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ABSTRACT 

Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of 

the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene 

expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is 

a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital 

for PB-induced hepatocellular proliferation. This hypothesis was tested here, by using a 

Cyp2a(4/5)bgs-null (null) mouse model, in which all Cyp2b genes are deleted. Adult male and 

female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg, once 

daily for five successive days and tested on day 6. The liver-to-body weight ratio, an indicator of 

liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male 

Cyp2a(4/5)bgs-null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive 

hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also 

significantly lower in PB-treated male null mice, compared to PB-treated male WT mice. 

However, whereas few proliferating hepatocytes were detected in saline-treated mice, many 

proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female 

WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, 

and PB-treated female WT and PB-treated female null mice did not show significant difference 

in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a 

significant, but partial, role in PB-induced hepatocyte proliferation in male mice.   
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INTRODUCTION 

Many studies have shown that phenobarbital (PB) and related compounds can promote 

liver tumorigenesis in rodents (Whysner et al., 1996; IARC, 2001). In mode-of-action 

evaluations of PB-induced rodent liver tumor formation, the key event was considered to be 

activation of the constitutive androstane receptor (CAR) (Yamamoto et al., 2004), which leads to 

a multitude of downstream events, including altered expression of CAR target genes and cellular 

signaling, increased cell proliferation, and the development of pathological changes, in the liver 

(Elcombe et al., 2014). Some of the PB-activated CAR target genes, such as Mmd2, Foxm1b, and 

Cyclins, have been suggested to be important in PB-induced liver hyperplasia and the subsequent 

development of liver tumors (Ledda-Columbano et al., 2002; Huang et al., 2005; Blanco-Bose et 

al., 2008); but the molecular mechanism of the CAR-mediated activation of hepatocyte 

proliferation is still not fully understood.  

A number of cytochrome P450 genes, particularly the Cyp2b genes, are among the most 

highly induced hepatic CAR target genes; hepatic induction of Cyp2b is a characteristic 

downstream event of CAR activation by PB (Honkakoski et al., 1998). However, it is unknown 

whether the induction of Cyp2b is necessary for CAR-mediated activation of hepatocyte 

proliferation and tumorigenesis. There has been no study that directly examined the possible role 

of CYP2B enzymes in PB-induced hepatocyte proliferation. 

The CYP2B enzymes metabolize many drugs, such as cyclophosphamide, ifosfamide, 

bupropion, nicotine, and propofol, and a large number of environmental chemicals, such as 

aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and chlorpyrifos (Dicke et al., 

2005; Wang and Tompkins, 2008; Turpeinen and Zanger, 2012). Humans have a single CYP2B 

gene, CYP2B6; whereas mice have five Cyp2b genes, Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, 

and Cyp2b23 (Nelson et al., 2004). In mice, Cyp2b9, Cyp2b10, and Cyp2b13 are the forms 
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primarily expressed in the liver (Finger et al., 2011). Cyp2b10 is transcriptionally regulated by 

CAR (Honkakoski et al., 1998; Zhang et al., 2002; Wang et al., 2003; Kretschmer and Baldwin, 

2005), and it is highly inducible by PB treatment (Honkakoski et al., 1998; Li-Masters and 

Morgan, 2001). Cyp2b9 and Cyp2b13 are female predominant in most mouse strains (Damiri et 

al., 2012). There was conflicting evidence as to whether Cyp2b9 is inducible by PB (Rivera-

Rivera et al., 2003); but Cyp2b13 has been shown to be inducible by PB (Stupans et al., 1984).  

We have recently reported the generation and characterization of a Cyp2a(4/5)bgs-null 

mouse model, in which Cyp2a4, Cyp2a5, all five Cyp2b genes, Cyp2g1, and Cyp2s1 are deleted 

(Li et al., 2013; Wei et al., 2013). Among the deleted genes, only Cyp2a4/5 and Cyp2b9/10/13 

are expressed in liver, and Cyp2a4 and Cyp2b9/13 are female predominant (Damiri et al., 2012; 

Li et al., 2013). The deletion of the gene cluster did not lead to any notable developmental or 

morphological changes, and there was no significant compensatory change in the expression of 

CPR or various other major P450 enzymes, including CYP2C, CYP3A, CYP2E1, and 

CYP1A1/2 (Wei et al., 2013). A report of a Cyp2b-knockdown mouse also showed absence of 

any notable biological phenotypes (Damiri et al., 2012). The Cyp2a(4/5)bgs-null mouse, in 

which an induction of the Cyp2b genes would not occur upon PB treatment, was utilized in the 

present study to test the hypothesis that Cyp2b induction is mechanistically important for PB-

induced hepatocyte proliferation. We first confirmed that Cyp2b10 is induced by PB in WT mice 

but not in Cyp2a(4/5)bgs-null mice, and that the Cyp2a(4/5)bgs gene deletion did not change the 

inducibility of other Cyp genes in the liver. We then assessed the PB-induced hepatic 

hypertrophy (weight increase) and hyperplasia [bromodeoxyuridine (BrdU) incorporation] in 

Cyp2a(4/5)bgs-null and wild-type (WT) mice (both male and female). Our results indicate that 

CYP2B plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.  
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MATERIALS AND METHODS 

 Animals and Treatments. All studies with mice were approved by the Institutional 

Animal Care and Use Committee of the Wadsworth Center. WT mice and Cyp2a(4/5)bgs-null 

mice, male and female, all on C57BL/6 background, were allowed free access to water and food. 

To induce hepatocyte proliferation, 2-3-month old mice were treated with five consecutive daily 

injections (i.p.) of phenobarbital sodium (Sigma-Aldrich, St. Louis, MO; 50 mg/kg/day, in saline) 

or saline alone. Mice were weighed and then euthanized by CO2 overdose at 24 h after the last 

injection. The whole liver was removed carefully and weighed. A portion of liver tissue was 

stored at 10% formalin for histological analysis and the remainder was stored at -80 oC until use.  

 RNA-PCR Analysis. Total RNA was prepared using Trizol reagent (ThermoFisher, 

Waltham, MA) and stored at -80 °C. Reverse transcription of RNA was carried out using the 

SuperScript III first-strand synthesis system (ThermoFisher), with use of 5 µg of total RNA, 

pretreated with DNase I (ThermoFisher) at room temperature for 15 min, and 0.5 µg of oligo(dT), 

in a final volume of 20 µl. Realtime PCR was performed on an ABI StepOne Plus PCR system 

(Applied Biosystems, Foster City, CA), using SYBR Green PCR core reagent (Applied 

Biosystem), essentially as described previously (Zhang et al., 2007). Reactions were performed, 

in duplicate, in a total volume of 10 µl, with 2 µl of diluted (1:15) first-strand cDNA as template. 

Reactions were initiated at 50 °C for 2 min (to allow degradation of any potential contaminating 

PCR products by the AmpErase UNG), followed by denaturation at 95 °C for 10 min, and then 

45 cycles of amplifications (95 °C for 15 s, 62 °C for 1 min). The final melting curve analysis 

was carried out at 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. The following primers 

were used:  GAPDH, forward 5’-tgtgaacggatttggccgta-3’ and reverse 5’-tcgctcctggaagatggtga-3’ 

(Wei et al., 2012); CYP3A11, forward 5’-ggatgagatcgatgaggctctg-3’ and reverse: 5’-
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caggtattccatctccatcacagt-3’; CYP2B10, forward 5’-caggtgatcggctcacacc-3’ and reverse: 5’-

tgactgcatctgagtatggcatt-3’ (Pan et al., 2000); CYP2A5, forward 5’-

TCTGTTGCTCATGAAGTACC-3’ and reverse 5’-TTGTCATCTAGGAAGTGCTT-3’; and 

CYP2C29, forward 5’-GGGCTCAAAGCCTACTGTCA-3’ and reverse 5’-

AACGCCAAAACCTTTAA-3’ (Zhang et al., 2003).  

Histology and BrdU Assay.  Mice were injected intraperitoneally with BrdU (Sigma-

Aldrich), once, at 100 mg/kg body weight, at 90 min before the first saline or PB treatment, and 

they were also maintained on BrdU-containing drinking water (0.8 mg/mL) for the duration of 

the experiment, to achieve continuous labeling (Blanco-Bose et al., 2008). Liver tissues were 

fixed in 10% neutral buffered formalin, and then sectioned at 4 µm for hematoxylin-eosin 

staining or BrdU immunostaining. BrdU assay was performed as described previously (Moser et 

al., 2009). Briefly, the sections were deparaffinized, soaked in H2O2 for blocking endogenous 

peroxidase, and subjected to heat-induced epitope retrieval. Subsequently, the sections were 

stained with mouse anti-BrdU (1:500; Abcam, Cambridge, MA) and the slides were 

counterstained with hematoxylin, dehydrated, and cover-slipped. The numbers of BrdU-positive 

and BrdU-negative hepatocyte nuclei were tallied microscopically using ten randomly selected 

sections, three section per animal (at least 1,000 hepatocyte nuclei), at ×200 magnification. The 

threshold for identification of BrdU-positive nuclei was set empirically, and the independent 

results from two experienced researchers were averaged to produce the final data.   

Data Analysis. Statistical significance of differences among groups in various 

parameters was examined with 2-way analysis of variance (ANOVA), followed by Bonferroni or 

Sidak's multiple comparisons posttest, using GraphPad Prism. 
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RESULTS AND DISCUSSION 

To confirm the induction of Cyp2b10 by PB in WT mice and the lack thereof in the null 

mice, we compared CYP2B10 mRNA levels in the livers of saline- or PB-treated WT and 

Cyp2a(4/5)bgs-null mice. The levels of CYP2A5, CYP2C29, and CYP3A11 mRNAs were also 

determined, as controls. As shown in Figure 1, at 24 h following five consecutive daily injection 

of PB (50 mg/kg/day, i.p.), CYP2B10 mRNA levels were remarkably increased in WT mice, 

compared to the saline-treated control group. In contrast, CYP2B10 mRNA could not be 

detected in the Cyp2a(4/5)bgs-null mice, in either saline or PB group, which confirms the gene 

deletion. As a control, the levels of CYP3A11 and CYP2C29 mRNA were also increased by the 

PB treatment, as reported previously (Zhang et al., 2003), in both WT and the Cyp2a(4/5)bgs-

null mice, thus confirming PB-mediated activation of CAR in the Cyp2a(4/5)bgs-null mice. 

CYP2A5 mRNA was not induced by PB in WT mice and it was not detected in the 

Cyp2a(4/5)bgs-null mice. These findings were consistent in males and females, except for a 

lower extent of CYP2B10 induction in WT female mice (Fig. 1A). Taken together, these results 

confirm that PB is a CYP2B10 inducer but not CYP2A5 inducer, and that the deletion of 

Cyp2a(4/5)bgs genes did not affect the regulation of other major CYPs (CYP3A and CYP2C) by 

PB. Thus, the Cyp2a(4/5)bgs-null mouse is useful for subsequent studies on the role of CYP2B 

in PB-induced hepatocyte proliferation in the WT mice. 

Phenobarbital treatment is known to induce hepatocyte proliferation in male mice, an 

event that could further develop into hepatocellular carcinogenesis (Blanck et al., 1986; El-Serag 

and Rudolph, 2007). Both hypertrophy and hyperplasia occur during hepatocyte proliferation. To 

examine the role of CYP2B in PB-induced hepatic hypertrophy, we measured the liver weight 

and liver-to-bodyweight ratio in WT and Cyp2a(4/5)bgs-null mice, both male and female, after 
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PB or saline treatment. As shown in Table 1, the liver weights were greater in PB-treated groups 

than in saline-treated groups, for both WT and Cyp2a(4/5)bgs-null mice, male or female. The 

liver-to-bodyweight ratios were also significantly higher in PB-treated male WT (by ~47%), but 

not in PB-treated male or female Cyp2a(4/5)bgs-null, or PB-treated female WT mice, relative to 

the corresponding saline-treated mice. The liver-to-bodyweight ratio was also significantly 

greater in PB-treated male WT than in PB-treated male Cyp2a(4/5)bgs-null mice (p < 0.01), 

which indicated that the PB-induced hepatic hypertrophy in male mice was partially dependent 

on the presence of the Cyp2a(4/5)bgs genes.  

To examine the role of CYP2B in PB-induced hepatic hyperplasia, we examined hepatic 

BrdU incorporation in WT and Cyp2a(4/5)bgs-null mice treated concomitantly with BrdU and 

PB for five consecutive days. As shown in Figures 2A and 2B, the numbers of BrdU-positive 

hepatocytes were considerably greater in the livers of PB-treated WT and Cyp2a(4/5)bgs-null 

mice, male or female, than in the corresponding saline-treated groups; the latter had very few 

BrdU-positive cells. Among the PB-treated groups, the abundance of BrdU-positive cells was 

significantly greater in male WT mice than in male Cyp2a(4/5)bgs-null mice, which indicates 

that the PB-induced increase in BrdU incorporation in WT male mice was partly dependent on 

the presence of the Cyp2a(4/5)bgs genes. Consistent with the sex difference in PB-induced 

hepatic hypertrophy, female mice also showed a lower response to PB-induced hyperplasia than 

male mice did, and the abundance of BrdU-positive hepatocytes in females was not different 

between WT and Cyp2a(4/5)bgs-null mice.  

Taken together, these results indicate that the Cyp2a(4/5)bgs genes play a significant, 

though partial, role in PB-induced hepatocyte proliferation in male mice. Given that the Cyp2b 

genes are the only ones induced by PB among the genes deleted in the Cyp2a(4/5)bgs-null mice, 
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our results support the hypothesis that induction of CYP2B is important for PB-induced 

hepatocyte proliferation. Of the Cyp2b genes, while Cyp2b9, 2b10 and 2b13 are all expressed in 

the liver, Cyp2b9 and 2b13 are female predominant (Damiri et al., 2012; Li et al., 2013), and 

Cyp2b10 is the most highly induced by PB (Li-Masters and Morgan, 2001). Thus, it can be 

deduced that Cyp2b10 was involved in PB-induced hepatocyte proliferation in male mice. 

Notably, the association of hepatocyte proliferation with CYP2B induction has also been 

observed for other CYP2B inducers, such as the environmental pollutant potassium 

perfluorooctanesulfonate and the synthetic pyrethroid metofluthrin (Deguchi et al., 2009; 

Elcombe et al., 2012). It remains to be determined whether CYP2B induction contributes to the 

hepatic hypertrophy induced by these other compounds. 

The mechanistic basis for the sex difference in the extent of PB-induced hepatocyte 

proliferation, and the apparent noninvolvement of CYP2B in the proliferative response in 

females, is currently not understood, but they may be partly explained by the lower extent of 

hepatic CYP2B induction by PB in females than in males. In that regard, our present result was 

consistent with previous reports, that PB induced CYP2B10 to a larger extent in males than in 

females (Li-Masters and Morgan, 2001; Stamou et al., 2014), and that male mice were more 

susceptible to PB-induced hepatocarcinogenesis than female mice (Heindryckx et al., 2009; 

Maronpot, 2009). This sex difference in CYP2B inducibility by PB does not appear to be due to 

a difference in CAR expression, as cytosolic (Hernandez et al., 2009) or nuclear (Saito et al., 

2013) CAR protein level was found to be similar between untreated male and female mice. There 

was also no sex difference in nuclear CAR protein level after PB treatment (Saito et al., 2013). 

Our finding, that the PB-inducibility of two CAR target genes, Cyp3a11 and Cyp2c29, was 

similar in male and female WT mice, and it was not altered in the Cyp2a(4/5)bgs-null mice, 
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further confirmed the absence of a sex difference in hepatic CAR activation, and the notion that 

CAR activity was not changed by the loss of the Cyp2b genes. The latter finding was consistent 

with results from a Cyp2b-knockdown mouse (Damiri et al., 2012).  

The mechanistic link between CYP2B induction and hepatocyte proliferation remains to 

be determined. In one possible scenario, the large induction of CYP2B may promote hepatocyte 

proliferation through induction of reactive oxygen species (ROS) and increased oxidative stress 

(Imaoka et al., 2004; Dostalek et al., 2007; Dostalek et al., 2008). ROS and oxidative stress can 

activate various signaling pathways, including mitogen-activated protein kinase and 

phosphatidylinositol 3-kinase pathways, to promote hepatocyte proliferation (Galli et al., 2005; 

Dragin et al., 2006). Other studies have shown possible roles of β-catenin and the two-pore K+ 

channel Kcnk1 in the sex difference in PB-induced the hepatocyte proliferation (Braeuning et al., 

2011; Saito et al., 2013). PB is not a preferred substrate for CYP2B (Pacifici, 2016), although the 

clearance of another barbiturate, pentobarbital, in mice appeared to involve enzymes encoded by 

the Cyp2a(4/5)bgs gene cluster (Wei et al., 2013). It is unclear whether the loss of the Cyp2abgs 

genes would cause a change in PB metabolism, but there has been no report demonstrating a role 

for PB metabolites in stimulating hepatocyte proliferation. 

In summary, we confirmed that PB induces hepatic Cyp2b10 expression and hepatocyte 

proliferation to greater extents in male mice than in female mice. In male mice, CYP2B plays a 

significant, but partial, role in PB-induced hepatocyte proliferation.  
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Legends to Figures 

Figure 1.  Effects of PB on hepatic CYP2A5, CYP2B10, CYP2C29, and CYP3A11 mRNA 

expression. Male and female WT and Cyp2a(4/5)bgs-null mice (2-3-month old) were treated 

with PB (50 mg/kg/day, i.p.) or saline, once daily for five consecutive days. Livers from 

individual mice were obtained 24 h after the last dose, for RNA isolation and PCR analysis. Data 

represent means ± S.D. (n=3-4), and were normalized by the levels of GAPDH. *, p < 0.05; **, p 

< 0.01 (2-way ANOVA with Bonferroni posttest). 

 

Figure 2.  Effects of PB on hepatic hyperplasia. A, immunohistochemical staining of BrdU-

positive cells (brown color; arrow) in paraffin sections of livers from WT and Cyp2a(4/5)bgs-

null mice after five days of treatment with PB or saline, as described in Materials and Methods. 

Typical results are shown. B, relative abundance of BrdU-positive nuclei among nuclei of all 

hepatocytes. The percentage of BrdU-positive nuclei in hepatocytes was compared among 

various groups (male or female, PB or saline, WT or Cyp2a(4/5)bgs-null). Data represent means 

± S.D. (n=3-4). **, p < 0.01 (2-way ANOVA with Bonferroni posttest). 
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TABLE 1 

Effects of PB on hepatic hypertrophy in WT and Cyp2a(4/5)bgs-null mice 

Liver weight and liver-to-bodyweight ratio were determined for 2-3 month old WT and 

Cyp2a(4/5)bgs-null mice after PB or saline treatment. Data represent means ± S.D. (n=3-4).  

Sex Strain Liver weight (g) Liver-to-bodyweight ratio 

Saline PB (PB-Saline)/Saline Saline PB (PB-Saline)/Saline 

Male WT 1.47 ± 0.15 2.54 ± 0.27 a 73% 0.048 ± 0.006 0.069 ± 0.004 a 47% 

 Null 1.25 ± 0.08 1.69 ± 0.25 b,c 35% 0.046 ± 0.004 0.056 ± 0.002 c 22% 

Female WT 1.04 ± 0.22 1.43 ± 0.13 d 38% 0.045 ± 0.005 0.051 ± 0.004 d 13% 

Null 1.13 ± 0.07 1.39 ± 0.08  23% 0.046 ± 0.003 0.049 ± 0.003  6.5% 

a p < 0.01, compared to corresponding saline group (2-way ANOVA with Sidak's multiple 

comparisons posttest). 

b p < 0.05, compared to corresponding saline group.  

c p < 0.01, compared to corresponding WT group.  

d p < 0.01, compared to corresponding male group. 
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