FA with filled triangles. Inset. Mean plasma concentration-time profile of FA in male Wistar-Han rats (n = 3) after a single oral dose of 250 mg/kg.
TABLE 1

Pharmacokinetic parameters of rosuvastatin after a single oral dose of 3 mg/kg to male Wistar-Han rats in the presence of vehicle or a single oral dose of FA (250 mg/kg)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>C_{max} (ng/ml)</th>
<th>T_{max} (h)</th>
<th>$t_{1/2}$ (h)</th>
<th>AUC$_{(0-\text{tlast})}$ (ng.h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>7.63 ± 3.99</td>
<td>1.08 ± 1.01</td>
<td>2.29 ± 1.63</td>
<td>15.0 ± 5.80</td>
</tr>
<tr>
<td>FA (250 mg/kg)</td>
<td>147 ± 54.5*</td>
<td>2.92 ± 1.15</td>
<td>3.52 ± 4.25</td>
<td>369 ± 90.0*</td>
</tr>
</tbody>
</table>

Rosuvastatin was administered 0.25 h after pretreatment with FA. Data are presented as mean ± S.D. from three male rats and were derived from non-compartmental analysis. *t-test with Welch’s correction of unpaired t test data (variances/S.D. were not equal between groups P < 0.05).
Figure 1

Fusidic Acid (FA)
Figure 2

A

% Activity Remaining

log [fusidic acid] (µM)

B

LN (% Activity Remaining)

Time (min)

0 10 20 30 40

0 0.005 0.01 0.015 0.02

[fusidic acid] µM

0 3 7.04 16.5 38.7 90.9 213 500

k_{obs} (min^{-1})
Figure 4
Figure 5

[Graph showing Rosuvastatin Plasma Concentration (ng/ml) over time (hr) with error bars.]

[Inset graph showing Fa Plasma Concentration (ng/ml) over time (hr).]