
Yongkai Sun, Paresh P. Chothe, Jennifer E. Sager, Hong Tsao, Amanda Moore, Leena Laitinen and Niresh Hariparsad

Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Inc., Boston, Massachusetts, USA
Running title: *IVIVC* corrected for medium and intracellular concentration

Corresponding Author:

Niresh Hariparsad, Ph.D

Department of Drug Metabolism and Pharmacokinetics, 4022 Vertex 1, 50 Northern Ave., Boston, MA 02210; Phone:+1-617-341-6585. E-mail: Niresh_hariparsad@vrtx.com

Number of text pages: 31

Number of tables: 5

Number of figures: 6

Number of references: 46

Number of words in Abstract: 250

Number of words in Introduction: 706

Number of words in Discussion: 1497
Abbreviations:

AUC, Area under the curve; AUCR, Area under the curve ratio; BSA, Bovine serum albumin; CYP, Cytochrome P450; C_{u,cell}, Unbound intracellular concentration; DDI, Drug-Drug Interaction; f_u, fraction unbound; GMSE, geometric mean fold error; K_{puu}, ratio of unbound intracellular concentrations to unbound medium concentrations; NCE, New chemical entity; RED, rapid equilibrium dialysis; RIS, Relative Induction Score; RMSE, root mean square error; TDI, Time-dependent inhibition;
ABSTRACT:

Typically, concentration-response curves are based upon nominal inducer concentrations for \textit{in-vitro-to-in–vivo} extrapolation of CYP3A4 induction. The limitation to this practice is that it assumes the hepatocyte culture model to be a static system. We assessed whether correcting for; 1) changes in perpetrator concentration in the induction medium during the incubation period, 2) perpetrator binding to proteins in the induction medium and 3) non-specific binding of perpetrator can improve the accuracy of CYP3A4 induction predictions. Of the 7 compounds used in this evaluation, significant parent loss and non-specific binding was observed for rifampicin (29.3-38.3%), pioglitazone (64.3-78.6%) and rosiglitazone (57.1-75.5%). As a result, the free measured EC\textsubscript{50}'s (EC\textsubscript{50u}) of pioglitazone, rosiglitazone and rifampicin were significantly lower than the nominal EC\textsubscript{50}'s. In general, the accuracy of the induction predictions, using multiple static models, improved when corrections were made for measured medium concentrations, medium protein binding, and non-specific binding of the perpetrator, as evidenced by 18-29% reductions in the Root Mean Square Error. The relative induction score model performed better than the basic static and mechanistic static models, resulting in lower prediction error and no false positive or false negative predictions. However, even when the EC\textsubscript{50u} value was used, the induction prediction for bosentan, which is a substrate of organic anion transporter proteins, was overpredicted by approximately 2-fold. Accounting for the ratio of unbound intracellular concentrations to unbound medium concentrations (K\textsubscript{puu,in vitro}) (0.5-7.5) and the predicted multiple dose K\textsubscript{puu,in vivo} (0.6) for bosentan resulted in induction predictions within 35% of the observed interaction.
INTRODUCTION:

Drug-drug interactions (DDIs) related to CYP3A4 induction remain a concern for the pharmaceutical industry given that induction can affect the safety and efficacy of co-administered drugs (Lin, 2006; Zhang et al., 2014). Typically the concentration-response data used in these models rely on the nominal concentration of the applied new chemical entities (NCEs). Yet, this approach is only appropriate if it can be assumed that the cell culture system is static, which may not always be the case. In order to address the problem of inducer depletion in vitro, various approaches have been taken to account for the changes that occur in the hepatocyte system over the course of an induction study. Kato et al. (2005) predicted the average unbound concentrations in primary cultured human hepatocyte incubations from in vivo clearance data in order to estimate the EC$_{50}$ values used to predict induction risk (Kato et al., 2005). Using this method, the predicted magnitude of induction for multiple inducers, including rifampicin and phenobarbital, were in agreement with the clinically observed DDI. In another study, Zhang et al. (2014) considered the stability of the inducers that were evaluated. However, the inducer concentration was only measured at the 24 hr time point on the last day of incubation, which may result in an overestimation of the induction potency if there is substantial inducer depletion during the dosing interval. Barring these assessments, metabolic changes in the in vitro cultured human hepatocyte system is typically not taken into consideration when attempting to quantitatively predict induction-based DDIs (Fahmi et al., 2008; Almond et al., 2009; Kozawa et al., 2009).
In addition to accounting for perpetrator loss, Chang et al. (2016) factored in specific binding to induction medium protein as well as non-specific binding to assay culture plates and hepatocytes. The measured rifampicin concentration, accounting for non-specific binding and inducer depletion over the 24 hour dosing interval was found to be half of the nominal concentration. Furthermore, when binding to incubation medium containing 0.2% BSA was determined, the measured unbound inducer concentration was reportedly only 30% of the nominal level (Chang et al., 2016). Such substantial differences between nominal and measured unbound concentrations of rifampicin, which is considered to be a fairly soluble compound with moderate plasma and medium protein binding properties, suggests that for more highly bound compounds, induction data may be drastically altered depending on whether or not binding is considered. This issue is important given that some compounds have very poor chemical properties which increases their risk of binding non-specifically to assay culture plates or to proteins included in medium supplements (Rebeski et al., 1999). For example, in a recent publication of small molecule kinase inhibitors approved by the FDA from 2000 to 2011, over 70% of these drugs had plasma protein binding values that were >90% and ~30% of them had plasma protein binding values >99% (O’Brien and Fallah Moghaddam, 2013). The medium unbound fraction is also likely to vary between culture systems since it is known that induction media obtained from different sources can have different types and concentrations of protein (Runge et al., 2000; Madan et al., 2003; Nishimura et al., 2007).

Given the lack of a comprehensive assessment of the relevance of using measured and unbound medium concentrations of perpetrator in induction predictions,
we sought to evaluate the contribution of these factors using several static approaches including the relative induction score (RIS), basic static (R_3), and mechanistic static (AUCR) models. Seven known clinical inducers and non-inducers of CYP3A4 were selected for this analysis, all of which are commonly used as calibrator compounds in the RIS model (Fahmi et al., 2008). The objectives of our study were to measure perpetrator; a) depletion over the assay incubation period, b) direct binding to proteins included in the induction medium, and c) non-specific binding to assay culture plates and hepatocytes which were then used to determine whether incorporating these corrections improves the precision and accuracy of CYP3A4 induction predictions. Finally, given that it is the perpetrator intracellular concentration that is most relevant for induction potency, we also estimated the ratio of unbound intracellular concentrations to unbound medium concentrations ($K_{puu, in\, vitro}$) for two transporter substrates, rifampicin and bosentan and determined the impact of using free intracellular concentrations on induction predictions.
MATERIALS AND METHODS

Induction certified cryopreserved human hepatocytes (Supplemental Table 1) and cryopreserved 5-donor pooled hepatocytes were purchased from Thermo Fisher (Waltham, MA) or BioreclamationIVT (Baltimore, MD). Williams E medium, cryopreserved hepatocyte recovery medium, hepatocyte maintenance and plating supplement pack, rapid equilibrium dialysis (RED) 96 well blocks, RNAlater® solution, MagMax™-96 Total RNA Isolation Kit, Applied Biosystems™ High Capacity cDNA Reverse Transcription Kit, TaqMan® Fast Advanced Master Mix, TaqMan® human GAPDH probe with Applied Biosystems™ VIC™ dye, and CYP3A4 cDNA probe with Applied Biosystems™ FAM™ dye were purchased from Thermo Fisher.

Carbamazepine, phenytoin, pioglitazone, pleconaril, rifampicin, and rosiglitazone were purchased from Sigma-Aldrich (St. Louis, MO). Semagacestat was procured from Astatech, Inc (Bristol, PA). Bosentan was purchased from Ava Chem Scientific (San Antonio, TX). [³H]Rifampicin (45 Ci/mmol) and [³H]Bosentan (3.3 Ci/mmol) were obtained from Moravek Biochemicals (Brea, CA). LumaPlate™ and Ultima Gold™ scintillation fluid were purchased from PerkinElmer (Waltham, MA). The analytical internal standard was synthesized at Vertex Pharmaceuticals Inc. (Boston, MA). All organic solvents were purchased from Thermo Fisher and Sigma Aldrich.

CYP3A4 Induction Assay

Cryopreserved human hepatocytes from 3 donors (Supplemental Table 1) were thawed in cryopreserved hepatocyte recovery medium, re-suspended in Williams E medium containing hepatocyte plating supplement pack and 10% bovine serum, and plated in collagen coated plates at a density of 0.08 x10⁶ viable cells/well in 96 well-
format. After 6 hours of incubation with 5% CO$_2$ and 95% relative humidity at 37°C, the plating medium was removed and replaced with the induction medium (Williams E medium containing Hepatocyte Maintenance Supplement Pack, containing 0.125% BSA). After plating (24 hours), hepatocyte monolayers were treated with carbamazepine (0.01-250 µM), phenytoin (0.04-240 µM), pioglitazone (0.03-200 µM), pleconaril (0.01-60 µM), rifampicin (0.01-100 µM), rosiglitazone (1-50 µM), semagacestat (0.01-120 µM) and bosentan (0.01-20µM) in induction medium. Dosing solutions containing validation compounds were changed every 24 hours for 2 days. The concentration of DMSO in the culture medium was 0.1%. Cultures were maintained in a 37°C incubator with 5% CO$_2$ and 95% humidity. All experiments were performed in triplicate.

Relative Expression of mRNA by RT-PCR

Following the 48 hour compound treatment period, medium containing the test compound was removed and the cells were stored in RNAlater® solution at -20°C until it was used for RNA isolation. RNA was isolated from cells using MagMax-96 Total RNA Isolation Kit, according to the manufacturers’ protocol. The RNA concentration and quality of each sample was determined using the ratio of UV absorbance at 260 nm and 280 nm (A260/A280) using a Nanodrop2000 spectrophotometer (Thermo Fisher Scientific). To generate cDNA, reverse transcription of 50 ng of total RNA was carried out using the High Capacity cDNA Reverse Transcription Kit, according to the manufacturers’ protocol. The quantitative PCR reaction of 2 µl of cDNA was performed using the TaqMan® Fast Advanced Master Mix, human GAPDH and CYP3A4 probes. All data was normalized to the expression of the housekeeping gene GAPDH.
(ΔCt=Ct_{CYP}-Ct_{GAPDH}). Fold change in mRNA expression over DMSO control was calculated (ΔΔCt=ΔCt_{treat}-ΔCt_{DMSO}).

Assessment of Non-specific Binding and Stability of CYP3A4 Inducers

Hepatocytes were plated following the same procedures as for the induction assay. All 7 CYP3A4 inducers were incubated with hepatocytes (n=3) at 37°C in the hepatocyte induction medium (containing 0.125% BSA) for 24 hours on day 1 and day 2. This is the same time period that the compound was exposed to the cells in the induction assay, prior to subsequent medium change with fresh dosing media. Incubation with hepatocytes was also carried out at 4°C to investigate the nonspecific binding of these compounds to cells and cell culture plates. The compound incubation concentrations ranged from 0.1 to 10 µM. Culture supernatants (5 µL) were collected at 0, 2, 4, 6, and 24 hours after application of the dosing medium. As a control, the same incubations were carried out in cell culture plates without hepatocytes at both 37°C and 4°C. Following sampling, 45 µL of blank induction medium and 100 µL of internal standard solution in acetonitrile were added into each sample. The samples were centrifuged at 3000 rpm for 20 minutes and the supernatants were analyzed using LC-MS/MS to determine the concentration of each test compound in the induction medium at each time point.

Determination of the Unbound Fraction of CYP3A4 Inducers in Induction Medium and Hepatocytes

Medium binding of compounds was determined in induction medium with 0.125% BSA at a final concentration of 1 and 10 µM. 220 µL aliquots were loaded into the
donor chambers (red side) of the RED device and were dialyzed against 350 µL of sodium phosphate buffer (pH 7.4). The RED devices were sealed with a gas permeable membrane and incubated on a shaking plate for 6 hours in a 37°C incubator containing 5% CO$_2$ and saturating humidity. After incubation, a 50-µL aliquot was removed from the donor side of the RED device and added to 200 µL of internal standard in acetonitrile and 50 µL of buffer. A 50 µL aliquot was removed from the receiver side of the RED device and added to 200 µL of internal standard in acetonitrile and 50 µL of induction medium. Samples were vortexed and centrifuged at 3000 rpm for 20 minutes and a 125 µL aliquot of the supernatants were transferred to 96 well shallow well plates for LC-MS/MS analysis.

Intracellular binding of bosentan and rifampicin was assessed using equilibrium dialysis (RED device) of hepatocyte homogenate using the same method that was used to assess medium binding. Binding was determined at concentrations of 1µM for both bosentan and rifampicin in order to capture the extent of binding at the median observed intracellular concentration. To prepare the homogenate, ten lots of cryopreserved human hepatocytes were thawed in cryopreserved hepatocyte recovery medium, and diluted in HBSS to a concentration of 10x106 total cells/mL (Mateus et al., 2013). The suspension was heated at 95°C for five minutes and then cells were lysed over three cycles of freezing on a dry-ice ethanol bath and thawing at 37°C.

Determination of Unbound Drug Accumulation Ratios (K_{puu}) for Bosentan and Rifampicin
Cryopreserved human hepatocytes were seeded according to the same protocol as for the induction assays. Two study designs were used to determine the intracellular and medium concentrations of rifampicin and bosentan. First, a time course experiment was performed in which cells were treated with a single concentration of either rifampicin (0.1 µM) or bosentan (1 µM) and incubated for 0.25, 2, 4, 6, 18 and 24 hours in order to assess the change in K_{puu} over time. The concentrations were chosen to ensure that bosentan and rifampicin levels were sufficiently (> 5 fold) below reported Km values for OATP1B1 and OATP1B3 transporters (Tirona et al., 2002; Vavricka et al., 2002; Treiber et al., 2007; Izumi et al., 2014). A follow up experiment was conducted in which rifampicin or bosentan (0.1, 0.3, 1, 3, 5, 10 and 20 µM) were incubated in cryopreserved human hepatocytes for 24 hours in order to determine the K_{puu} values across the range of concentrations used in the induction studies. At the end of the treatment period, supernatant was collected and 20µL was added to 180µL acetonitrile containing internal standard. Cells were washed 3 times with HBSS prior to lysing with 100µL acetonitrile containing internal standard. The samples were analyzed by LC-MS to measure the total intracellular concentration of a drug, considering total intracellular volume of 4 µL/10^6 cells (Reinoso et al., 2001). The unbound drug accumulation ratios (K_{puu}) were then determined using equation 16.

Characterizing the Uptake Clearance of Bosentan and Rifampicin in Suspension Hepatocytes

The uptake of rifampicin and bosentan was measured in suspension cryopreserved human hepatocytes using the oil-spin method. Hepatocytes were thawed at 37 °C and placed in cryopreserved hepatocyte recovery medium (CHRM).
Hepatocytes were centrifuged and then reconstituted in KHB at a final density of 1 x 10^6 viable cells/ml. Cells were then incubated for 2.5 min at 37 °C and 4 °C (on ice) with different concentrations of rifampicin (0.03 – 5 µM) spiked with [³H]rifampicin (1μCi/ml)) and bosentan (0.1 – 30 µM) spiked with [³H]bosentan (1μCi/ml)). At the end of the incubation period, aliquots were taken and added to centrifuge tubes containing 25 µL of 1M sucrose and 55 µL mineral oil (Gentest™, Hepatocyte Transporter Suspension Assay kit, Tewksbury, MA). Cells were spun at 10,000 rpm for 15 sec to stop the uptake and tubes were immediately placed on dry ice. Tubes were cut to separate the lower part containing the cell pellet and the upper part containing supernatant which were then mixed with scintillation cocktail to measure radioactivity.

LC-MS/MS Analysis

The LC-MS/MS system composed of an Agilent 1200 Series binary pumps (Agilent Technologies, Palo Alto, CA), a CTC Analytics PAL (LEAP) autosampler (CTC Analytics AG, Zwingen, Switzerland), and an API 5500 QTrap tandem mass spectrometer (AB Sciex, Foster City, CA), was used in the analysis of all unlabeled test compounds. A 5-µL aliquot of each sample was injected into the LC-MS/MS system. The HPLC separation was conducted on a Unisol C18 column (2.1x30 mm, 5 µm) (Agela Technologies, Newark, DE). Mobile phase A was 10 mM ammonium acetate in water (pH 4.0) and mobile phase B was acetonitrile/methanol (50/50, v/v). The analytes were eluted using a gradient method from 0% to 99% mobile phase B in 0.5 minute with a flow rate of 1.0 mL/min and 99% mobile phase B from 0.5 to 1.2 minute with a flow rate from 1.0 to 1.8 mL/min. The electrospray ionization source was operated at 5500 V or -4500 V for positive and negative modes and 650 °C. The curtain gas, gas 1 and gas
2 were set to 30, 60, and 70 psi, respectively. Multiple reaction monitoring (MRM) MS/MS (Supplemental Table 2) was used to measure the analytes.

Data Analysis

\(EC_{50} \) and \(E_{\text{max}} \) Determination for CYP3A4 mRNA Induction:

Graphpad Prism 6.0 (La Jolla, CA) was used for data fitting. \(EC_{50} \) and \(E_{\text{max}} \) values were determined from mRNA expression dose-response curves. The dose-response curves were fitted to a three-parameter sigmoid (Hill) model, with baseline value of induction fixed to 1, according to the following equation:

\[
E = \frac{E_{\text{max}} \cdot C^\gamma}{EC_{50}^\gamma + C^\gamma}
\]

(Eq. 1)

Measured Concentration of Parent Drugs during Hepatocyte Incubation:

The concentration vs. time profiles of all compounds was measured over the 48-hour incubation period. \(C_{\text{min}} \) is the measured concentration at 24 hour on day 1. The systemic exposure to drugs (AUC\(_{0-24}\)) was calculated by the linear trapezoidal method. \(C_{\text{ave}} \) was calculated according to Equation 2:

\[
C_{\text{ave}} = \frac{AUC}{24 \text{ hr}}
\]

(Eq. 2)

Protein Binding with Induction Medium and Hepatocytes:

The free fraction in media (\(f_{\text{u,media}} \)) and the free fraction in the cell (\(f_{\text{u,cell}} \)) were calculated according to the following equations:
The $f_{u,\text{cell}}$ was determined by correcting the fraction unbound in homogenate ($f_{u,\text{hom}}$) by a dilution factor (D) as previously reported (Mateus et al., 2013; Riccardi et al., 2016). Based on the volume of a hepatocyte of 4 µL for 1×10^6 cells (Reinoso et al., 2001), D was determined to be 25.

Correcting the EC₅₀ for Inducer Depletion and Medium Binding

Nominal EC₅₀ was determined by plotting CYP3A4 mRNA expression fold induction in hepatocytes versus the nominal concentration (C_0) of the applied perpetrator compound. The measured EC₅₀ was determined according to equation 6. Unbound EC₅₀ ($EC_{50,u}$) was calculated for both nominal and measured EC₅₀ according to equations 7 and 8, respectively.

$$\text{Measured } EC_{50} = \text{Nominal } EC_{50} \times \frac{C_{ave}}{C_0} \quad \text{(Eq. 6)}$$

$$\text{Unbound Nominal } EC_{50} = \text{Nominal } EC_{50} \times f_{u,\text{media}} \quad \text{(Eq. 7)}$$

$$\text{Unbound Measured } EC_{50} = \text{Measured } EC_{50} \times f_{u,\text{media}} \quad \text{(Eq. 8)}$$

RIS Model and Correlation to in vivo CYP3A4 Induction:
The RIS model is a calibration approach to induction predictions in which the EC50 and Emax of various inducers are combined with free plasma concentrations to estimate a relative induction score (Ripp et al., 2006). RIS values were calculated as described by the following equation (Ripp et al., 2006; Fahmi et al., 2008)

\[RIS = \frac{E_{\text{max}} \times C_{\text{max,u}}}{EC_{50} + C_{\text{max,u}}} \]
(Eq. 9)

where \(C_{\text{max,u}} \) is the maximum unbound plasma concentration of the CYP3A4 inducer reported in the literature (Supplemental Table 3). The magnitude of the clinical DDI data (% decrease AUC of midazolam) was plotted against the RIS value of the inducers. The curves were fitted to a three-parameter sigmoid (Hill) model, according to Equation 10. GraphPad Prism 6.0 (La Jolla, CA) was used for data fitting.

\[\%DDI = \frac{\%DDI_{\text{max}} \times RIS^y}{RIS_{50}^y + RIS^y} \]
(Eq. 10)

Here, \(\%DDI_{\text{max}} \) is the maximum %DDI and \(RIS_{50} \) is the RIS value at 50% of \(\%DDI_{\text{max}} \). An induction prediction was considered to be positive if the RIS value was <0.1 (Fahmi et al., 2008).

Basic Static Model \((R_3) \)

A basic static model (R3 model), accounting for induction potency, maximum fold induction and circulating inducer concentrations was used in predictions. The \(R_3 \) values were calculated using Equation 11 in accordance with the FDA draft guidance on drug-drug interactions (FDA, 2012). The value of \(d \) was set to 1. An induction prediction was considered to be positive if the \(R_3 \) value was <0.9 in accordance with the draft guidance.
Mechanistic Static Model

The mechanistic static model (MSM) or “net effect” model (Fahmi et al., 2009) was used to account for simultaneous reversible inhibition, time dependent inhibition (TDI) and induction in both the liver and the intestine. The ratio of the AUC (AUCR) in the presence and absence of an inducer was calculated according to Equation 12:

\[
AUCR = \frac{1}{f_{m,CYP3A4} \times [A \times B \times C] + (1 - f_{m,CYP3A4})} \times \frac{1}{[X \times Y \times Z] \times (1 - F_G) + F_G} \tag{Eq. 12}
\]

where A, B and C denote time dependent inhibition (TDI), induction, and reversible inhibition in the liver, respectively. X, Y and Z denote TDI, induction, and reversible inhibition in the intestine. Subscripts H and G denote hepatic (H) or intestinal (G) values. These terms are described by the following equations:

\[
A(\text{or X}) = \frac{k_{deg,H (or G)}}{k_{deg,H (or G)} + [I]_{H (or G)} \times k_{inact} + K_I} \tag{Eq. 13}
\]

\[
B(\text{or Y}) = 1 + \frac{d \times E_{max} \times [I]_{H (or G)}}{EC_{50} + [I]_{H (or G)}} \tag{Eq. 14}
\]

\[
C (\text{or Z}) = \frac{1}{1 + \frac{[I]_{H (or G)}}{K_I}} \tag{Eq. 15}
\]

\(F_G\) is the fraction of the substrate that escapes extraction in the gut and \(f_{m,CYP3A4}\) is the fraction of the substrate cleared via CYP3A4-mediated metabolism. The values of \(F_G\) and \(f_{m,CYP3A4}\) for midazolam were 0.51 and 0.9 (Galetin et al., 2006; Einolf et al., 2014) and 0.66 and 0.92 for simvastatin, respectively (Chung et al., 2006; Obach et al., 2006). The unbound \(C_{max}\) was used for \([I]\) in both the intestine and the liver. The empirical scaling factor \(d\) was set to 1 for all predictions. Reversible inhibition of
CYP3A4 by carbamazepine (K_i 104µM), pioglitazone (K_i 20µM), and rifampicin (K_i 10.5µM), was accounted for in the mechanistic static model. Additionally, TDI by pioglitazone (K_i 13 µM, k_{inact} 0.013min$^{-1}$) and rosiglitazone (K_i 4.4 µM, k_{inact} 0.011min$^{-1}$) was incorporated into the model. The $k_{\text{deg,H}}$ and $k_{\text{deg,G}}$ values were 0.019hr$^{-1}$ and 0.029hr$^{-1}$ (Fahmi et al., 2008). An AUCR of <0.8 was considered to indicate a positive induction risk, as suggested in the draft guidance (FDA, 2012).

Evaluation of Model performance

In order to assess the prediction accuracy of each model, the root mean squared error (RMSE, Eq.16) was calculated (Vieira et al., 2014). The geometric mean fold error (GMFE, Eq. 17) was used to determine prediction bias (Vieira et al., 2014). Lower values of RMSE and GMFE indicate greater prediction accuracy and reduced bias, respectively.

\[
RMSE = \sqrt{\frac{\sum (\text{Predicted DDI} - \text{observed DDI})^2}{N}} \quad \text{(Eq. 16)}
\]

\[
GMFE = 10^{\frac{1}{N} \sum \log \frac{\text{Predicted AUC ratio}}{\text{Observed AUC ratio}}} \quad \text{(Eq. 17)}
\]

Calculation of the In Vitro K_{puu}

The ratio of unbound cell concentration to unbound medium concentration ($K_{puu, \text{in vitro}}$) was calculated according to Equation 18 (Mateus et al., 2013):

\[
K_{puu, \text{in vitro}} = \frac{f_u \cdot c_{\text{cell}}}{T_u \cdot c_{\text{media}}} \quad \text{(Eq. 18)}
\]
Where $f_{u,\text{cell}}$ and $f_{u,\text{medium}}$ are the fraction unbound in hepatocytes and medium, respectively. C_{cell} and C_{medium} represent total intracellular and total medium drug concentration, respectively.

Correction of Bosentan and Rifampicin EC$_{50}$ Values for Unbound Intracellular Concentrations

Following incubation of rifampicin and bosentan (0.1, 0.3, 1, 3, 5, 10 and 20 µM) for 24 hours, intracellular and medium concentrations were measured according to the previously described protocol and the $K_{puu,\text{in vitro}}$ values were determined. The average steady state intracellular unbound concentrations at each nominal inducer concentration ($I_{u,\text{cell, ave}}$) were calculated according to equation 19.

$$I_{u,\text{cell, ave}} = \text{Nominal concentration} \times \left[\frac{C_{\text{ave}}}{C_0} \right] \times f_{u,\text{media}} \times K_{puu,\text{in vitro}} \quad (\text{Eq. 19})$$

The $I_{u,\text{cell, ave}}$ values were plotted against the fold change in CYP3A4 mRNA and the EC$_{50,\text{cell, u}}$ and $E_{\text{max,cell}}$ values were estimated by fitting the data to Equation 1 using nonlinear regression in GraphPad Prism.

The Extended Clearance Model and Prediction of In Vivo K_{puu}

Hepatic blood clearance following intravenous dosing was described by the well-stirred model (Pang and Rowland, 1977):

$$CL_h = \frac{Q_h \times f_{u,b} \times CL_{\text{int,h}}}{Q_h + f_{u,b} \times CL_{\text{int,h}}} \quad (\text{Eq. 20})$$
Q_h is hepatic blood flow (90L/hr), f_u,b is the unbound fraction in blood, and CL_{int,h} is the intrinsic hepatic clearance. Assuming no basolateral efflux, CL_{int,h} was defined by the extended clearance model (Liu and Pang, 2005):

\[
CL_{int,h} = \frac{CL_{int,uptake} + CL_{int,passive}}{CL_{int,passive} + \sum CL_{int,metab} + CL_{int,bile}} \times \frac{CL_{int,metabolism} + CL_{int,bile}}{CL_{int,metabolism} + \sum CL_{int,metab} + CL_{int,bile}} \quad (\text{Eq. 21})
\]

Where CL_{int,uptake} is intrinsic active uptake clearance, CL_{int,passive} is the intrinsic passive diffusion clearance, CL_{int,bile} is the intrinsic biliary clearance and CL_{int,metab} is the total intrinsic metabolic clearance.

The \(K_{puu, in\,vivo}\) was predicted according to Equation 22 (Barton et al., 2013):

\[
K_{puu, in\,vivo} = \frac{SF_{uptake} \times CL_{int,uptake} + CL_{int,passive}}{CL_{int,passive} + CL_{int,bile} + CL_{int,metab}} \quad (\text{Eq. 22})
\]

SF_{uptake} is an empirical scaling factor for \(CL_{int,uptake}\) that was estimated by comparing the \(in\,vivo\) \(CL_{int,uptake}\) to the \(in\,vivo\) \(CL_{int,uptake}\) estimated from CL_h. \(In\,vivo\) intrinsic clearance values were scaled by assuming 39.8 mg microsomal protein per gram liver, 118 x 10^6 hepatocytes per gram liver, 24.5 grams liver per kg body weight, and an average 70 kg body weight. The input parameters used are reported in Table 4.

Induction Predictions Incorporating In Vitro and In Vivo \(K_{puu}\) Estimates

Induction predictions using the R3 (Equation 11) and MSM (Equation 12) methods were performed to assess the effects of intracellular unbound concentrations on prediction accuracy. \(Emax_{cell,u}\) and \(EC_{50,cell,u}\) were used as input parameters. The [I] value used for the R3 model and the hepatic component of the mechanistic static model
was equal to $C_{\text{max,u}} \cdot K_{\text{puu}}$. For the intestinal portion of the MSM model, $[I]$ was assumed to be equal to $C_{\text{max,u}}$.

In Vitro Uptake Kinetics Measurement

The active uptake velocity was determined by subtracting the velocity at 4ºC from the uptake velocity at 37ºC. The active uptake velocity was plotted against substrate concentration and fit via nonlinear regression in Graphpad Prism 6.0 (La Jolla, CA). The kinetic parameters, K_m and V_{max} for active uptake were determined using the Michaelis Menten equation (Equation 23). $\text{CL}_{\text{int, uptake}}$ was estimated from the ratio of the V_{max} and K_m values.

$$v = \frac{V_{\text{max}} \times S}{K_m + S}$$ \hspace{1cm} (Eq. 23)

Intrinsic passive permeability clearance, $\text{CL}_{\text{int, passive}}$ was estimated from the slope of the 4ºC velocity versus substrate concentration plots using linear regression.
RESULTS:

Measured Concentration of CYP3A4 Inducers in Human Hepatocyte Induction Medium:

At 37°C, negligible parent compound loss was observed for phenytoin, carbamazepine, and semagacestat. The concentration change over 24 hours after dosing was within analytical accuracy (data not shown). The profiles of measured concentrations over time for pioglitazone, pleconaril, rifampicin, and rosiglitazone are shown in Figure 1. Rifampicin concentration decreased when incubated at 37°C with 56-83% remaining at the 24 hour time point (Figure 1C) after dosing at 3 concentrations and incubating with 3 lots of hepatocytes. Pioglitazone (Figure 1A), and rosiglitazone (Figure 1D) showed substantial parent loss when incubated at 37°C, with ~20-50% remaining at the 24 hour time point after dosing. At 37°C, the % remaining of pleconaril (Figure 1B) reduced to <10% after 24 hour incubation. No notable difference in perpetrator concentration profiles over time was observed between day 1 and day 2 (Figure 1). The concentrations of pioglitazone, rifampicin, and rosiglitazone were unchanged over the 24 hour incubation period when incubated at 4°C (Supplemental Figure 1A, 1C and 1D). However, loss of pleconaril was observed at 4°C (Supplemental Figure 1B). Similarly, when these compounds were incubated with cell culture plates alone (without hepatocytes, data not shown), pleconaril concentration decreased notably but the concentrations of the other compounds were close to nominal concentrations at 37°C and 4°C, which indicated nonspecific binding of pleconaril to cell plates. The average measured concentration ($C_{ave} = \frac{AUC}{time}$) of each CYP3A4 inducer was calculated using the overall exposure (AUC) and incubation
time interval (time), while minimum concentration (C_{min}) was the measured concentration at the 24 hour time point. For each compound, the average percentage remaining and the percentage remaining at the 24 hour time point are summarized in Table 1.

Protein Binding of CYP3A4 Inducers in Hepatocyte Induction Medium:

The hepatocyte induction medium that was used in these studies contains 0.125% BSA and other proteins such as insulin (6.25 µg/ml) and transferrin (6.25 µg/mL). For 6 of the 7 CYP3A4 inducers, recovery in the protein binding assay ranged between 80-120% in both media (Table 1). However, the protein binding assay for pleconaril resulted in poor recovery values, possibly due high nonspecific binding and/or poor stability, and was therefore not reported in Table 2. Pioglitazone and rosiglitazone were highly protein bound in the induction medium with f_u values of 0.22 and 0.15, respectively (Table 1). Carbamazepine (f_u 0.89), phenytoin (f_u 0.90) and semagacestat (f_u 0.91) showed less than 11% binding.

CYP3A4 Induction and Generation of RIS Models Based on Nominal and Measured Concentrations of the Perpetrator in Hepatocyte Induction Medium

For each of the 7 CYP3A4 inducers included in this study, the concentration dependent changes in CYP3A4 mRNA expression were used to determine the E_{max} and EC_{50} values in 3 donors (Table 1). The EC_{50} was subsequently corrected for the measured and free drug concentrations in the hepatocyte induction medium, as illustrated in Figure 2. The resulting EC_{50} values for nominal (C_0), nominal ($C_{0,u}$) unbound, measured (C_{ave}) and measured unbound ($C_{\text{ave,u}}$) concentrations are shown in
Table 1. For 4 of the compounds, the measured EC$_{50}$ values were equivalent to or only slightly lower than the nominal EC$_{50}$ values. However, for compounds where substantial depletion and nonspecific binding were observed, the measured EC$_{50}$ values were 27% (Rosiglitazone), 44% (pioglitazone) and 82% (pleconaril) lower than the nominal EC$_{50}$ values. Similar results were observed upon correcting the EC$_{50}$ values for medium binding. While the measured EC$_{50,u}$ values for carbamazepine, phenytoin and semagacestat were not substantially different from the nominal EC$_{50}$ values, the measured EC$_{50,u}$ values for more highly bound compounds were 48% (rifampicin), 87% (pioglitazone) and 90% (rosiglitazone) lower than the nominal EC$_{50}$ after correction by protein binding.

Using the various EC$_{50}$ values generated, 4 different RIS curves [nominal RIS, measured RIS, nominal RIS$_{u}$, and measured RIS$_{u}$] were calculated according to Equation 7. Representative regression curves are shown in Supplemental Figure 2.

Observed versus Predicted DDI by RIS Modeling

The RIS curves were then used to predict the DDI potential of the 7 inducers and the results are summarized in Supplemental Table 4. The magnitude of induction predicted from all 3 hepatocyte donors is close to the observed, as shown in Figure 3. Each of the four RIS models correctly identified all compounds as true positives or negatives. The RIS model utilizing nominal EC$_{50}$ values, predicted the AUCR to be within 2 fold of the observed for 4 of the 7 compounds, while the induction magnitude for carbamazepine and phenytoin was underpredicted (< 2- fold of the observed) and semagacestat induction was overpredicted (>2-fold of observed). Prediction accuracy
was not improved by using the RIS model that incorporated measured medium concentrations, as evidenced by an increase in GMFE and RMSE in 2 of the 3 donors (Table 2). However, accounting for protein binding in the RIS models notably improved the prediction accuracy. Regardless of whether protein binding was considered alone or in combination with measured medium concentrations, predictions of phenytoin induction were accurately predicted within 2-fold of the observed. Additionally, the GMFE and RMSE were lower in 2 of the 3 donors upon correction for protein binding, with the greatest accuracy (lowest RMSE) values observed when both binding and measured concentrations were included in the model (Table 2). As medium protein binding was not determined for pleconaril, predicted DDI was not determined using the unbound RIS modeling.

Static Modeling Predictions

In addition to RIS modeling, static prediction models were also tested for their predictive ability (Supplemental Table 5 and Supplemental Table 6). The basic static model predicted DDI risk relatively well across the four quadrants, but use of the nominal EC\textsubscript{50} resulted in false negative predictions (positive induction AUCR <0.9) for pioglitazone and pleconaril in all three donors (Figure 4, Supplemental Table 5). Use of the measured EC\textsubscript{50} as opposed to the nominal value resulted in true positive predictions for pleconaril and a reduction in false negative predictions from 29% to 14% of the seven predictions (Table 2). The fraction of false negatives was further reduced when medium protein binding was accounted for, with only one false negative prediction for pioglitazone in donor CDP. Phenytoin and carbamazepine, while true positives, were consistently underpredicted (<2 fold of the observed AUCR) across all 3 donors, while
Semagasestat was overpredicted (>2 fold of the observed AUCR) in donors NON and CDP regardless of which EC\textsubscript{50} values were used. However, RMSE values declined when the EC\textsubscript{50} value was corrected for the average measured medium concentrations, and further reduced upon consideration of \textit{in vitro} protein binding (Table 4), indicating increased prediction precision. Despite improved accuracy, prediction bias slightly increased (higher GFME) when EC\textsubscript{50} values were corrected for protein binding (Table 2).

The last approach that was evaluated was the mechanistic static model (MSM), which takes into account the f\textsubscript{m,CYP3A4}, the F\textsubscript{G}, and simultaneous reversible and time-dependent inhibition (Figure 5, Supplemental Table 6). The MSM also resulted in relatively accurate classifications of the compounds. Correcting the EC\textsubscript{50} for average measured concentrations reduced the percentage of false negatives from 29% to an average of 24% across the three donors (Table 2), which is a minor improvement compared to what was observed with the R\textsubscript{3} model, due to differences in the cutoff values used in these two methods. Factoring protein binding into the EC\textsubscript{50} estimate resulted in further reductions in false negatives, with the lowest incidence observed when using the measured EC\textsubscript{50,u}. The magnitude of carbamazepine and phenytoin induction was underpredicted and rifampicin and semagasestat induction was overpredicted in all 3 donors, regardless of which EC\textsubscript{50} value was used. However, the RMSE was reduced when protein binding was accounted for, and was further reduced when the EC\textsubscript{50} value was corrected for the average measured medium concentration. Very little change was seen in the GFME values, with slight increases observed upon correction for protein binding, indicating a minor increase in prediction bias.
Correction of EC$_{50}$ Values for Unbound Intracellular Concentrations of CYP3A4 Inducers in Hepatocytes

Ultimately, it is the intracellular concentration of the perpetrator that drives the induction response. This becomes particularly relevant for compounds that are both substrates of uptake transporters as well as CYP3A4 inducers since it cannot be assumed that free intracellular concentrations are equal to free medium concentrations. Therefore, we used OATP substrates rifampicin and bosentan as model drugs (Treiber et al., 2007; Shou et al., 2008) to compare prediction success after using nominal, measured and unbound medium concentrations for EC$_{50}$ determination to the predictions resulting from the use of measured EC$_{50}$ values, based on intracellular unbound concentrations (EC$_{50}$, cell, u$_\text{u}$). Bosentan induction was assessed in cryopreserved human hepatocytes from two donors (CDP, Hu1624) (Supplemental Table 1). The resulting EC$_{50}$ values were corrected for the average percent remaining (33-44%) and f$_{u,\text{medium}}$ (0.377) (Table 3). In contrast to the inducer predictions previously discussed, predictive error for the R3 and MSM models was greater (93-135%) when the EC$_{50}$ values were corrected for binding and measured C$_{\text{ave}}$ than when nominal EC$_{50}$ values were used (14-35% error), resulting in approximately 2-fold overpredictions. One potential explanation for the observed overpredictions could be that the intracellular unbound concentrations are higher than the unbound medium concentrations. In this scenario, using the unbound medium concentrations for EC$_{50}$ determination would result in an overestimation of the inducer potency. To test this hypothesis we evaluated the impact of using intracellular unbound concentrations on induction predictions.
In order to fit an EC\textsubscript{50} value using average unbound intracellular concentrations, the ratio of the unbound cell to unbound medium concentrations at steady state (\(K_{\text{puu, in vitro}}\)) first needed to be determined. An initial time course experiment was conducted to assess which time point could be used to ensure that the \(K_{\text{puu, in vitro}}\) had reached steady state. Medium and intracellular concentrations were measured 0.25, 2, 4, 6, 18 and 24 hours after dosing of 1 \(\mu\text{M}\) bosentan or 0.1 \(\mu\text{M}\) rifampicin. Total intracellular concentrations reached a maximum by 4 (bosentan, 35-50 \(\mu\text{M}\)) or 6 hours (rifampicin, 5-9 \(\mu\text{M}\)) prior to declining (Figure 6). Both rifampicin (\(f_{\text{u, hom}} 0.194\)) and bosentan (\(f_{\text{u, hom}} 0.261\)) were extensively bound to hepatocyte homogenate, yielding \(f_{\text{u, cell}}\) values of 0.0096 and 0.0139, respectively. Recovery was between 98 and 109%, confirming compound stability over the course of the incubation. The \(K_{\text{puu, in vitro}}\) values were plotted as a function of time to determine the time at which \(K_{\text{puu, in vitro}}\) had reached a steady state. By 24 hours, the \(K_{\text{puu, in vitro}}\) reached an average of 0.92 (rifampicin) and 2.9 (bosentan) at 24 hours (Figure 6). For both bosentan and rifampicin, the \(K_{\text{puu, in vitro}}\) values remained steady after 18 hours (Figure 6) so follow-up studies were performed at the 24 hour time point. \(K_{\text{puu, in vitro}}\) values can be concentration dependent (Riccardi et al., 2016), so a follow-up study was performed in which the cell and medium concentrations were measured following incubation with the full range of inducer concentrations for 24 hours. The \(K_{\text{puu, in vitro}}\) values decreased as the nominal concentrations of bosentan and rifampicin increased (Figure 6, Supplemental Table 7), likely due to saturation of uptake transporters. For each nominal inducer concentration, the average unbound medium concentrations were multiplied by the corresponding \(K_{\text{puu}}\) value to determine the average steady state intracellular unbound concentration (\(I_{\text{u,cell}}\).
ave) (Eq 17). The \(I_{u,cell, ave} \) was plotted against the fold induction and the resulting \(E_{\text{max, cell, } u} \) and \(\text{EC}_{50,cell,u} \) are reported in Table 5. For bosentan, correction for \(I_{u,cell, ave} \) resulted in \(\text{EC}_{50, u, cell} \) (Table 5) values that were 2.3 and 2.8 fold higher than the measured \(\text{EC}_{50, u} \) (Table 3) in donors CDP and Hu1624, respectively. Conversely, the \(\text{EC}_{50, u, cell} \) values for rifampicin in donors CDP and Hu1624 (Table 5) were 38 and 84 percent of the measured \(\text{EC}_{50, u} \) values (Table 1), respectively.

Prediction of in vivo \(K_{puu} \)

\(K_{puu, in \text{ vivo}} \) was calculated according to equation 20 using biliary clearance and metabolism data reported previously (Kobayashi et al., 2011; Varma et al., 2014). Active uptake and passive diffusion of bosentan and rifampicin was assessed in pooled suspension hepatocytes and the results are reported in Table 4 and representative plots are shown in Supplemental Figure 3. The in vivo hepatic clearance values previously reported by Loos et al. (1985) (rifampicin) and Weber et al. (1999) (bosentan) were underpredicted for both compounds, so scaling factors were applied to bosentan (SF=4.3) and rifampicin (SF=4.1) \(CL_{\text{int, uptake}} \) in order to recover the estimated in vivo \(CL_{\text{int, uptake}} \) (Table 4). Based on the data in Table 4, the \(K_{puu, in \text{ vivo}} \) values for bosentan and rifampicin after a single dose were 4 and 15.9, respectively.

The Impact of Intracellular Unbound Inducer Concentrations on Induction Predictions

Incorporating the \(E_{\text{max, cell}}, \text{EC}_{50, cell, u}, \) and \(K_{puu, in \text{ vivo}} \) values into R3 and AUCR predictions the predicted decrease in simvastatin exposure were on average 76.5 in 76.8, respectively (Table 5). The magnitude of induction predicted using this method
resulted in a higher degree of overprediction of bosentan than what was predicted using measured EC\textsubscript{50,u} and C\textsubscript{max,u} values (Tables 3 and 5). For rifampicin the magnitude of induction using the R3 model was predicted to be roughly equivalent (93 % DDI) regardless of whether E\textsubscript{max, cell}, EC\textsubscript{50, cell,u}, and K\textsubscript{puu, in vivo} or E\textsubscript{max}, EC\textsubscript{50,u} and C\textsubscript{max,u} were used (Tables 1 and 5). However, E\textsubscript{max, cell}, EC\textsubscript{50, cell,u} resulted in a slightly lower predicted magnitude of DDI (96%) than when E\textsubscript{max}, EC\textsubscript{50,u} and C\textsubscript{max,u} were used (98%).

The limitation to using single dose clearance data to predict K\textsubscript{puu,in vitro} is that it does not account for reported auto-induction of hepatic clearance for bosentan and rifampicin (Loos et al., 1985; Weber et al., 1999). In order to estimate the K\textsubscript{puu, in vivo} after multiple doses, a new value for CL\textsubscript{int,metab} was calculated (Table 4) based on multiple dose CL\textsubscript{h} (Loos et al., 1985; Weber et al., 1999) assuming no other elimination pathways were induced. The calculated CL\textsubscript{int,metab} value was then incorporated into equation 20 to calculate the K\textsubscript{puu,in vivo} following multiple doses. The resulting K\textsubscript{puu,in vivo} values were 0.59 and 14.7 for bosentan and rifampicin, respectively (Table 4). Using the multiple dose K\textsubscript{puu, in vivo}, the predicted magnitude of induction for bosentan using both the R3 (38.5% DDI) and AUCR (41% DDI) models was in good agreement with the observed 34% DDI (Table 5). However, for rifampicin, predictions using of multiple dose K\textsubscript{puu, in vivo} vs single dose K\textsubscript{puu, in vivo} were identical.
DISCUSSION:

While cultured human hepatocytes are considered the “gold standard” in vitro system in which to assess CYP3A4 induction risk in the clinic (Chu et al., 2009), the dynamics of the system are not always accounted for and DDI-risk is generally based upon nominal concentrations of perpetrators (Almond et al., 2009). Furthermore, BSA (0-2%) is typically added to cell culture medium (Runge et al., 2000; Madan et al., 2003; Nishimura et al., 2007) as a supplement to increase overall cell health, block non-specific binding sites and improve the solubility of compounds with poor chemical properties (Francis, 2010). One caveat of including BSA in induction medium is that it can lower the concentration of free drug. While inducer depletion and binding have previously been accounted for in induction predictions (Zhang et al., 2014; Chang et al., 2016) to date, no comprehensive study has been conducted to systematically investigate the impact of binding and depletion on induction predictions across multiple inducers and prediction methods. In the current evaluation, we sought to determine the measured and free concentrations of six clinical inducers and one non-inducer of CYP3A4 in hepatocyte culture medium and determine whether correction for these parameters can improve the accuracy of CYP3A4 induction predictions.

Medium concentrations were measured over the course of a dosing interval in order to assess the effects of non-specific binding and metabolism of the 7 compounds used in our study (Figure 1). Parallel studies were conducted in order to assess the impact of protein binding to medium supplements in our studies (Table 1). Having quantified the perpetrator concentrations in the induction medium, various modeling approaches were used to assess whether correcting for measured and free
concentration of perpetrator improve the accuracy and precision of the predictions. In order to evaluate prediction success, predictions were categorized as false positive, false negative, true positive or true negative and the accuracy and bias were assessed using RMSE and GMFE (Table 2). With respect to categorical predictions, the RIS model was the most reliable, resulting in no false positive or false negative predictions. Only two out of seven predictions gave a false negative prediction when nominal EC_{50} values were used in each lot of hepatocytes with the R_3 and mechanistic static predictions. The percent of false negatives was reduced when measured EC_{50} values were used and were further reduced when unbound EC_{50} values were used. Similarly, the RIS model had the greatest accuracy and least bias, as evidenced by low RMSE and GMFE values, whereas the mechanistic static model had the highest values. After the RIS model, the mechanistic static model resulted in the greatest prediction accuracy. However, predicted induction magnitude using this model was higher for all of the compounds aside from pioglitazone and rosiglitazone (Supplemental Tables 4-6), and rifampicin induction was actually overpredicted. This trend towards overprediction of CYP3A4 induction is likely due to the incorporation of intestinal induction into the mechanistic static model. This suggests that the mechanistic static model may only be advantageous when an inducer also causes reversible and/or time dependent inhibition. Across all of the models, the accuracy of the predictions was greatest when both binding and medium concentrations were considered.

The observation that measured EC_{50} values resulted in more accurate predictions is in contrast to findings from Zhang et al. (2014) who measured medium concentrations of 20 compounds at the 24 hr time point on the last day of incubation.
For six compounds, measured concentrations of the perpetrator was <20% of the nominal concentrations. For these 6 compounds, the authors determined the average concentration by taking the average of the nominal and measured 24 hour concentrations. The EC\textsubscript{50} values were then corrected by using the estimated average medium concentration. However, correction of the EC\textsubscript{50} values for the 6 compounds did not improve the RMSE and GMSE for any parameter. One possible explanation for this discrepancy is that non-specific binding was not considered. By estimating the average medium concentration from the average of the nominal and 24 hour concentrations, one assumes that the loss of compound from the medium is due to linear depletion. However, extensive non-specific binding to the cells or plate could result in an immediate reduction in medium concentration, as was observed for pleconaril in the present study where only ~8% remained after a 24 hr incubation period (Table 1). The significant loss of pleconaril in the induction medium was observed at both 4\textdegree{}C and 37\textdegree{}C, with a greater loss observed at 37\textdegree{}C, indicating that the loss of pleconaril may be caused by both metabolism and nonspecific binding (to cell plates and/or hepatocytes). In such a case, the method used by Zhang et al. (2014) would be expected to overestimate the average medium concentration and underestimate the reduction in the EC\textsubscript{50}, potentially preventing prediction improvements. A second potential reason why the use of calculated average medium concentrations may not have improved predictions in the studies by Zhang et al. (2014) is that medium protein binding was not accounted for. The six compounds with low medium recovery (troglitazone, terbenafine, pleconaril, omeprazole, clotrimazole and nifedipine) are highly bound in plasma.
In addition to accounting for depletion and binding in the determination of *in vitro* induction parameters, we hypothesized that estimating E_{max} and EC_{50} values based on unbound intracellular concentrations may improve predictions for CYP3A4 inducers that are transporter substrates. Bosentan and rifampicin are both permeability-limited substrates of OATP1B1 and OATP1B3 so the ratio of unbound intracellular concentrations to unbound medium concentrations ($K_{\text{puu, in vitro}}$) cannot be assumed to equal 1. Bosentan induction was overpredicted by roughly 2-fold when measured $EC_{50,u}$ and $C_{\text{max,u}}$ values were used in predictions. We hypothesized that this was due to free cell concentrations exceeding free medium concentrations. As a result, EC_{50} values based on free medium concentrations would overestimate the true induction potency. In the current study, a concentration dependent range of $K_{\text{puu,in vitro}}$ values was observed for rifampicin (0.3-1.5) and bosentan (0.5-7.5) across the inducer concentrations used to fit the $E_{\text{max,u,cell}}$ and $EC_{50,u,cell}$. Fitting the $E_{\text{max,u,cell}}$ and $EC_{50,u,cell}$ resulted in EC_{50} values that were 2.6 (bosentan) and 0.6 (rifampicin) times the measured $EC_{50,u}$. The higher $EC_{50,u,cell}$ estimate was consistent with the hypothesis that the measured $EC_{50,u}$ overestimated bosentan induction potency, and resulted in improved predictions for bosentan when the predicted multiple dose $K_{\text{puu, in vivo}}$ (0.6), was used, which accounted for auto-induction of bosentan metabolism. Unlike bosentan, rifampicin predictions were not dramatically affected by corrections for binding, depletion, or intracellular concentrations. The reason for the lack of change for rifampicin predictions is because in all cases, the *in vivo* inducer concentration used in the predictions greatly exceeded the $EC_{50,\text{ }}(>10 \text{ fold})$, and thus the predicted fold induction was equivalent to $1+E_{\text{max}}$.
To date, numerous methods have been proposed for determining intracellular unbound concentrations of drugs, yet, as highlighted in a recent White Paper, no systematic evaluation has been conducted to determine which method is the most reliable (Ulvestad et al., 2011; Zhu et al., 2014). Estimation of the $f_{u,cell}$ using cell homogenate has been widely used in recent years (Mateus et al., 2013; Chien et al., 2016; Riccardi et al., 2016). Furthermore, the $K_{puu, in vitro}$ values estimated using this method were reported to be in agreement with the fold difference in IC_{50} estimated in HLM versus cell lines, providing confidence in the estimated $f_{u,cell}$ (Riccardi et al., 2016). However, a major limitation of this method is that it does not account for sequestration of drug into subcellular organelles (Chu et al., 2013; Kazmi et al., 2013). Because rifampicin and bosentan are acids, pH driven lysosomal and mitochondrial trapping is not anticipated in the present study but may be a deterrent for using the homogenization approach to determine $f_{u,cell}$ for weak bases (Duvvuri et al., 2004; Ufuk et al., 2015).

Use of static models to predict $K_{puu, in vivo}$ (Barton et al., 2013; Varma et al., 2014) also poses limitations for the performance of predictions. Time dependent changes in metabolism and transport can affect the $K_{puu, in vivo}$ estimate, and are not captured by static models. In this study, the $K_{puu, in vivo}$ after multiple days of bosentan or rifampicin treatment was estimated by adjusting the $CL_{int, metab}$ so that the $CL_{int,h}$ matched the $in vivo$ $CL_{int,h}$ following multiple doses (Loos et al., 1985; Weber et al., 1999). However, this does not capture the time dependent changes in $K_{puu, in vivo}$, which could have an impact on induction predictions. Given the limitation of this approach, efforts are ongoing in our lab to assess the impact of the $K_{pu,uu}$ estimates using dynamic mechanistic models rather than the static models.
In conclusion, data indicate that quantitating NCE levels in induction medium by correcting for; specific binding to medium proteins, non-specific binding and measured medium concentrations (C_{ave}) can improve the accuracy and precision of CYP3A4 induction predictions. Further work needs to be conducted to understand the impact of free intracellular concentrations (K_{p,u,u}) of NCEs on predictions when compounds are known to be substrates of uptake transporters and inducers of CYP3A4.
AUTHORSHIP CONTRIBUTORS

Participated in research design: Yongkai Sun, Paresh P. Chothe, Jennifer E. Sager, Hong Tsao, Amanda Moore, Leena Laitinen and Niresh Hariparsad

Conducted experiments: Yongkai Sun, Paresh P. Chothe, Jennifer E. Sager, Hong Tsao, Amanda Moore and Leena Laitinen

Performed data analysis: Yongkai Sun, Paresh P. Chothe, Jennifer E. Sager, Hong Tsao, Amanda Moore and Leena Laitinen

Wrote or contributed to the writing of the manuscript: Yongkai Sun, Paresh P. Chothe, Jennifer E. Sager, Hong Tsao, Amanda Moore, Leena Laitinen and Niresh Hariparsad
REFERENCES:

DMD/2017/075481

FIGURE LEGENDS:

Figure 1: Parent compound loss of various CYP3A4 inducers in human hepatocyte induction assay. Measured medium concentration of pioglitazone (A), pleconaril (B), rifampicin (C), and rosiglitazone (D) over 48 hr incubation with primary human hepatocytes at 37°C in 0.125% BSA containing medium. The inducers were dosed at the concentrations 0.1, 1.0, and 10 µM on day 1 and day 2. Data are represented as mean ± standard error in triplicate for three hepatocyte lots.

Figure 2: Schematic for correction of in vitro induction data using measured compound concentration in induction medium and medium protein binding. Correction of nominal EC\textsubscript{50} and RIS for loss of compound in the assay incubation results in the measured EC\textsubscript{50} and RIS whereas correction for medium protein binding results in nominal unbound EC\textsubscript{50,u} and RIS\textsubscript{u}. Both resulting values can be further corrected by loss of compound or medium protein binding to yield measured unbound EC\textsubscript{50,u} and RIS\textsubscript{u}.

Figure 3: Comparison of predicted magnitude of induction and the observed clinical drug-drug interaction using the RIS correlation approach. The predicted AUCR (1-DDI%) was determined for three separate donors and the values are plotted against the observed DDI. The EC\textsubscript{50} value used was (A) nominal, (B), nominal\textsubscript{u}, (C) measured, (D) measured\textsubscript{u}. The red line represents unity, the solid black lines represent the values of two-fold predictive error. The dotted lines at 0.9 divide the prediction categories of true and false positive and negative inducers.
Figure 4: Comparison of predicted magnitude of induction and the observed clinical drug-drug interaction using the basic static R_3 model. The predicted AUCR was determined for three separate donors and the values are plotted against the observed DDI. The EC$_{50}$ value used was (A) nominal, (B) nominal$_u$, (C) measured, (D) measured$_u$. The red line represents unity, the solid black lines represent the values of two-fold predictive error. The dotted lines at 0.9 divide the prediction categories of true and false positive and negative inducers.

Figure 5: Comparison of predicted magnitude of induction and the observed clinical drug-drug interaction using the mechanistic static model incorporating reversible and TDI. The predicted AUCR was determined for three separate donors and the values are plotted against the observed DDI. The EC$_{50}$ value used was (A) nominal, (B) nominal$_u$, (C) measured, (D) measured$_u$. The red line represents unity, the solid black lines represent the values of two-fold predictive error. The dotted lines at 0.9 divide the prediction categories of true and false positive and negative inducers.

Figure 6. Intracellular concentrations and $K_{puu, \text{in vitro}}$ assessment for bosentan and rifampicin. The total intracellular concentrations of bosentan (A) and rifampicin (B) over time following incubation of cryopreserved human hepatocytes with 1 µM bosentan or 0.1 µM rifampicin. The $K_{puu, \text{in vitro}}$ of bosentan (C) and rifampicin (D) over time. The $K_{puu, \text{in vitro}}$ of bosentan (E) and rifampicin (F) following incubation of multiple concentrations of bosentan or rifampicin in cryopreserved human hepatocytes for 24 hours.
TABLES:

Table 1: Nominal EC$_{50}$ of CYP3A4 mRNA Induction Corrected for Measured and Unbound Concentration of Perpetrator in Induction Medium

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>Hepatocyte Lot</th>
<th>Stability</th>
<th>Induction Medium Protein Binding</th>
<th>E_{max}</th>
<th>EC$_{50}$ Nominal</th>
<th>EC$_{50}$ Measured</th>
<th>EC$_{50,u}$ Nominal</th>
<th>EC$_{50,u}$ Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>NON</td>
<td>100</td>
<td>100</td>
<td>0.89 (95.5)</td>
<td>11</td>
<td>31</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>100</td>
<td>100</td>
<td>5.3</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>NON</td>
<td>100</td>
<td>100</td>
<td>0.90 (110)</td>
<td>11</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>100</td>
<td>100</td>
<td>12</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>100</td>
<td>100</td>
<td>7.7</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>NON</td>
<td>62.4</td>
<td>41.3</td>
<td>0.21 (112)</td>
<td>8.8</td>
<td>4.4</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>52.2</td>
<td>21.4</td>
<td>7.7</td>
<td>11</td>
<td>4.4</td>
<td>6.4</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>61</td>
<td>35.7</td>
<td>6.9</td>
<td>21</td>
<td>12</td>
<td>12</td>
<td>4.8</td>
</tr>
<tr>
<td>Pleconaril</td>
<td>NON</td>
<td>20.4</td>
<td>4.5</td>
<td>NDc (10.5)</td>
<td>6.6</td>
<td>14</td>
<td>2.5</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>21.5</td>
<td>6.5</td>
<td>2.9</td>
<td>2.4</td>
<td>0.43</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>20.6</td>
<td>7.5</td>
<td>2.5</td>
<td>6.6</td>
<td>1.2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>NON</td>
<td>89.7</td>
<td>70.7</td>
<td>0.61 (105)</td>
<td>23</td>
<td>1.5</td>
<td>1.3</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>89.7</td>
<td>68.7</td>
<td>12</td>
<td>0.28</td>
<td>0.24</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>87.9</td>
<td>61.7</td>
<td>14</td>
<td>0.36</td>
<td>0.31</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>NON</td>
<td>63.1</td>
<td>42.9</td>
<td>0.15 (111)</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>53.3</td>
<td>24.5</td>
<td>9.3</td>
<td>15</td>
<td>11</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>64.7</td>
<td>42.5</td>
<td>9.6</td>
<td>22</td>
<td>16</td>
<td>3.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Semagacestat</td>
<td>NON</td>
<td>100</td>
<td>100</td>
<td>0.91 (115)</td>
<td>23</td>
<td>2.6</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>100</td>
<td>100</td>
<td>9.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>a</td>
<td>Average %Remaining = $C_{av}/C_{0}\times100%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>f_u – fraction unbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>ND, not determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Nominal EC${50}$ is the EC${50}$ value determined based on the nominal concentration of dosing solution (total C$_0$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Measured EC${50}$ is the EC${50}$ value determined based on the measured concentration in induction medium (total C${av}$), Measured EC${50}$ = Nominal EC${50}$ \times C${av}/C_{0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Nominal Unbound EC${50}$ (EC${50,u}$) is the EC${50}$ value determined based on the unbound concentration of dosing solution (C${0,u}$), Unbound EC${50}$ = Nominal EC${50}$ \times f_u(media)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Measured EC${50,u}$ is the EC${50}$ value determined based on the measured unbound concentration (C${av,u}$), Measured EC${50,u}$ = Nominal EC${50}$ \times f_u(medium) \times C${av}/C_{0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Accuracy and Bias in the Prediction of Clinical CYP3A4 Induction Using Various Static Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Lot</th>
<th>Nominal EC<sub>50</sub><sup>a</sup></th>
<th>Measured EC<sub>50</sub><sup>b</sup></th>
<th>Nominal EC<sub>50,u</sub><sup>c</sup></th>
<th>Measured EC<sub>50,u</sub><sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NON</td>
<td>9.09</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>7.40</td>
<td>11.40</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>6.66</td>
<td>10.39</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>RIS Model</td>
<td>NON</td>
<td>1.58</td>
<td>1.47</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>1.53</td>
<td>1.74</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>1.49</td>
<td>1.68</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td>False Negative (N)</td>
<td>NON</td>
<td>0 (7)</td>
<td>0 (7)</td>
<td>0 (6)</td>
<td>0 (6)</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>0 (7)</td>
<td>0 (7)</td>
<td>0 (6)</td>
<td>0 (6)</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>0 (7)</td>
<td>0 (7)</td>
<td>0 (6)</td>
<td>0 (6)</td>
</tr>
<tr>
<td>Basic Static (R<sub>3</sub>)</td>
<td>NON</td>
<td>20.84</td>
<td>18.35</td>
<td>16.05</td>
<td>15.88</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>19.67</td>
<td>16.53</td>
<td>16.22</td>
<td>15.43</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>26.02</td>
<td>24.58</td>
<td>23.76</td>
<td>23.38</td>
</tr>
<tr>
<td>GMFE</td>
<td>NON</td>
<td>2.16</td>
<td>2.13</td>
<td>2.29</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>1.99</td>
<td>1.92</td>
<td>2.06</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>2.34</td>
<td>2.30</td>
<td>2.48</td>
<td>2.46</td>
</tr>
<tr>
<td>False Negative (N)</td>
<td>NON</td>
<td>2 (7)</td>
<td>1(7)</td>
<td>0(6)</td>
<td>0(6)</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>2 (7)</td>
<td>1(7)</td>
<td>0(6)</td>
<td>0(6)</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>2 (7)</td>
<td>1(7)</td>
<td>0(6)</td>
<td>1(6)</td>
</tr>
<tr>
<td>Mechanistic Static with Inhibition</td>
<td>NON</td>
<td>19.64</td>
<td>15.77</td>
<td>11.99</td>
<td>11.50</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>19.29</td>
<td>15.94</td>
<td>14.97</td>
<td>13.20</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>24.02</td>
<td>22.00</td>
<td>20.88</td>
<td>19.89</td>
</tr>
<tr>
<td>GMFE</td>
<td>NON</td>
<td>2.93</td>
<td>2.98</td>
<td>3.42</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>2.36</td>
<td>2.24</td>
<td>2.53</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>3.19</td>
<td>3.27</td>
<td>3.79</td>
<td>3.79</td>
</tr>
<tr>
<td>False Negative (N)</td>
<td>NON</td>
<td>2 (7)</td>
<td>2(7)</td>
<td>1(6)</td>
<td>0(6)</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>2 (7)</td>
<td>1(7)</td>
<td>1(6)</td>
<td>1(6)</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>2 (7)</td>
<td>2(7)</td>
<td>1(6)</td>
<td>1(6)</td>
</tr>
</tbody>
</table>

^a Nominal EC₅₀ is the EC₅₀ value determined based on the nominal concentration of dosing solution (total C₀).

^b Measured EC₅₀ is the EC₅₀ value determined based on the measured concentration in induction medium (total C_{ave}).

^c Nominal Unbound EC₅₀ (EC_{50,u}) is the EC₅₀ value determined based on the unbound concentration of dosing solution (C_u).

^d Measured EC_{50,u} is the EC₅₀ value determined based on the measured unbound concentration in induction medium (C_{ave,u}).

The number of false negatives for each prediction methods is listed. In parenthesis is the total number of predictions in the data set. For the R₃ model, an R value <0.9 is considered to indicate induction risk. For the mechanistic static, induction potential is considered possible if the AUCR value is <0.8.
Table 3. Bosentan Stability, Binding, Induction Parameter Estimates and Induction Predictions

<table>
<thead>
<tr>
<th>Hepatocyte Lot</th>
<th>Average % Remaining</th>
<th>f0,medium</th>
<th>Emax</th>
<th>Nominal EC50</th>
<th>Measured EC50</th>
<th>Nominal EC50,u</th>
<th>Measured EC50,u</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP</td>
<td>33.2</td>
<td>0.38</td>
<td>9.4</td>
<td>1.6</td>
<td>0.7</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Hu1624</td>
<td>44.1</td>
<td>0.38</td>
<td>11.6</td>
<td>3.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prediction Method</th>
<th>Observed % DDI</th>
<th>Predicted % DDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP</td>
<td>34</td>
<td>29.1</td>
</tr>
<tr>
<td>R3</td>
<td>34</td>
<td>46.9</td>
</tr>
<tr>
<td>Hu1624</td>
<td>34</td>
<td>21.8</td>
</tr>
<tr>
<td>34</td>
<td>21.8</td>
<td>44.6</td>
</tr>
<tr>
<td>CDP</td>
<td>34</td>
<td>29.4</td>
</tr>
<tr>
<td>AUCR</td>
<td>34</td>
<td>48.2</td>
</tr>
<tr>
<td>Hu1624</td>
<td>34</td>
<td>22.0</td>
</tr>
<tr>
<td>34</td>
<td>22.0</td>
<td>45.7</td>
</tr>
</tbody>
</table>
Table 4. Summary of Input Parameters for Estimation of In Vivo K_{puu} for Bosentan and Rifampicin

<table>
<thead>
<tr>
<th>Compound</th>
<th>CL a</th>
<th>CL b</th>
<th>f_{up} b</th>
<th>R_b c</th>
<th>In vivo CL int, h</th>
<th>In vivo CL int, uptake</th>
<th>CL int, bile d</th>
<th>CL int, passive</th>
<th>SF uptake</th>
<th>K puu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosentan</td>
<td>12.3</td>
<td>0.1</td>
<td>0.037</td>
<td>0.62</td>
<td>101</td>
<td>74.0</td>
<td>17.1</td>
<td>2.0</td>
<td>13.2</td>
<td>4.32</td>
</tr>
<tr>
<td>Multiple Dose</td>
<td>22.1</td>
<td></td>
<td></td>
<td></td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>7.5</td>
<td>1.2</td>
<td>0.15</td>
<td>0.90</td>
<td>10.9</td>
<td>50.6</td>
<td>12.3</td>
<td>-</td>
<td>3.1</td>
<td>4.11</td>
</tr>
<tr>
<td>Multiple Dose</td>
<td>13</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.7</td>
</tr>
</tbody>
</table>

a Plasma clearance (CL) and renal clearance (CL b) following an intravenous dose of bosentan (Weber et al., 1996) or rifampicin (day 2 and day 9) (Loos et al., 1985). For the induced bosentan CL following 8 days of dosing, estimated to be 22.1 L/hr based on a 1.8 fold change in oral clearance over 8 days of dosing with 200mg oral bosentan (Weber et al., 1999).

b Plasma protein binding values were reported previously for bosentan (Obach et al., 2008) and rifampicin (Varma et al., 2014).

c The blood to plasma ratios (R_b) were reported previously (Varma et al., 2014).

d The in vivo estimate of CL int, uptake was calculated from the in vivo CL int, h, using the CL int, passive, CL int, bile, and CL int, metabol listed in the table.

e CL int, bile and CL int, metabol for bosentan were reported in (Varma et al., 2014). CL int, metabol was calculated from the multiple day bosentan and rifampicin in vivo CL int, h, assuming CL int, uptake, CL int, bile and CL int, passive remained constant.
Table 5. Rifampicin and Bosentan Induction Predictions Incorporating K_{puu}

<table>
<thead>
<tr>
<th>Inducer</th>
<th>Hepatocyte Lot</th>
<th>$E_{max, u, cell}$</th>
<th>$EC_{50, u, cell}$</th>
<th>Predicted % DDI</th>
<th>Observed % DDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosentan</td>
<td>CDP</td>
<td>8.8</td>
<td>0.7</td>
<td>72.6</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>18.6</td>
<td>1.1</td>
<td>80.3</td>
<td>80.6</td>
</tr>
<tr>
<td>Bosentan Multiple Dose</td>
<td>CDP</td>
<td>8.8</td>
<td>0.7</td>
<td>34.6</td>
<td>36.73</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>18.6</td>
<td>1.1</td>
<td>42.5</td>
<td>45.2</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>CDP</td>
<td>14.3</td>
<td>0.16</td>
<td>93.4</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>12.4</td>
<td>0.058</td>
<td>92.5</td>
<td>95.4</td>
</tr>
<tr>
<td>Rifampicin Multiple Dose</td>
<td>CDP</td>
<td>14.3</td>
<td>0.16</td>
<td>93.4</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>Hu1624</td>
<td>12.4</td>
<td>0.058</td>
<td>92.5</td>
<td>95.4</td>
</tr>
</tbody>
</table>
Figure 1

(A) Pioglitazone

- 0.1 μM - NON
- 0.1 μM - Hx1524
- 0.1 μM - CDP
- 1 μM - NON
- 1 μM - Hx1524
- 1 μM - CDP
- 10 μM - NON
- 10 μM - Hx1524
- 10 μM - CDP

(B) Pleconaril

- 0.1 μM - NON
- 0.1 μM - Hx1524
- 0.1 μM - CDP
- 1 μM - NON
- 1 μM - Hx1524
- 1 μM - CDP
- 10 μM - NON
- 10 μM - Hx1524
- 10 μM - CDP

(C) Rifampicin

- 0.1 μM - NON
- 0.1 μM - Hx1524
- 0.1 μM - CDP
- 1 μM - NON
- 1 μM - Hx1524
- 1 μM - CDP
- 10 μM - NON
- 10 μM - Hx1524
- 10 μM - CDP

(D) Rosiglitazone

- 0.1 μM - NON
- 0.1 μM - Hx1524
- 0.1 μM - CDP
- 1 μM - NON
- 1 μM - Hx1524
- 1 μM - CDP
- 10 μM - NON
- 10 μM - Hx1524
- 10 μM - CDP
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6