Synthetic Analogs of Curcumin Modulate the Function of Multidrug Resistance-Linked ABC transporter ABCG2

Megumi Murakami, Shinobu Ohnuma, Michihiro Fukuda, Eduardo E. Chufan, Katsuyoshi Kudoh, Keigo Kanehara, Norihiko Sugisawa, Masaharu Ishida, Takeshi Naitoh, Hiroyuki Shibata, Yoshiharu Iwabuchi, Suresh V. Ambudkar and Michiaki Unno

Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, JAPAN (M.M, S.O, K.K, K.K, N.S, M.I, T.N, M.U)

Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, JAPAN (M.F, Y.I)

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (E.E.C, S.V.A)

Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, JAPAN (H.S)
Running Title: Synthetic Curcumin Analogs Modulate the Function of ABCG2

Corresponding author: Shinobu Ohnuma, Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
Tel: +81-22-717-7205; Fax: +81-22-717-7209
E-mail: sohnuma@surg1.med.tohoku.ac.jp

Text page: 31 pages (including Abstract, Introduction, Materials and Methods, Results, Discussion, Acknowledgments, Authorship Contributions, and References)

Tables: 4

Figures: 9

References: 39

Abstract: 240 words

Introduction: 522 words

Materials and Methods: 943 words
Results: 1188 words

Discussion: 1359 words

Reference: 1182 words

Abbreviations used are: ABC, ATP binding cassette; MDR, Multidrug resistance; ABCB1, ATP binding cassette subfamily B member 1; ABCC1, ATP binding cassette subfamily C member 1; ABCG2, ATP binding cassette subfamily G member 2; IAAP, Iodoarylazidoprazosin; BCRP, Breast cancer resistance protein; MRP1, Multidrug resistance-associated protein 1; TP-53, Tumor protein p53; DR5, Death receptor 5; RPMI, Roswell Park Memorial Institute: IMDM, Iscove's Modified Dulbecco's Medium; FBS, Fetal bovine serum; PBS, Phosphate buffered saline; RT, Reverse Transcription; qPCR, Quantitative Polymerase Chain Reaction; PE, Phycoerythrin; DTT, Dithiothreitol; NF-kB, Nuclear factor-kappa B; SDS, Sodium dodecyl sulfate; UV, Ultraviolet; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; IC_{50}, 50% inhibitory concentration.
Abstract:

Multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) transporters in cancer cells is a major obstacle in cancer chemotherapy. Previous studies have shown that curcumin, a natural product and a dietary constituent of turmeric, inhibits the function of MDR-related ABC transporters, including ABCB1, ABCC1, and especially ABCG2. However, the limited bioavailability of curcumin prevents its use for modulation of the function of these transporters in the clinical setting. In this study, we investigated the effects of twenty-four synthetic curcumin analogs with increased bioavailability on the transport function of ABCG2. The screening of the 24 synthetic analogs by means of flow cytometry revealed that four of the curcumin analogs, namely, GO-Y030, GO-Y078, GO-Y168, and GO-Y172, significantly inhibited the efflux of the ABCG2 substrates, mitoxantrone and pheophorbide A, from ABCG2-overexpressing K562/BCRP cells. Biochemical analyses showed that GO-Y030, GO-Y078, and GO-Y172 stimulated the ATPase activity of ABCG2 at nanomolar concentrations and inhibited the photolabeling of ABCG2 with iodoarylazidoprazosin, suggesting that these analogs interact with the substrate-binding sites of ABCG2. In addition, when used in cytotoxicity assays, GO-Y030 and GO-Y078 were found to improve the sensitivity of the anti-cancer drug, SN-38, in K562/BCRP cells. Taken together, these results suggest that
non-toxic synthetic curcumin analogs with increased bioavailability, especially GO-Y030 and GO-Y078, inhibit the function of ABCG2 by directly interacting at the substrate-binding site. These synthetic curcumin analogs could therefore be developed as potent modulators to overcome ABCG2-mediated MDR in cancer cells.
Introduction:

Chemotherapy is one of the effective treatments for cancer patients. However, the patients often develop simultaneous resistance to many functionally and structurally unrelated anticancer drugs, a phenomenon known as multidrug resistance (MDR). Overexpression of ATP binding cassette (ABC) transporters in cancer cells is one of leading cause of MDR (Gottesman, 2002). ABC transporters, such as ABCB1 (P-glycoprotein; P-gp), ABCG2 (breast cancer resistance protein; BCRP) and ABCC1 (MRP1) often overexpress in cell membranes of cancer cells, and efflux the anticancer drugs from the intercellular to the extracellular (Ueda, 2011). Several compounds have been studied for their inhibitory effect on ABC transporters. For examples, verapamil and cyclosporine A were effective for inhibiting the function of ABCB1 in vitro (Hamada, 1988; Goldberg, 1988). However, because of toxic dose of these compounds required for inhibition of ABCB1, they led to severe side effects in vivo and made clinical application impossible. There have been no inhibitors for ABC transporters that are suitable for clinical application.

Recently, natural products, less toxic to animals, have been focused on the development of the inhibitor (Pitchakam, 2012; Chanmahasathien, 2011). Curcumin is a natural product and a dietary constituent of turmeric. (Ammon, 1991). It is a well-studied phytochemical that has the potential to suppress the
growth of many cancer cell lines (Sa, 2008; Lu, 2013). It has been shown that curcumin and its metabolites or constituents reverse the drug resistance in cells expressed by ABCB1, ABCC1 and especially ABCG2 (Anuchapreeda, 2002; Chearwae, 2004; Chearwae, 2006a; Chearwae, 2006b). However, the characteristics of curcumin, which include hydrophobicity, low absorption and rapid metabolism, caused limitations in clinical application (Goel, 2008; Garcea 2005; Sharma, 2004).

Ohori et al. synthesized new curcumin analogs to increase the growth-suppressive ability of cancer cells while keeping their low toxicity (Ohori, 2006). More than 2000 species from their synthetic organic compound library were screened to find the compound which could suppress the growth of colon cancer cell line, DLD-1. Among them, GO-Y035, an analog of curcumin, showed a stronger growth inhibition of DLD-1. Then, more than 50 curcumin analogs were synthesized by referring to the chemical structure of GO-Y035. Several derivatives showed the higher ability to induce apoptosis in different cancer cells than curcumin. These derivatives also decreased the expression of oncoproteins, such as β-catenin, Ki-ras, cyclin D1, and ErbB-2. An analog named GO-Y030 prevented the adenoma formation in the familial adenomatous polyposis (FAP) mouse model without any apparent toxicity (Shibata, 2009). Furthermore, GO-Y030 and another analog named GO-Y078, which has higher solubility than
curcumin, up-regulated apoptosis related protein such as TP-53 and DR5 (Kudo, 2011). Therefore, curcumin analogs have more potent anti-cancer effect than curcumin. However, the role of curcumin analogs in the function of the MDR-related ABC transporter is largely unknown.

In this research, we studied the effect of curcumin analogs on ABCG2, because its transporter function was inhibited mostly by curcumin in the previous report (Limtrakul, 2007). We screened 24 curcumin analogs by transport assay and detected 4 curcumin analogs as potent inhibitors of ABCG2, then these 4 curcumin analogs were biochemically analyzed. These results suggested that non-toxic synthetic curcumin analogs might be useful to reverse ABCG2-mediated MDR.

Materials and methods

Chemicals

RPMI 1640, IMDM medium, fetal bovine serum (FBS), penicillin-streptomycin, curcumin, mitoxantrone and pheophorbide A were purchased from Sigma-Aldrich (St. Louis, MO). Ko143 was purchased from Tocris bioscience (Bristol, UK). SN-38 was purchased from Wako (Tokyo, Japan). Curcumin analogs (GO-Y030, GO-Y078 and other 22 analogs), synthesized as described previously (Ohori, 2006; Kohyama, 2015), were a
A generous gift from Dr. Shibata H (Akita University, Japan) and Iwabuchi Y (Tohoku University, Japan). Phosphate-buffered saline (PBS) and PE-conjugated anti-human 5D3 antibody were procured by Thermo Fisher Science (Waltham, MA). BXP-21 monoclonal ABCG2 antibody was procured from Kamiya Biomedical Co. (Seattle, WA). The MTS viability kit was purchased from Promega (Madison, WI). [125I]-iodoarylazidoprazosin (IAAP, 2,200 Ci/mmol) was obtained from Perkin-Elmer Life Science (Wellesley, MA).

Cell lines

K562 human myelogenous leukemia cells and K562/BCRP, which were overexpressed ABCG2 by transduction of ABCG2 into K562 cells with a retrovirus (Yanase, 2004), were cultured in RPMI 1640 supplemented with 10% FBS and 5% penicillin-streptomycin at 37°C in 5% CO₂. K562/MDR, which overexpress ABCB1, was used for comparison of ABCG2 expression. These cell lines were provided by Dr. Sugimoto Y and Katayama K (Keio University, Japan).

RT-qPCR and Western blotting

The expression of mRNA and protein of ABCB1 or ABCG2 on K562, K562/MDR and K562/BCRP cell lines were determined by RT-qPCR and
Western blotting. The isolation of RNA from K562 or K562/BCRP was performed by RNeasy Mini Kit, purchased from Qiagen (Hilden, Germany). RT-qPCR and western blotting were performed as described previously (Kobayashi, 2016). BXP-21 monoclonal antibody was used at 1:2000 and secondary anti-mouse antibody was used at 1:10000 dilution for Western blotting.

Cell surface expression of ABCG2

The cell surface expression of ABCG2 on K562/BCRP cells was confirmed by flow cytometry. K562 and K562/BCRP cells were incubated with PE-conjugated 5D3 antibody in IMDM medium for 45 min at 37°C. The cells were washed with ice-cold IMDM with 5% FBS and resuspended in PBS. The mean fluorescence intensity was calculated by BD FACS Verse and BD Suite software (Franklin rakes, NJ).

Fluorescent drug accumulation assay by flow cytometry

The effect of curcumin analogs on the cellular accumulation of mitoxantrone or pheophorbide A was determined by flow cytometry. K562 and K562/BCRP cells were incubated with mitoxantrone (5 μmol/L) for 45 min or pheophorbide A (5 μmol/L) for 30 min at 37°C in IMDM with 5% FBS in the presence or absence of curcumin analogs. Ko143 (10 μmol/L) was used as an
inhibitor of ABCG2. The cells were washed with ice-cold PBS and resuspended in PBS. The samples were analyzed with mean fluorescence on BD FACS Verse or BD FACS Canto II with BD FACS Diva software (Franklin rakes, NJ). The fluorescence of mitoxantrone or pheophorbide A was measured by a 700nm band-pass filter. The IC$_{50}$ values were calculated using GraphPad Prism 7 (Graphpad software Inc., La Jolla, CA).

ABCG2 expression of K562/BCRP cells pretreated with curcumin analogs

The effect of curcumin analogs on ABCG2 protein expression in K562/BCRP was determined. K562/BCRP cells were cultured in 1 µM curcumin or curcumin analogs for 3 days. The cells were washed with PBS and the protein level of ABCG2 was determined by Western blotting as described above. The expression of ABCG2 was estimated by ImageQwant (Molecular Dynamics, Sunnyvale, CA).

ATPase assay

The ABCG2-mediated ATP hydrolysis activity was determined by ATPase assay. Total membrane of ABCG2 expressing High Five insect cells, which were infected recombinant baculovirus carrying the human ABCG2 cDNA, were used for ATPase assay as described previously (Shukla, 2007). ABCG2
expressing membrane protein (6 µg/tube) was incubated with varying concentrations of curcumin and curcumin analogs with or without sodium orthovanadate (Vi) in ATPase buffer. The reaction was started with 5 mmol/L ATP and incubated for 20 min at 37°C. Sodium dodecyl sulfate solution (5%, 0.1 mL/tube) was added to stop the reaction, and the amount of inorganic phosphate released was quantified by colorimetric method as described previously (Ambudkar, 1998).

Photolabeling of ABCG2 with [125I]-iodoarylazidoprazosin

The interaction of curcumin analogs with substrate-binding site of ABCG2 was determined using the [125I]-iodoarylazidoprazosin (IAAP) photolabeling assay. Membranes of MCF7-FLV cells that overexpress ABCG2 were incubated with 10 µM curcumin or curcumin analogs for 10 min at 37°C, then added 3 nmol/L [125I]IAAP (2,200 Ci/mmol) and irradiated with a 365nm UV light in ice cold water for 10 min. An immunoprecipitation protocol was performed to ensure the reaction was specific for ABCG2 by adding BXP-21 antibody (Chearwae, 2006a). The samples were processed and the photoaffinity labeling of [125I]IAAP with ABCG2 was estimated as described previously (Sauna, 2004).

Cytotoxicity assay
The effect of curcumin analogs on anticancer drug cytotoxicity in K562 and K562/BCRP cells was determined by MTS assay. Briefly, 5×10^5 cells were seeded into 96 wells and cultured overnight. Various concentrations of SN-38 either with or without 1µmol/L curcumin analogs were added and incubated for 120 hours. After incubation, 20 µl MTS solution was added into each well and incubated for 4 h. Absorbance was measured by using a Multiskan FC plate reader (Thermo Fisher Scientific, Waltham, MA) at 490 nm. The percentage of cell survival was calculated as follows: $(\text{mean absorbance in test well} - \text{mean absorbance in blank well}) / (\text{mean absorbance in control well} - \text{mean absorbance in blank well}) \times 100$. The IC$_{50}$ values were calculated by GraphPad Prism 7.

Statistical analysis

Data are the mean ± standard deviation from at least three independent experiments. Differences between the means were analyzed by Student's t test and Wilcoxon matched-pairs signed rank test. Results were considered to be statistically significant when $P < 0.05$. Statistical analyses were performed using the JMP version 12.2 statistical software package (SAS International INC., Cary, NC) and GraphPad Prism 7.
Results

K562/BCRP cell overexpress only ABCG2 transporter

We confirmed ABCG2 expression in K562/BCRP cell line. As shown in Figure 1A and 1B, ABCG2 mRNA was overexpressed in K562/BCRP cells, however, ABCB1 mRNA was not detected in K562/BCRP cells (Figure 1A, 1B). Neither ABCB1 nor ABCG2 mRNA were detected in K562 cells (Figure 1A, 1B). Consistent with the mRNA levels, the ABCG2 protein was also overexpressed in K562/BCRP cell line (Figure 1C). The expression of ABCG2 protein at the cell surface was determined by incubating with 5D3 anti-ABCG2 monoclonal antibody and detected by flow cytometry. K562/BCRP cells incubated with 5D3 ABCG2 antibody showed high fluorescence intensity compared to those with control parental K562 cells, suggesting that ABCG2 protein was overexpressed at the cell surface of K562/BCRP cells (Figure 1D).

Screening for 24 analogs of curcumin on transport function of ABCG2

The screening for 24 synthetic analogs (Figure 2) of curcumin by drug accumulation assay with flow cytometry was undertaken to determine their inhibitory effect for ABCG2-mediated function. Flow cytometry using fluorescent transport substrates of ABCG2 has been extensively used to measure transport function (Yanase, 2004). Cells overexpressing ABCG2 accumulate less
fluorescent substrate, such as the typically used mitoxantrone, than parental cells not expressing ABCG2. Treatment of ABCG2 overexpressing cells with modulators that interact with ABCG2 decreases the efflux of the transport substrate and increases accumulation of the fluorescent substrates to levels seen in the parental cells. Figure 3B clearly shows that ABCG2 expressing K562/BCRP cells accumulate lower levels of mitoxantrone than the parental K562 cells shown in Figure 3A (Figure 3A, 3B). Treatment of the K562/BCRP cells with the ABCG2 modulator Ko143 increases mitoxantrone fluorescence levels comparable to those observed in K562 cells (Figure 3A, 3B; Figure 4A). When K562/BCRP cells were incubated with curcumin analog GO-Y030, the fluorescence intensity of mitoxantrone in K562/BCRP significantly increased in a dose-dependent manner (Figure. 3B; Figure 4A). The increase in the fluorescence signal with 20 µM of GO-Y030 was equivalent to that observed in the presence of 10 µM of Ko143. On the other hand, 1 - 20 µM of GO-Y030 does not affect the fluorescence intensity of mitoxantrone in K562 (Figure 3A). It is suggested that ABCG2-mediated efflux of mitoxantrone was blocked by GO-Y030. Furthermore, GO-Y078, GO-Y168 and GO-Y172 also showed an inhibitory effect on ABCG2-expressing K562/BCRP (Figure 3B, 3D, 3F, 3H; Figure 4B, 4C, 4D).

We calculated the inhibitory activity by dividing the mean fluorescence
intensity in the presence of 10 μM curcumin analogs by that in the presence of 10 μM Ko143, respectively, and summarized the data of inhibitory activity for 24 compounds in Table 1 (Table 1). Out of 24 curcumin analogs, eight analogs (GO-Y139, GO-Y144, GO-Y146, GO-Y148, GO-Y149, GO-Y151, GO-Y157, and GO-Y171) showed lower inhibitory activity (0 – 15.2%). Twelve analogs (GO-Y022, GO-Y135, GO-Y150, GO-Y152, GO-Y153, GO-Y156, GO-Y160, GO-Y161, GO-Y162, GO-Y163, GO-Y167, and GO-Y174) showed partial inhibitory activity (26.6 – 73.8%). Four curcumin analogs, GO-Y030, GO-Y078, GO-Y168 and GO-Y172, and curcumin showed significant inhibitory activity (77.4 – 99.5%) (Table 1). Then the 50% inhibitory concentration (IC₅₀) values for the curcumin analogs that showed significant inhibitory activity were calculated. IC₅₀ values for GO-Y030, GO-Y078, GO-Y168, and GO-Y172 were 0.51 ± 0.12 μM, 0.31 ± 0.09 μM, 0.25 ± 0.15 μM, 0.37 ± 0.17 μM, respectively (Table 2). These values were higher than that of Ko143 (0.19 ± 0.11 μM), however, were lower than that for the curcumin (0.62 ± 0.15 μM) (Table 2). Furthermore, we checked the inhibitory effect of curcumin analogs with another ABCG2 specific fluorescent substrate, pheophorbide A in accumulation assay (Robey, 2004). GO-Y030, GO-Y078, GO-Y168, and GO-Y172 increased the fluorescence intensities of pheophorbide A with 1.6-fold, 1.9-fold, 1.6-fold, and 1.6-fold as compared to each control, respectively (Figure 5C, 5D, 5E, 5F). These values
are almost comparable to that of Ko143 (1.6-fold stimulation) (Figure 5A).

ABCG2 expression in K562/BCRP cells is not affected by the exposure to curcumin analogs

To see the effect of curcumin analogs on ABCG2 protein expression in K562/BCRP, Western blotting was carried out. As shown in Figure 6, 72 hours exposure of cells to 1µM curcumin, GO-Y030, GO-Y078, GO-Y168 and GO-Y172 did not change the expression of ABCG2 protein in K562/BCRP cells (Figure 6A, 6B).

Because these four curcumin analogs were considered to be potent modulators of ABCG2 function, following biochemical assays were carried out.

Modulation of ABCG2-mediated ATP hydrolysis by curcumin analogs

The substrate-stimulated ATP hydrolysis of ABCG2 by curcumin analogs was determined in the crude membranes of ABCG2 expressing High-Five insect cells. As shown in Figure 7A, curcumin stimulated ATPase activity of ABCG2; the concentration required for 50% stimulation (EC_{50}) value was 14 ± 0.002 nM (Figure 7A; Table 3). Three curcumin analogs, GO-Y030, GO-Y078 and GO-Y172, also stimulated ATP hydrolysis of ABCG2 in a concentration dependent manner up to 2-fold of the basal activity at nanomolar
concentrations, the EC$_{50}$ value was 480 ± 0.06 nM for GO-Y030, 790 ± 0.10 nM for GO-Y078, and 930 ± 0.12 nM for GO-Y172, respectively (Figure 7B, 7C, 7D; Table 3). Interestingly, GO-Y168 inhibited ATPase activity at lower (0.25 - 0.5 µM) concentrations and stimulated at higher concentrations (1 - 10 µM); the EC$_{50}$ value was 3070 ± 1.02 nM (Figure 7E; Table 3). These results suggest that GO-Y030, GO-Y078, GO-Y168, and GO-Y172 have high affinity with the substrate-binding site of ABCG2.

Effect of curcumin analogs on photoaffinity labeling of ABCG2 with [{$_{125}$}I]IAAP

To determine the interaction of curcumin analogs with the substrate-binding site of ABCG2, we monitored the effect of curcumin analogs on the photolabeling of ABCG2 with [{$_{125}$}I]IAAP. The photoaffinity analog of prazosin, [{$_{125}$}I]IAAP is a transport substrate which binds to the substrate-binding site of ABCG2. It has been used extensively to study interactions at the substrate-binding sites. Drug substrates of ABCG2 inhibit the photo-cross-linking of [{$_{125}$}I]IAAP. Figure 8 clearly shows that each of the curcumin analogs, GO-Y030, GO-Y078, GO-Y168, and GO-Y172 at 10 µM inhibited photolabeling of ABCG2 with [{$_{125}$}I]IAAP similar to curcumin (Figure 8). These data demonstrated that these curcumin analogs interact directly with the substrate-binding site of ABCG2.
Effect of GO-Y030 and 078 on Cytotoxicity of SN-38 in K562/BCRP cells

To confirm the effect of curcumin analogs on sensitivity of ABCG2-expressing cells to SN-38, which is an ABCG2 substrate and an active metabolite of irinotecan, the cytotoxic assays were carried out. IC\textsubscript{50} for SN-38 in ABCG2-expressing K562/BCRP cell was 10-fold higher (IC\textsubscript{50} = 99.89 ± 0.11 \(\mu \)M) than that in K562 which has no ABCG2 (IC\textsubscript{50} = 9.92 ± 0.18 \(\mu \)M) (Figure 9; Table 4). However, 1 \(\mu \)M of GO-Y030 increased cytotoxicity of SN-38 in K562/BCRP cells with IC\textsubscript{50} value 10.03 ± 4.12 \(\mu \)M (Figure 9B; Table 4). Furthermore, 1 \(\mu \)M of GO-Y078 also increased cytotoxicity of SN-38 in K562/BCRP cells with IC\textsubscript{50} value 11.71 ± 4.14 \(\mu \)M (Figure 9D; Table 4). These IC\textsubscript{50} values were approximately equal to those potentiated by 10 \(\mu \)M Ko143 (Figure 9B, 9D; Table 4). However, the enhancement of cytotoxicity of SN-38 by GO-Y030 and GO-Y078 was not observed in K562 cells without expression of ABCG2 (Figure 9A, 9C). There were no effects of GO-Y168 and GO-Y172 on cytotoxicity of SN-38 in K562/BCRP cells (data not shown).

Discussion:

Previous studies have indicated that curcumin, a natural product and a dietary constituent of turmeric, inhibits the function of multidrug resistance
(MDR)-linked ABC drug transporters, such as ABCB1, ABCC1, and ABCG2 (Limtrakul, 2007; Anand, 2007). However, the limited bioavailability of curcumin prevents its use as a modulator of the function of these transporters in a clinical setting (Garcea, 2005; Sharma, 2004). Numerous approaches have been developed to address the low bioavailability of curcumin, such as the use of adjuvants like piperine (Shoba, 1998); and the synthesis of liposomal curcumin (Li, 2005), curcumin nanoparticles (Bisht, 2007), and curcumin phospholipid complex (Marczylo, 2007). Furthermore, the development of structural analogs of curcumin is considered to be one of the most effective approaches. These synthetic curcumin analogs were developed in our institute and have been shown to exhibit greater bioavailability and anti-cancer effects than natural curcumin (Ohori, 2006). However, it remains unknown whether these synthetic analogs modulate the function of MDR-related ABC transporters.

The screening of 24 curcumin analogs on ABCG2-expressing K562/BCRP cells using flow cytometry revealed that four of the analogs, GO-Y030, GO-Y078, GO-Y168, and GO-Y172, were able to block the efflux of the ABCG2 substrate, mitoxantrone. As shown in Figure 3, GO-Y030, GO-Y078, GO-Y168, and GO-Y172 significantly inhibited the efflux of mitoxantrone in K562/BCRP cells, which have higher expression of ABCG2 and no expression of ABCB1 (Figure 1A, 1B and 3). The IC$_{50}$ values of these four analogs were
almost equivalent to that of Ko143, which is a well-known inhibitor of ABCG2 (Table 2). Furthermore, four curcumin analogs inhibited the efflux of pheophorbide A, which is specifically transported by ABCG2 (Figure 5). In addition, Figure 6 showed that four curcumin analogs had no effect on the expression of ABCG2 protein in K562/BCRP cells (Figure 6). Thus, these results suggest that the analogs, GO-Y030, GO-Y078, GO-Y168, and GO-Y172 can specifically inhibit ABCG2-mediated transport function without any alteration of expression of this transporter.

Subsequently, we carried out a biochemical investigation of how these analogs were able to modulate the ABCG2 function. The photolabeling of ABCG2 with $[^{125}\text{I}]$IAAP was undertaken to determine the interaction of the curcumin analogs with the substrate-binding site. IAAP is a substrate of ABCG2, and it has been used extensively to study interactions at the substrate-binding sites of ABCG2. As shown in Figure 8, GO-Y030, GO-Y078, GO-Y168, and GO-Y172 significantly inhibited the photolabeling of ABCG2 with $[^{125}\text{I}]$IAAP, indicating that these curcumin analogs interact directly with the substrate-binding site of ABCG2. To verify further the interaction of the analogs with ABCG2, an ATPase assay was employed. This is another useful assay for studying the interaction of transport substrates with ABCG2, since ATP hydrolysis is coupled with the transport function of this transporter (Gallus, 2014;
Glavinas, 2007). The analogs were found to stimulate ATP hydrolysis in a dose-dependent manner. The above finding also implies that these analogs interact with the substrate-binding site of ABCG2. Interestingly, GO-Y168 inhibited ATP hydrolysis at a lower concentration (0.25 – 0.5 µM) and stimulated it at a higher concentration (1 – 10 µM) (Figure 7E). To find out the role of the halogen atom of GO-Y168, ATPase assays were carried out using other curcumin analogs with a similar structure to GO-Y168. In these assays, the halogen atom chlorine (Cl) was replaced with CN (GO-Y160), F2 (GO-Y161), Cl2 (GO-Y162), and Br2 (GO-Y163), respectively. However, these analogs had no effect on ATP hydrolysis (data not shown). The reason why GO-Y168 showed inhibition of ATP hydrolysis at its lower concentration is unknown. It is assumed that the transporter contains two distinct binding sites for substrates. Therefore, GO-Y168 might bind to different substrate-binding sites of ABCG2 depending on its concentration. It is plausible that GO-Y168 at lower concentrations may interact with one substrate-binding site, which inhibits ATP hydrolysis; conversely, GO-Y168 at higher concentrations may bind to the other substrate-binding site, which stimulates ATP hydrolysis (Gallus, 2014; McDevitt, 2008).

We also examined the drug resistance-reversing effects of GO-Y030, GO-Y078, GO-Y168, and GO-Y172 on the cytotoxicity of SN-38 in K562 and
K562/BCRP cells. Of the above analogs, GO-Y030 and GO-Y078 successfully improved the cytotoxic effect of SN-38 on the K562/BCRP cell lines. However, neither showed any cytotoxic effect on the K562 cells (Figure 9). Therefore, GO-Y030 and GO-Y078 are considered to be effective reversal agents of ABCG2. However, it is not clear why GO-Y168 and GO-Y172 have no improvement of SN-38 sensitivity to K562/BCRP cells, whereas GO-Y168 and GO-Y172 do inhibit IAAP photolabeling and block the efflux of mitoxantrone. As the maximum ATPase activities of GO-Y168 and GO-Y172 were lower than GO-Y030 and GO-Y078 (Figure 7), and EC50 values of GO-Y168 and GO-Y172 were higher than GO-Y030 and GO-Y078 (Table 3), therefore, the effect of GO-Y168 and GO-Y172 might not be statistically significant.

It has been reported that GO-Y030 and GO-Y078 have shown cytotoxic effect on colon cancer cells. Of these two, GO-Y078 inhibits NF-κB transactivation, as well as the expression of the anti-apoptotic proteins, TP53 and DR5, more effectively than curcumin. In addition, GO-Y078 in vivo showed a 1.4-fold improvement in survival that was not matched by curcumin (Kudo, 2011). Therefore, the use of these analogs may possibly produce a synergistic anti-cancer effect by inducing the apoptosis of cancer cells and by reversing multi-drug resistance with chemotherapeutic drugs. Furthermore, the solubility of GO-Y078 was two times higher than that of curcumin (Kudo, 2011). Thus,
GO-Y078 may have a higher level of bioavailability than curcumin and could be used in clinical practice.

We also screened the curcumin analogs to identify the inhibitor for ABCB1 using flow cytometry. Although the inhibitory effect on ABCB1 by the analogs was modest, GO-Y030 and GO-Y078 showed the partial inhibition of the ABCB1-linked transporter function (data not shown). Therefore, GO-Y030 and GO-Y078 may have a joint role as a dual inhibitor of both ABCB1 and ABCG2. Recently, dual inhibitors were developed by screening based on the ABCB1 and ABCG2 docking model (Zhang, 2016) and on the substrate common to both ABCB1 and ABCG2 (Bohn, 2017). It is also feasible that GO-Y030 and GO-Y078 could be used as dual inhibitors for both ABCB1 and ABCG2-expressing cancer cells.

Revalde JL et al. screened for ABCG2 inhibitors with curcumin analogs (Revalde, 2015) which properties were heterocyclic cyclohexanone monocarboxyl analogs of curcumin. Their results indicated that the most effective analogs have cyclic ketone cores in place of the β-diketone found in the structure of curcumin. However, our analogs (Kohyama, 2015) are distinct from those analogs in terms of the terminal aromatic substituents and the structure of the central C5 linker moiety (acyclic vs cyclic). The structure-activity-relationship...
information obtained from a panel of 24 compounds provided several useful insights into the structure and functions of ABCG2 protein (Figure 2). The facts (i) four compounds, GO-Y030, GO-Y078, GO-Y168, and GO-Y172, exhibiting significant inhibitory activity against ABCG2 share bis(arylmethylidene)acetone-type cross-conjugated dienone motif with 3,5-dialkoxy substituents on the aromatic peripherals, (ii) down-sizing of the aromatic substituents, as found in GO-Y022 and GO-Y156, and a cyclic linker, as found in GO-Y152 and GO-Y167, led attenuation of the inhibitory activity, (iii) the half-sized derivatives (GO-Y148, GO-Y149, GO-Y150, GO-Y151, GO-Y157, GO-Y171) failed to inhibit ABCG2 activity, indicated that molecules with a suitable size with moderate conformational flexibility would well find the drug-binding pocket of ABCG2 to interrupt its function.

C5-curcuminoids, as exemplified by GO-Y030, are shown to function as a Michael acceptor with dual active sites (Kohyama, 2016). In light of structural features of four compounds, GO-Y030, GO-Y078, GO-Y168, and GO-Y172, exhibiting significant inhibitory activity against ABCG2, may have covalent interaction(s) with nucleophilic residues (cysteine, histidine, etc) around the binding-site of \(^{125}\text{I}]\text{IAAP. Elucidation of the binding mode of }^{125}\text{I}]\text{IAAP and ABCG2 will be useful to shed light on the mechanism of inhibitory activity and design of superior inhibitors.}
In conclusion, this study indicates that the synthetic curcumin analogs, GO-Y030, GO-Y078, GO-Y168, and GO-Y172, can inhibit the ABCG2-mediated drug-transport function by directly interacting with the substrate-binding sites of ABCG2. Although further investigation with in vivo experiments are necessary to develop these analogs as ABCG2 inhibitor, this study suggests that curcumin analogs, especially GO-Y030 and GO-Y078 could be developed as potent modulators to address the ABCG2-mediated drug resistance of cancer cells.

Acknowledgments:
We thank Dr. Katayama K for providing K562 and K562/BCRP cells; Ms. Shibuya E for general technical assistance; and the member of Department of Surgery, Tohoku University Graduate School of Medicine.

Authorship Contributions:
Participated in research design: Ohnuma, Naitoh, Unno and Ambudkar.
Conducted experiments: Murakami, Ohnuma, Kudoh, Ishida, and Chufan
Contributed new reagents or analytic tools: Ohnuma, Fukuda, Shibata and Iwabuchi.
Performed data analysis: Murakami, Ohnuma, Sugisawa, Kanehara, Fukuda, Iwabuchi and Ambudkar

Wrote or contributed to the writing of the manuscript: Murakami, Ohnuma, Fukuda, Iwabuchi and Ambudkar
References:

28

Wnt-beta-catenin signaling regulates ABCC3 (MRP3) transporter

Kohyama A, Fukuda M, Sugiyama S, Yamakoshi H, Kanoh N, Ishioka C,
Shibata H, and Iwabuchi Y (2016) Reversibility of the thia-Michael
reaction of cytotoxic C5-curcuminoid and structure-activity relationship of

Kohyama A, Yamakoshi H, Hongo S, Kanoh N, Shibata H, and Iwabuchi Y

Kudo C, Yamakoshi H, Sato A, Nanjo H, Ohori H, Ishioka C, Iwabuchi Y, and
Shibata H (2011) Synthesis of 86 species of
1,5-diaryl-3-oxo-1,4-pentadienes analogs of curcumin can yield a good

Li L, Braiteh FS, and Kurzrock R (2005) Liposome-encapsulated curcumin: in
vitro and in vivo effects on proliferation, apoptosis, signaling, and

Modulation of function of three ABC drug transporters, P-glycoprotein
(ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug
resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem 296:85-95.

DMD # 76000

Footnotes:

This work was supported by grant-in-aid for scientific research from Japan Society for the Promotion of Science [Grant number: JP 25861149]. E.E.C and S.V.A were supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.
Figure legends:

Figure 1. ABCG2 expression of K562 and K562/BCRP cell lines

(A, B) mRNA expression of ABCB1 (A) and ABCG2 (B) in K562, K562/MDR and K562/BCRP cells by RT-qPCR. Columns, mean (n=3); bars, SD.

(C) Western blot analysis for ABCG2 using the anti-ABCG2 antibody BXP-21.

(D) The cell surface expression of ABCG2 in K562/BCRP cells detected by monoclonal antibody 5D3.

Figure 2. The chemical structure of 24 curcumin analogs

Figure 3. Effect of curcumin analogs on mitoxantrone accumulation in K562 and K562/BCRP ABCG2-expressing cells.

K562 cells (A, C, E, G) and K562/BCRP cells (B, D, F, H) were incubated with 5 µM mitoxantrone for 45 min at 37°C in the absence (control) or presence of various concentration of curcumin analogs, GO-Y030 (A, B), GO-Y078 (C, D), GO-Y168 (E, F) and GO-Y172 (G, H). The cells were analyzed by flow cytometry. The histogram depicts fluorescence intensity (X axis) of control, 1, 10 and 20 µM curcumin analogs. The result is from a representative experiment of three independent experiments.
Figure 4. Inhibition of efflux by curcumin analogs

The Relative values of mean fluorescence intensity were compared to control (=1.0) with Ko143 and GO-Y030 (A), GO-Y078 (B), GO-Y168 (C) and GO-Y172 (D) in K562/BCRP cells. Columns, mean (n=3); bars, SD. *p<0.05 Followed by Student’s t test.)

Figure 5. Effect of curcumin analogs on pheophorbide A accumulation in K562/BCRP cells.

K562/BCRP cells were incubated with 5 µM pheophorbide A for 30 min at 37°C in the absence (control) or presence of 10 µM Ko143 (A), 20 µM curcumin (B) and curcumin analogs, GO-Y030 (C), GO-Y078 (D), GO-Y168 (E) and GO-Y172 (F). The cells were analyzed by flow cytometry. The values in parentheses on histogram indicate mean fluorescence intensity.

Figure 6. Effect of curcumin and its analogs on ABCG2 protein expression of K562/BCRP cells.

(A) The immunoblot showed the ABCG2 protein expression on K562/BCRP cells pretreated by incubating with 1 µM curcumin or curcumin analogs for 72 hours. Arrow, position of the ABCG2 band. Curcumin is labeled as Cur.

(B) The ABCG2 protein expression in the absence (control, 100%) or presence
of curcumin and curcumin analogs. Columns, mean (n=3); bars, SD.

Figure 7. Effect of curcumin and its analogs on Vanadate-sensitive ATPase activity of ABCG2.

Crude membranes from High-Five insect cells expressing ABCG2 were incubated with varying concentrations of curcumin (A), GO-Y030 (B), GO-Y078 (C), GO-Y172 (D), GO-Y168 (E). The assays were carried out in the presence and absence of 0.25 mM vanadate and the ABCG2-specific activity was recorded as the vanadate-sensitive ATPase activity. The result of a typical experiment of at least three independent experiments is shown.

Figure 8. Inhibition of [\(^{125}\)I]IAAP labeling of human ABCG2 by curcumin and its analogs

Crude membrane from MCF-7/FLV cell were incubated with 10µM curcumin and curcumin analogs at 37°C in 50 mM Tris–HCl, pH 7.5, for 10 min. IAAP (3 nM) was added and illuminated with a UV lamp (365 nm) for 10 min on ice cold water. An immunoprecipitation protocol was performed to ensure the reaction was specific for ABCG2 by adding BXP-21 antibody. Following SDS-PAGE on a 7% Tris–acetate gel, gels were dried and exposed on X-ray at -80°C for 8–15h. The radioactivity incorporated into the ABCG2 band was quantified using the
STORM 860 phosphorimager system. (A) The autoradiogram showed incorporation of IAAP into the ABCG2 band in the presence 10 µM curcumin and curcumin analogs. Arrow, position of the ABCG2 band. Curcumin is labeled as Cur. (B) IAAP-labeling of ABCG2 with the absence (control, 100%) or presence curcumin and curcumin analogs. Columns, mean (n=3); bars, SD.

Figure 9. Effect of GO-Y030 and GO-Y078 on the cytotoxicity of SN-38 in K562 (A, C) and K562/ABCG2 (B, D) cell lines.

Cells were incubated in the presence of various concentrations of SN-38 as indicated control (●) or with 1 µM of Curcumin analogs (GO-Y030, GO-Y078, ▲), and 10 µM Ko143 (■). The number of viable cells was determined by MTS assay in triplicate. The result of one typical experiment out of three independent experiments is depicted. Statistical analysis was followed by Wilcoxon matched-pairs signed rank test.
Table 1. Summary of inhibition of transport function of ABCG2 by curcumin and its analogs (% of control)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>%</th>
<th>Compounds</th>
<th>%</th>
<th>Compounds</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO-Y139</td>
<td>1.6±2.6</td>
<td>GO-Y022</td>
<td>51.8</td>
<td>GO-Y030</td>
<td>84.3±3.5</td>
</tr>
<tr>
<td>GO-Y144</td>
<td>0.0±2.4</td>
<td>GO-Y135</td>
<td>26.6±2.7</td>
<td>GO-Y078</td>
<td>82.9±3.4</td>
</tr>
<tr>
<td>GO-Y146</td>
<td>15.2±1.2</td>
<td>GO-Y150</td>
<td>28.2±6.0</td>
<td>GO-Y168</td>
<td>83.2±6.8</td>
</tr>
<tr>
<td>GO-Y148</td>
<td>8.6</td>
<td>GO-Y152</td>
<td>69.8±3.4</td>
<td>GO-Y172</td>
<td>77.4±1.2</td>
</tr>
<tr>
<td>GO-Y149</td>
<td>9.2</td>
<td>GO-Y153</td>
<td>30.5±9.9</td>
<td>Curcumin</td>
<td>99.5±8.23</td>
</tr>
<tr>
<td>GO-Y151</td>
<td>6.1</td>
<td>GO-Y156</td>
<td>56.4±6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO-Y157</td>
<td>0.3</td>
<td>GO-Y160</td>
<td>29.9±1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO-Y171</td>
<td>14.9±1.9</td>
<td>GO-Y161</td>
<td>44.4±3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GO-Y162</td>
<td>51.5±9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GO-Y163</td>
<td>58.7±2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GO-Y167</td>
<td>52.0±15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GO-Y174</td>
<td>37.1±2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The inhibitory activity of transport function of ABCG2 was calculated by dividing the mean fluorescence intensity in the presence of 10 µM curcumin or curcumin analogs by the mean fluorescence intensity in the absence of curcumin or curcumin analogs.
analogs by that in the presence of 10 µM Ko143. The inhibition of transport function by 10 µM Ko143 was considered as 100%.

The values were mean ± SD (n=3) of three independent experiments.
Table 2. The IC$_{50}$ values for inhibition of transport function of ABCG2 by curcumin, Ko143, GO-Y030, 078, 168, and 172

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumin</td>
<td>0.62 ± 0.15</td>
</tr>
<tr>
<td>Ko143</td>
<td>0.19 ± 0.11</td>
</tr>
<tr>
<td>GO-Y030</td>
<td>0.51 ± 0.12</td>
</tr>
<tr>
<td>GO-Y078</td>
<td>0.31 ± 0.09</td>
</tr>
<tr>
<td>GO-Y168</td>
<td>0.25 ± 0.15</td>
</tr>
<tr>
<td>GO-Y172</td>
<td>0.37 ± 0.17</td>
</tr>
</tbody>
</table>

The values are mean ± SD of three independent experiments.

The IC$_{50}$ values (50% inhibitory concentration) were determined using concentrations ranging from 0.05 µM, 0.1 µM, 0.25 µM, 0.5 µM, 1 µM, 5 µM, 10µM to 20 µM of indicated compound, as described in the Materials and Methods.
Table 3. Stimulation of ATP hydrolysis of ABCG2 by curcumin and its analogs

<table>
<thead>
<tr>
<th>Compounds</th>
<th>EC<sub>50</sub> (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcumin</td>
<td>14 ± 0.002</td>
</tr>
<tr>
<td>GO-Y030</td>
<td>480 ± 0.06</td>
</tr>
<tr>
<td>GO-Y078</td>
<td>790 ± 0.10</td>
</tr>
<tr>
<td>GO-Y168*</td>
<td>3070 ± 1.02</td>
</tr>
<tr>
<td>GO-Y172</td>
<td>930 ± 0.12</td>
</tr>
</tbody>
</table>

The values are mean ± SD of three independent experiments.

The ATPase assays were carried out as described in the Methods Section and EC₅₀ (concentration required for 50% stimulation) values were determined.

*Estimated value.
Table 4. Reversal of toxicity of SN-38 in K562/BCRP cells by curcumin analogs

<table>
<thead>
<tr>
<th>SN-38 treatment</th>
<th>IC$_{50}$ (µM)</th>
<th>Fold resistance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>K562</td>
<td>9.92 ± 0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>K562/BCRP</td>
<td>99.89 ± 0.11</td>
<td>10.07</td>
</tr>
<tr>
<td>K562/BCRP + Ko143 10µM</td>
<td>9.89 ± 0.12</td>
<td>1.00</td>
</tr>
<tr>
<td>K562/BCRP + GO-Y030 1µM</td>
<td>10.03 ± 4.12</td>
<td>1.01</td>
</tr>
<tr>
<td>K562/BCRP + GO-Y078 1µM</td>
<td>11.71 ± 4.14</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Cytotoxicity assays were carried out as described in the Methods Section and IC$_{50}$ values were determined. The values are mean ± SE of three independent experiments done in triplicates.

*Fold resistance was determined by dividing the IC$_{50}$ value of SN-38 for K562/BCRP cells with or without reversing agents by that for K562 cells.
Figure 1

A.

Relative mRNA level of ABCB1

B.

Relative mRNA level of ABCG2

C.

K562 K562/BCRP

ABCG2

GAPDH

D.

Fluorescence intensity

Cells
Figure 2
Figure 3

A.

Fluorescence intensity vs. Cells

B.

Fluorescence intensity vs. Cells

C.

Fluorescence intensity vs. Cells

D.

Fluorescence intensity vs. Cells

E.

Fluorescence intensity vs. Cells

F.

Fluorescence intensity vs. Cells

G.

Fluorescence intensity vs. Cells

H.

Fluorescence intensity vs. Cells

- A.
 - Mitoxantrone only - P1
 - Ko143 10uM - P1
 - Ko143 100uM - P1

- B.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- C.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- D.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- E.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- F.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- G.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1

- H.
 - Control
 - Mitoxantrone only - P1
 - Ko143 10uM - P1
Figure 4

A. * P<0.05

B. * P<0.05

C. * P<0.05

D. * P<0.05
Figure 5

A.

B.

C.

D.

E.

F.

Fluorescence intensity

Cells

Control (4144)

Ko143 10µM (6566)

Control (4144)

Curcumin 20µM (9516)

Control (4144)

GO-Y078 20µM (8059)

Control (4144)

GO-Y168 20µM (6623)

Control (4144)

GO-Y172 20µM (6506)
Figure 6

A. ABCG2 and GAPDH expression in control and treated cells.

B. ABCG2 expression as a percentage of control.
Figure 7

A. ATP hydrolysis (%Stimulation) vs. Curcumin (µM)

B. ATP hydrolysis (%Stimulation) vs. GO-Y030 (µM)

C. ATP hydrolysis (%Stimulation) vs. GO-Y078 (µM)

D. ATP hydrolysis (%Stimulation) vs. GO-Y172 (µM)

E. ATP hydrolysis (%Stimulation) vs. GO-Y168 (µM)
A. Control Cur 030 078 168 172

B. * P<0.05

IAAP-labeling (% of control)
Figure 9

A. GO-Y030

Cell survival (%) vs. SN38 Concentration

B. GO-Y030

Cell survival (%) vs. SN38 Concentration

C. GO-Y078

Cell survival (%) vs. SN38 Concentration

D. GO-Y078

Cell survival (%) vs. SN38 Concentration

P = 0.0039

This article has not been copyedited and formatted. The final version may differ from this version.