Mouse Red Blood Cell Mediated Rare Xenobiotic Phosphorylation of a Drug Molecule Not Intended To Be a Kinase Substrate

Chungang Gu*, Shenghua Wen, Peter Doig, Eric Gangl, Xiaolan Zheng, Yanjun Wang, Jeffrey W. Johannes

Oncology DMPK (C.G. & E.G.), Oncology Biosciences (S.W. & Y.W.), Discovery Sciences (P.D.), Oncology Medicinal Chemistry (X.Z. & J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, MA 02451
Running Title: Rare xenobiotic phosphorylation by red blood cells

Corresponding author: Chungang Gu, Ph.D.

Current address:
Biogen
Drug Metabolism and Pharmacokinetics
300 Binney St, Bldg 8.
Cambridge, MA 02142

Current Email: chuck.gu@biogen.com

Number of text pages: 22
Number of tables: 0
Number of schemes: 2
Number of figures: 6
Number of references: 24

Number of words in the Abstract: 214 (Max. limit: 250)
Number of words in the Introduction: 516 (Max. limit: 750)
Number of words in the Discussion: 1260 (Max. limit: 1500)

List of nonstandard abbreviations: LC, liquid chromatography; m-CPBA, m-chloroperoxybenzoic acid; MS, mass spectrometry; MS/MS, tandem mass spectrometry; m/z, mass-to-charge ratio; DPBS, Dulbecco’s phosphate buffered saline; IV, intravenous; PD, pharmacodynamics; PK, pharmacokinetics; RBC, red blood cells (also called erythrocytes); THF, tetrahydrofuran.
Phosphorylation of xenobiotics is rare, probably due to a strong evolutionary pressure against it. This rarity may have attracted more attention recently, owing to intentionally designed kinase-substrate analogs which depend on kinase-catalyzed activation to form phosphorylated active drugs. We report a rare phosphorylated metabolite observed unexpectedly in mouse plasma samples after an oral dose of a Tankyrase inhibitor that was not intended to be a kinase substrate, i.e. (S)-2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-8-(hydroxymethyl)quinazolin-4(3H)-one (AZ2381). The phosphorylated metabolite was not generated in mouse hepatocytes. In vitro experiments showed that the phosphorylation of AZ2381 occurred in mouse whole blood with heparin as anticoagulant but not in mouse plasma. The phosphorylated metabolite was also produced in rat, dog, and human blood, albeit at lower yield than in mouse. Divalent metal ions are required for the phosphorylation since the reaction is inhibited by the metal chelator EDTA. Further investigations with different cellular fractions of mouse blood revealed that the phosphorylation of AZ2381 was mediated by erythrocytes but did not occur with leukocytes. The levels of 18O incorporation into the phosphorylated metabolite when inorganic 18O$_4$-phosphate and γ^{18}O$_4$-ATP were added to the mouse blood incubations separately suggested that the phosphoryl transfer was from inorganic phosphate rather than ATP. It remains unclear which enzyme present in red blood cells is responsible for this rare phosphorylation.
INTRODUCTION

Phosphorylation of xenobiotics is rare, probably due to a strong evolutionary pressure against it (Parkinson et al., 2013). This has been rationalized for a number of reasons (Parkinson, 2001; Parkinson et al., 2013; Mitchell, 2016), such as limiting consumption of ATP in cells by xenobiotics, avoiding interference with intracellular signaling, and the assumption that the phosphorylated metabolites are unlikely to be excreted through the cell membrane if formed in hepatocytes or other cells. The topic of xenobiotic phosphorylation has attracted more attention recently, due to intentionally designed kinase-substrate analogs depending on kinase-catalyzed activation to form phosphorylated active drugs. Examples include a number of antiviral and anticancer drugs that are nucleoside mimetics requiring phosphorylation to activate, as well as the immunomodulatory drug fingolimod (Mitchell, 2016; Kalász et al., 2013). Fingolimod is a structural analog of sphingosine and is phosphorylated by sphingosine kinases to become an agonist of the sphingosine-1-phosphate receptor (David et al., 2012; Zollinger et al., 2011; Billich et al., 2003; Mandala et al., 2002). However, the phosphorylation of fingolimod may still be viewed as an endogenous pathway for the closely-related structural analog of a kinase substrate, rather than as a biotransformation typical for xenobiotics (Zollinger et al. 2011). Recently, Scheible et al. (2017) have reported a novel conjugation metabolite with phosphoethanolamine as a major metabolite of the MEK1/2 inhibitor pimasertib in plasma and feces of cancer patients. They have suggested that the novel conjugation with phosphoethanolamine may be owing to the structural similarity of the propanediol moiety of pimasertib to glycerol, thus leading to lipid metabolism (Scheible et al., 2017). Previously, Zollinger et al. (2008) have described that a phosphocholine conjugate of the immunosuppressant everolimus was the most prominent drug metabolite in human and preclinical animal blood. The phosphocholine conjugation following the hydroxylation of a bicyclo[1.1.1]pentane of hepatitis C NS5B inhibitors has also been observed in rat bile by Zhuo et al. (2106). Both cases of phosphocholine conjugation involve phospholipid synthesis metabolism to xenobiotics that do not appear to have close structural similarity to the endogenous substrates (Zollinger et al, 2008; Zhuo et al. 2016).
A pyrimidinone nicotinamide mimetic compound (S)-2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-8-(hydroxymethyl)quinazolin-4(3H)-one (AZ2381) was identified as an oral lead compound to selectively inhibit the poly-ADP-ribose polymerase catalytic domain of Tankyrases and thus potentially to inhibit the Wnt pathway (Johannes et al., 2015). In other words, AZ2381 was not designed to be a kinase substrate. When the intended administration route was altered from oral to intravenous (IV) during the drug discovery (Johannes et al., 2015), a phosphate prodrug of AZ2381 at the benzyl alcohol (Scheme 1) was made to test IV administration as the poor solubility of AZ2381 meant that it is not suitable for IV. During the studies comparing the IV dosed prodrug with orally dosed AZ2381 in mouse, phosphorylated-AZ2381 was unexpectedly detected in mouse plasma samples collected from the AZ2381 dose groups. This present study has confirmed that indeed a rare xenobiotic phosphorylation metabolite was formed in mouse. Perhaps even more surprisingly, the phosphorylation is found to be mediated by red blood cells and the source of the phosphoryl group appears to be inorganic phosphate.
AZ2381 was synthesized as described by Johannes et al. (2015, compound 15 in the Supporting Information of the reference). Chemical synthesis of Phorphorylated-AZ2381 is described here (see Scheme 2 for the two-step synthetic route).

(S)-Di-tert-butyl(2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-4-oxo-3,4-dihydroquinazolin-8-yl)methyl phosphate (di-tert-butyl-phosphorylated-AZD2381). 1H-Tetrazole (0.45 M in acetonitrile, 8 ml) and di-tert-butyl diethylphosphoramidite (591 mg in 5 ml tetrahydrofuran (THF)) were added to a solution of AZ2381 (180 mg) in 10 ml of THF. The resulting mixture was stirred at room temperature for 50 h. Liquid chromatography-mass spectrometry (LC-MS) indicated the completion of reaction. The reaction mixture was cooled to -78°C, m-chloroperoxybenzoic acid (m-CPBA, 100 mg, 77% in THF, 5 ml) was added to the mixture dropwise. The mixture was stirred at -78°C for 10 min and then the cooling bath was removed. The reaction mixture was checked by LC-UV-MS, which indicated the formation of product and about 22% of intermediate. The mixture was cooled back to -78°C, 40 mg of m-CPBA in 1 ml of THF was added to the mixture. After stirring for 5 min, LC-MS indicated completion of the oxidation. To the resulting mixture was added a solution of saturated NaHCO₃, followed by dilution with ethyl acetate. The layers were separated, the organic layer was dried with anhydrous Na₂SO₄, concentrated, and the residue was purified via normal phase chromatography on silica gel (eluted with 100% dichloromethane to 20% methanol in dichloromethane) to yield the desired product (S)-di-tert-butyl((2-(4-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-4-oxo-3,4-dihydroquinazolin-8-yl)methyl phosphate (250 mg, 98 %). MS: [M+H]⁺ m/z 648.6. ¹H NMR (400 MHz, methanol-d₄): δ ppm 8.67 (s, 1 H) 8.19 - 8.32 (m, 3 H) 8.03 (s, 1 H) 7.97 (dd, J=7.28, 1.00 Hz, 1 H) 7.47 - 7.63 (m, 3 H) 6.89 (s, 1 H) 5.63 (d, J=7.28 Hz, 2 H) 4.33 - 4.36 (m, 2 H) 3.23 - 3.43 (m, 3 H) 3.02 - 3.06 (m, 2 H) 2.81 (s, 3 H) 2.34 (s, 3 H) 1.50 (s, 18 H) 1.40 - 1.41 (d, 3 H).
(S)-(2-(4-(6-(3,4-Dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-4-oxo-3,4-dihydroquinazolin-8-yl)methyl dihydrogen phosphate (Phosphorylated-AZ2381). The di-tert-butyl-phosphorylated-AZD2381 (250 mg, 0.39 mmol) was dissolved into 4 ml of dichloromethane, followed by addition of 4 ml of 4 M HCl in 1,4-dioxane. The mixture was stirred for 10 min. The mixture was concentrated, and the residue was purified by reverse-phase preparative LC (a C18 column eluted with 0% to 30% of 0.1% formic acid in acetonitrile/0.1% formic acid in water) to yield phosphorylated-AZ2381 (100 mg, 45.3%). High resolution MS, [M+H]+ m/z 536.2071 (calculated exact mass 536.2057, mass error 2.6 ppm). 1H NMR (400 MHz, DMSO-d6): δ ppm 1.21 (d, J=5.52 Hz, 3 H) 2.19 (s, 3 H) 2.55 (s, 3H) 2.67 (br s, 2 H) 3.00 (br s, 1 H) 3.15 (br s, 2 H) 4.28 (br s, 2 H) 5.39 (d, J=6.27 Hz, 2 H) 6.84 (s, 1 H) 7.32 - 7.55 (m, 3 H) 7.88 (d, J=7.53 Hz, 1 H) 7.95 (s, 1 H) 8.04 (d, J=7.78 Hz, 1 H) 8.25 (d, J=8.28 Hz, 2 H). 31P NMR (300 MHz, DMSO-d6): δ ppm 0.03.

Chemicals, biochemicals and media. ACK lysing buffer (Gibco™ catalog number A1049201) was bought from Thermo Fisher Scientific (Waltham, MA). ATP disodium salt hydrate (product number A1852), Dulbecco’s phosphate buffered saline (DPBS, without Ca2+ and Mg2+, product number D8537), and RPMI-1640 cell culture medium (product number R8758) were purchased from Sigma-Aldrich (St. Louis, MO). EDTA pH 7.4 solution (0.5M, prepared in 18.2 megOhms water, pH adjusted with sodium hydroxide) were bought from Boston BioProducts (Ashland, MA). Ficoll-Paque™ Plus centrifugation medium was made by GE Healthcare (Chicago, IL). γ-18O4-ATP sodium salt (catalog number OLM-7858, lot number PR-22511), 18O4-phosphoric acid in 18O-water (catalog number OLM-1057), and 18O-water (catalog number OLM-240-97) were obtained from Cambridge Isotope Laboratories (Andover, MA). A18O4-phosphate stock buffer pH 7.4 was prepared in unlabeled water by titrating a 50 mM 18O4-phosphoric acid with a 100 mM potassium hydroxide using a pH meter equipped with a micro pH electrode.
Blood, plasma and cellular fractions. Mouse blank blood (CB17 SCID or Nude) was collected at our laboratory into BD Microtainer® PST™ tubes with lithium heparin (Becton, Dickinson and Company, Franklin Lakes, NJ). The heparinized mouse plasma was separated from the heparinized whole blood by centrifugation. Rat blood (Nude) was also freshly collected at our laboratory into the same heparin coated tube.

Total leukocytes in the mouse blood were collected by lysing red blood cells (RBC, also called erythrocytes) using the following procedures at room temperature unless specified: Pipetted 1 mL heparin-treated whole blood into a tube containing 10-20 mL of ACK lysing buffer. Allowed the mixture to incubate for 3 – 5 minutes. Collected the leukocytes by centrifugation at 300 x g for 5 minutes. Aspirated the supernatant, leaving approximately 50 µL to avoid disturbing the pellet. Gently mixed the cells and the remaining fluid, then added 5 mL cold DPBS. Mix the cells and DPBS, and then collected the cells by centrifugation at 300 x g for 5 minutes at 2-8°C. Aspirated the supernatant and resuspended the leukocytes in RPMI-1640 cell culture medium.

Mouse leukocytes and RBCs were also separated from the whole blood using a “buffy coat” protocol (Human Immunology Portal) — added 1 part DPBS in 1 part fresh whole blood and mixed well, centrifuged the diluted blood at 200 × g at room temperature for 10 min with the brake off, collected the leukocyte thin band (i.e. buffy coat) along with a small portion of the plasma above it and a small portion of RBCs beneath it, and collected the remaining RBCs into another tube. The “buffy coat” band collection was further separated using a Ficoll-Paque protocol (GE Healthcare) to remove the residual RBCs. Mononuclear leukocytes above Ficoll-Paque medium and remaining polymorphonuclear leukocytes in Ficoll-Paque medium were combined after a further centrifugation, which resulted in a combined leukocyte fraction that was free of RBC contamination, although some of polymorphonuclear leukocytes may have been lost in the RBC band beneath the Ficoll-Paque media. All isolated cellular fractions were resuspended in RPMI-1640 cell culture medium to the equal volume of the original blood sample.
Mouse in vivo study #1 – A toxicology study in CD-1 mice. AZ2381 was formulated in 15% hydroxypropyl-β-cyclodextrin in water-for-injection adjusted to pH 2.0. It was orally administrated to CD-1 female mice at 25 and 90 mg/kg respectively with a dosing volume of 10 ml/kg. Blood samples of 20 µL were harvested at 0.5, 1, and 4 h after respective doses, via tail vein puncture using 20 µl end-to-end glass capillaries pre-coated with K2-EDTA (Order number 19.447, Sarstedt, Nümbrecht, Germany) and then transferred to Eppendorf tubes preloaded with 80 µl of PBS. The PBS diluted blood samples were centrifuged at 14500 × g at 4 °C for 5 min to separate the diluted plasma. The plasma samples of 75 µl were then transferred to storage tubes and frozen at -20 °C before analysis. After the bioanalysis, residual plasma samples collected from 4 mice at 1 h after the 90 mg/kg dose were pooled at equal volumes. The pooled sample was combined with two volumes of acetonitrile. After centrifugation, the resulting clear supernatant was transferred to an autosampler vial and an aliquot of 10 µL was injected for LC-UV-MS drug metabolite analysis.

Mouse in vivo Study #2 – A pharmacokinetic (PK) study in severe combined immunodeficiency (SCID) mice. AZ2381 was orally administrated to CB17 SCID female mice at 90 mg/kg using the same formulation and dosing volume as in the in vivo Study #1. Blood samples were collected by submandibular bleeding at multiple time points to determine PK parameters. K2-EDTA was used as anticoagulant. Separated plasma samples via centrifugation of the blood were stored at -20 °C before analysis. After the bioanalysis, residual mouse plasma samples collected from 3 animals at 1 h were pooled at equal volumes. The pooled sample was processed as described in the in vivo Study #1 for drug metabolite analysis.

Mouse in vivo study #3 – A pharmacodynamics (PD) study in SCID mice. AZ2381 was dosed orally to CB17 SCID female mice at 25 and 90 mg/kg using the same formulation and dosing volume as in the in vivo Study #1 and #2. Blood samples of 20 µL were harvested at 5 min, and 0.5, 1, 2, 8, 24 h after respective doses, via tail vein puncture using 20µl end-to-end glass capillaries pre-coated with K2-
EDTA (Sarstedt) and then transferred to glass insert tubes of microplate on ice. A total of 4 and 6 animals were included in the 25 and 90 mg/kg dose groups respectively. However, to minimize the volume of blood withdrawn from individual mice in the PD study, only 2 and 3 animals of the respective 25 and 90 mg/kg group were sampled for blood at each time point. After centrifugation of blood samples at 14500 × g at 4 °C for 5 min, separated plasma samples of 5 µl were transferred to storage tubes, followed by the addition of 20 µl of commercially available blank CD-1 mouse plasma, and then frozen at -20 °C before bioanalysis.

In vitro incubations of AZ2381 in mouse blood and plasma. AZ2381 of 10 µM was incubated in mouse whole blood with heparin as the anticoagulant, in the mouse blood fortified with 5 mM ATP and 10 mM MgCl₂, in the mouse blood in the presence of 100 mM EDTA, and in the heparinized mouse plasma fortified with 5 mM ATP and 10 mM MgCl₂, respectively, in capped vials at 37 °C in a shaking water bath. Individual incubation volumes were 250 µL. The incubations were stopped at 2 h by adding equal volumes of acetonitrile. Clear supernatant after centrifugation was transferred to a 96-well plate and diluted with an equal volume of water. Aliquots of 10 µL were injected for LC-UV-MS analysis.

Additionally, a negative control experiment was conducted in DPBS with 5 mM ATP and 10 mM MgCl₂ added. In all in vitro incubations described in this article, AZ2318 was spiked from a 10 mM stock solution in DMSO (i.e. only 0.1% DMSO was introduced to the incubations), ATP and MgCl₂ stock solutions were prepared freshly in DPBS, and EDTA was added from a pH 7.4 buffer solution. When applicable, blank DPBS was added to make up the total volume so that the same slight dilution of blood sample would be applied for all incubation conditions in one in vitro experiment.

In vitro incubations of AZ2381 in mouse leukocytes and RBCs. AZ2381 of 10 µM was incubated in mouse whole blood, and in the total cellular fraction after removal of plasma, in leukocytes and in RBCs, respectively. The mouse blood and whole cellular fractions were fortified with 5 mM ATP and 10 mM Mg²⁺ for the incubation. The leukocyte and RBC incubations were carried out with or without adding
10 mM ATP and 10 mM MgCl\(_2\). Additionally, AZ2381 was incubated in ATP and Mg\(^{2+}\) fortified RBCs in the presence of 100 mM EDTA. All incubations were conducted in triplicate with individual volumes at 250 µL in a covered 96-well plate at 37 °C in a shaking water bath. A negative control experiment was conducted in the blank medium supplemented with 10 mM ATP and 10 mM MgCl\(_2\). The incubations were stopped at 2 h by adding equal volumes of acetonitrile. A 400 µL portion of clear supernatant after centrifugation was transferred to a 96-well plate and diluted with an equal volume of water. Aliquots of 15 µL samples were injected for LC-UV-MS analysis.

Mouse blood incubations of AZ2381 in the presence of γ\(^{-18}\)O\(_4\)-ATP, inorganic \(^{18}\)O\(_4\)-phosphate, or \(^{18}\)O-water. AZ2381 of 10 µM was incubated at 37 °C in the mouse blood supplemented with γ\(^{-18}\)O\(_4\)-ATP in DPBS (final concentration 10 mM), with inorganic \(^{18}\)O\(_4\)-phosphate buffer pH 7.4 in unlabeled water (final concentration approximately 6 mM), or with \(^{18}\)O-water (final concentration 10 M). In each of the incubations, mouse blood of 200 µL was supplemented with the 50 µL volume of γ\(^{-18}\)O\(_4\)-ATP stock solution in DPBS, inorganic \(^{18}\)O\(_4\)-phosphate buffer, or \(^{18}\)O-water. The reactions were terminated after 2 h and the samples were processed the same as described in the experiment above. Additionally, a control experiment to test chemical exchange of oxygen was conducted by incubating 2 µM synthetic standard of phosphorylated-AZ2381 in duplicate with approximately 6 mM \(^{18}\)O\(_4\)-phosphate and 10 M \(^{18}\)O-water in a DPBS solution at 37 °C for 2 h.

LC-MS/MS quantitative bioanalysis of plasma samples of mouse in vivo studies. Calibration standards were prepared with an appropriate concentration range in blank CD-1 mouse plasma (K3-EDTA. BioreclamationIVT, Westbury, NY). Three quality control samples at low, medium, and high concentrations were also included in the bioanalysis. Mouse plasma samples were analyzed using a protein precipitation extraction procedure with acetonitrile containing an internal standard compound, followed by LC-MS/MS quantification using a C18 column with a Shimadzu LC-20AD LC system (Shimadzu Scientific Instruments, Columbia, MD) and an API 4000 triple quadrupole mass spectrometer.
and processed with Analyst (AB Sciex, Framingham, MA). Selected reaction monitoring in positive-ion mode was utilized for the detection of AZ2381, phosphorylated-AZ2381 and internal standard in the LC-MS/MS. More specifically, AZ2381 and phosphorylated-AZ2381 were monitored by ion transitions of m/z 456.2 → 354.2 and m/z 536.2 → 438.2, respectively.

LC-UV-MS and MS/MS metabolite profiling and identification. The metabolite analysis was conducted using an LC-UV-MS system consisting of an Acquity UPLC system (Waters, Milford, MA) and an LTQ-Orbitrap XL high resolution mass spectrometer equipped with an electrospray ionization source (Thermo Fisher Scientific). A LC column of Aquasil C18, 3 µM, 100×2.1 mm (Thermo Fisher Scientific) was used. The mobile phase at a flow rate of 0.250 ml/min consisted of water (A) and acetonitrile (B), both containing 0.1% (v:v) formic acid. The LC gradient started at 5% B and maintained for 2 min, then increased linearly to 30% during the next 18 min. It was followed by a linear increase to 98% B over the next 3 min and kept at 98% B for 2 min, finally decreased to 5% B and equilibrated for 7 min before next injection. The UV wavelength at 315 nm with 6 nm resolution was monitored in acquisition of UV chromatograms and photodiode array UV spectra of 200 to 500 nm were also acquired. LC-MS spectra were acquired at the resolution of 15,000. Collision-induced dissociation (CID) with helium as collision gas in the linear ion trap was used in acquisition of MS/MS spectra. The normalized collision energy at 20 of the manufacturer’s unit and the activation time of 30 ms were used in CID experiment.
RESULTS

Several metabolites of AZ2381 were observed in the pooled mouse plasma sample collected at 1 h after an oral dose of 90 mg/kg to CD-1 mice in a toxicology study (Fig. 1), including common oxidation metabolites undergoing N-demethylation (M1), a further N-hydroxylation following the N-demethylation (M2), N-oxidation (M3), and glucuronidation of the parent drug, M1 and M3 (m/z 632, 618, and 648, respectively, Fig. 1). In addition, an unexpected phosphorylation metabolite was detected in the mouse plasma (phosphorylated-AZ2381, Fig. 1). This phosphorylated metabolite was proven to be identical to the chemically synthesized standard by LC-UV-MS and MS/MS (Supplemental Fig. 1: the same retention time, the same accurate mass of [M+H]$^+$, and the same MS/MS fragmentation pattern). In addition, a similar plasma metabolite profile of AZ2381 including the same rare phosphorylated metabolite was observed in SCID mouse, with a pooled plasma sample collected at 1 h after a 90 mg/kg oral dose in a PK study (data not shown).

Fig. 2 shows the plasma PK profile of AZ2381 up to 24 h after an oral dose of 25 mg/kg and 90 mg/kg respectively, to SCID mice in a single dose PD study (data points and lines in blue). Also plotted are phosphorylated-AZ2381 detected in the mouse plasma of both dose groups. The plasma concentration of phosphorylated-AZ2381 was time-dependent and dose-dependent (data points and lines in red, Fig. 2). The area under the curve of phosphorylated metabolite was determined to be approximately 5% to 10% that of the parent drug in respective dose groups. Additionally, the dosing formulation check performed during the bioanalysis indicated no trace of contamination by the phosphate prodrug investigated in the same PD study (Supplemental Fig. 2).

The phosphorylated metabolite was generated by the incubation of AZ2381 in mouse whole blood with heparin as the anticoagulant (Fig. 3A). Addition of 5 mM ATP and 10 mM Mg$^{2+}$ to the whole blood did not cause a noticeable change in the yield of phosphorylated metabolite (Fig. 3B). However, the presence of divalent metal ion chelator EDTA diminished the phosphorylation by 84% (Fig. 3C vs. 3A).
Mouse plasma did not produce any phosphorylated metabolite, in contrast to the whole blood under the same incubation conditions (Fig. 3D vs. 3B). The phosphorylated metabolite was not detected after a control incubation in a DPBS solution supplemented with ATP and Mg$^{2+}$. In addition, the phosphorylated metabolite was not produced in mouse hepatocytes, when oxidation metabolites (e.g., M1, M2 and M3) and glucuronidation metabolites occurred after the incubation of 10 µM AZ2381 in 2×106 cells/mL CD-1 mouse cryopreserved hepatocytes at 37 °C for 2 h (data not shown). The extracted ion chromatograms in Fig. 3 were constructed by accurate masses of all ions generated in the electrospray ionization source for the parent drug and phosphorylated metabolite, including singly and doubly protonated molecular ions (m/z 456.239 and 228.623 of the parent, m/z 536.206 and 268.607 of the phosphorylated metabolite), as well as an in-source fragment ion (m/z 219.618, formed by the neutral loss of a H$_3$PO$_4$ from the doubly protonated metabolite). The accurate-mass extracted ion chromatogram in Fig. 3 provides a highly selective display for the occurrence or the absence of the phosphorylation in the incubations, with superb signal-to-noise where chemical noise was eliminated by use of high resolution filtering.

The total leukocytes collected after lysing RBCs in the mouse blood using an ACK lysing buffer did not generate the phosphorylated metabolite (Fig. 3E). This negative result prompted us to isolate intact RBCs to demonstrate with positive results that the phosphorylation was indeed mediated by mouse RBCs. Bar chart Fig. 4 provides quantitative comparisons for the formation of phosphorylated-AZ2381 in mouse blood and different cellular fractions, after the incubation of 10 µM AZ2381 at 37 °C for 2 h. The cellular fractions were resuspended in a cell culture medium to the original volume of whole blood that each cellular fraction was isolated from. The percentages in the figure were calculated from LC-UV peak areas with an adjustment by different UV response of phosphorylated-AZD2381 vs. parent drug AZ2381 (at an absorbance ratio of approximately 1.2 at 315 nm). A negative control incubation conducted in the blank medium supplemented with ATP and MgCl$_2$ did not show any occurrence of the phosphorylation. The removal of plasma from the whole blood increased the yield of phosphorylation (“Without Plasma” vs. “Whole Blood” in Fig. 4). Leukocytes did not produce any phosphorylated-AZ2381 (the zero bar height
for leukocytes in Fig. 4, also not detected in LC-MS accurate-mass extracted ion chromatograms that are
not shown). According to similar phosphorylation yields in three RBC incubations shown in Fig. 5,
additional ATP or Mg$^{2+}$ introduced to the RBC incubation did not affect the phosphorylation yield,
however, the presence of EDTA diminished the phosphorylation (Fig. 4). This is similar to that observed
with whole blood incubates as shown in Fig. 3. In order to identify the enzyme in RBC responsible for the
phosphorylation, the identification of the source of phosphoryl transfer could be helpful. Stable isotope
18O-labelled ATP and inorganic phosphate were utilized for the identification, together with the use of
18O-labelled water to investigate if chemical exchange of 18O would occur. Fig. 5 compares the LC-high
resolution MS spectra of the protonated molecular ion region recorded for the phosphorylated metabolite
produced by the incubation of AZ2381 in mouse blood (panel A) versus the mouse blood added with γ-
18O$_4$-ATP (10 mM, panel B), or inorganic 18O$_4$-phosphate buffer pH 7.4 (approximately 6 mM, panel C),
or 18O-water of high concentration (10 M, panel D). The inorganic 18O$_4$-phosphate pH 7.4 buffer was
prepared in unlabeled water. When γ-18O labeled ATP material was added to the mouse blood incubation,
additional phosphorylated metabolite ions were observed as corresponding to the [M+H]$^+$ ions of 18O- and
18O$_2$-phosphorylation (Fig. 5B vs. 5A). The ratio of 18O$_x$-phosphorylated (x=1 and 2): unlabeled
phosphorylated metabolites was only 0.07. In contrast, when inorganic18O$_4$-phosphate pH 7.4 buffer was
added to the blood incubation, much greater amounts of 18O-incorporated phosphorylation were observed
(Fig. 5, panels C vs. B vs. A), with the ratio of 18O$_x$-phosphorylated (x=1, 2 and 3) : unlabeled
phosphorylated metabolites at 0.87 ± 0.03 (mean ± s.d. of triplicate incubations). Observed accurate
masses of 18O$_x$-phosphorylated metabolite ions (x = 1, 2 and 3) are all within 2 ppm error of calculated
exact masses (Supplemental Table 1). When high concentration 18O-water was present in the mouse blood
incubation, 18O- and 18O$_2$-incorporated phosphorylation of AZ2381 occurred (Fig. 5D). The ratio of 18O$_x$-
phosphorylated (x = 1 and 2): unlabeled phosphorylated metabolites in the presence of the 18O-water was
0.29 ± 0.004 (mean ± s.d. of triplicate incubations). It is important to note that additional oxygen-
exchange tests on 2 µM synthetic standard of phosphorylated-AZ2318 with approximately 6 mM 18O$_4$-
phosphate and 10 M 18O-water in a PBS pH 7.4 solution have indicated no chemical 18O-exchange to the phosphorylated-AZ2381 standard after incubation at 37 °C for 2 h.

Rat blood also generated the phosphorylated metabolite of AZ2381, albeit at a lower yield than mouse blood (Fig. 6). The yield of phosphorylation product in the freshly collected rat blood was approximately 1/5 of that in freshly collected mouse blood under the same incubation conditions, based on LC-UV peak areas and UV signal response of the phosphorylated metabolite and the parent drug. The phosphorylation was also tested in commercially available Wistar Hanover rat, Beagle dog, and human blood that were delivered to our laboratory overnight inside a cold pack. The phosphorylated metabolite turnover in dog and human blood was even lower than that in rat blood. However, the data are not presented here since the yield in overnight delivered rat blood was substantially lower than that in freshly collected rat blood at our laboratory, thus, the same would be assumed for the dog and human blood. The low level phosphorylation in overnight-delivered rat, dog and human blood was only detectable by LC-MS, but were too low to be seen in LC-UV chromatograms.
DISCUSSION

The fortuitous discovery of the phosphorylation of AZ2381 started with bioanalytical troubleshooting. After the surprising detection of phosphorylated-AZ2381 in mouse plasma samples collected from the AZ2381 dosed animals, the possibility of analytical crosstalk from a common sulfation metabolite was considered. Nevertheless, the temporal profile and dose response of phosphorylated-AZ2381 in mouse plasma after an oral dose of AZ2381 (Fig. 2) are consistent with the formation of a metabolite. If the sulfation of AZ2381 had occurred, the protonated sulfate metabolite would have the same unit mass as protonated phosphorylated-AZ2381 ([M+H]^+ m/z 536, Supplemental Fig. 3). Both sulfate and phosphate of AZ2381 would give exactly the same fragment ion by the neutral loss of a H$_2$SO$_4$ and a H$_3$PO$_4$ molecule respectively ([M+H]^+ m/z 438, Supplemental Fig. 3). Moreover, the hypothetical sulfate could elute at approximately the same retention time as phosphorylated-AZ2381 in the very short LC gradient used in bioanalysis, resulting in crosstalk. However, the sulfate would be readily differentiated from the phosphate by a high-resolution mass spectrometer, because their exact mass would differ by 9.5 mDa (relative error of 18 ppm, Supplemental Fig 3). We were anticipating to prove this hypothesis of crosstalk, but instead confirmed that it was a rare xenobiotic phosphorylation metabolite (Supplemental Fig. 1). As suggested by Mitchell in a recent review article, the possibly misidentification of rare phosphate conjugates of xenobiotics as sulfate conjugates could have happened before the advent of modern LC-MS (Mitchell, 2016), such as the routine use of high resolution MS in drug metabolism.

Heparin was used as the anticoagulant in this study to prevent chelation of the Mg$^{2+}$ which would occur with another commonly used anticoagulant EDTA. The divalent metal ion Mg$^{2+}$ is usually required in the kinase-mediated transfer of a phosphoryl group from an organic phosphate source to a kinase substrate (Harding et al., 2010; Matte et al., 1998). However, the addition of 10 mM MgCl$_2$ to whole blood and RBC incubations did not enhance phosphorylation in our case (Fig. 3 and 4). It is unclear if sufficient Mg$^{2+}$ ions were already present in whole blood and inside the isolated cells, or if a different
type of divalent metal ion was involved in the phosphorylation. Nevertheless, the inhibitory effect of the metal chelator EDTA on phosphorylation (Fig. 3, 4 and 6) suggests that divalent metal ions are necessary for the phosphorylation reaction.

It is known in the literature that some enzymes in leukocytes can metabolize drug molecules, e.g., neutrophil myeloperoxidase (Khan et al., 2016, Uetrecht, 1994). The phosphorylation of the immunomodulatory drug fingolimod is catalyzed by sphingosine kinases (Billich et al., 2003) that are present in eukaryotic cells. The phosphorylation of AZ2381 occurred in both immune competent CD-1 mouse and immune deficient SCID and Nude mice, thus T and B lymphocytes that are absent from SCID and Nude mice are not responsible for the phosphorylation. Still, it was a bit surprising that remaining total leukocytes after the lysing of RBCs in the mouse blood gave virtually no phosphorylation of AZ2381 (Fig 3E), as we were initially misled by a preliminary experiment with an isolated leukocyte fraction that was contaminated by some red blood cells (i.e., a low turnover of phosphorylated-AZ2381 in the contaminated leukocytes fraction, data not shown). The incubations with collected intact RBCs further demonstrated that the phosphorylated metabolite was produced by mouse RBCs (Fig. 4). Isolation of leukocytes free of RBC contamination was also performed without lysing the red blood cells (Materials and Methods) to further verify that leukocytes were not responsible for the phosphorylation of AZ2381 (Fig. 4).

The intrinsic rate of the phosphorylation is probably higher than observed in the blood, because the reverse reaction of enzymatic hydrolysis of the organophosphate can occur. The yield of phosphorylation in total cellular fraction after the removal of plasma from mouse blood was 2.6 times that in whole blood (Fig. 4). This increase in the yield of the phosphorylated metabolite could be rationalized by the removal of alkaline phosphatases and A-esterases present in plasma (Rooseboom et al., 2004, Rosalki, 1994; Parkinson et al., 2013). Both alkaline phosphatases and A-esterases would hydrolyze the organophosphate of the metabolite back to parent drug AZ2381. In the stability test of 2 µM phosphorylated-AZ2381 synthetic standard in freshly collected mouse plasma with heparin as anticoagulant at 37 °C, a half-life
(t\(_{1/2}\)) of approximately 4.5 h was observed for the disappearance of phosphorylated-AZ2381 standard, and concurrently AZ2381 was produced from phosphorylated-AZ2381 (Supplemental Fig. 4).

The addition of ATP to the in vitro incubation with mouse blood or mouse RBCs did not increase the production of phosphorylated-AZ2381 (Fig. 3 and 4). This could be explained in two different ways — either a sufficient amount of ATP is originally present in the blood and RBCs, or ATP is not the source of phosphoryl transfer in the RBC-mediated phosphorylation of AZ2381. It is known that ATP is the source of the phosphoryl group in most phosphorylation reactions (Cheek et al., 2002; Matte et al., 1998). However, other sources of phosphoryl groups may be used in some phosphorylations. In glycolysis (the sole source of metabolic energy in red blood cells), two inorganic phosphates (not ATP) are utilized to form two 1,3-bisphosphoglycerates which are subsequently used by phosphoglycerate kinase to produce two ATP from two ADP in the payoff phase (Nelson and Cox, 2013). Additionally, two molecules of the high-energy phosphate compound phosphoenolpyruvate donate phosphoryl groups to 2 ADP molecules to form 2 ATP in the payoff phase of glycolysis (Nelson and Cox, 2013). Most of glycolytic enzymes require Mg\(^{2+}\) for activity (Nelson and Cox, 2013).

The level of \(^{18}\)O-incorporation to the phosphorylation of AZ2381 in the presence of \(\gamma\)-\(^{18}\)O\(_4\)-ATP was <10% that in the presence of inorganic \(^{18}\)O\(_4\)-phosphate at a comparable concentration (Fig. 5B vs. 5C and data description in the Results). Some degradation of \(\gamma\)-\(^{18}\)O\(_4\)-ATP was evident from the presence of \(^{18}\)O-ADP in the purchased \(^{18}\)O\(_{2}\)-labeled ATP material as detected by the negative ion mass spectrum acquired in our laboratory (data not shown). Thus, inorganic\(^{18}\)O\(_{2}\)-phosphate was presumably present as a degradation product in the \(\gamma\)-\(^{18}\)O\(_4\)-ATP material used for the incubation. The abundance of \(^{18}\)O-incorporated phosphorylated-AZ2381 was in the order of \(^{18}\)O- > \(^{18}\)O\(_2\)- > \(^{18}\)O\(_3\)-phosphorylated when entirely \(^{18}\)O labeled \(^{18}\)O\(_4\)-phosphate was added to the mouse blood incubation of AZ2381 (Fig. 5C). Also note when a large amount of \(^{18}\)O-water (final concentration 10 M) was added to the mouse blood incubation, \(^{18}\)O- and \(^{18}\)O\(_2\)-phosphorylated-AZ2381 metabolites were formed (Fig. 5D). Both of these
observations could be rationalized by enzyme-mediated oxygen exchanges involving inorganic phosphate and water, e.g., oxygen exchange during ATP synthesis and reverse steps (Hackney, 1984). On the contrary, chemical exchange of oxygen isotope between dissolved phosphate and water would be extremely slow (Lecuyer et al., 1999), which is consistent with the observation that there was no chemical 18O exchange from 18O$_4$-phosphate or 18O-water to the phosphorylated-AZ2381 synthetic standard in our control experiment.

In summary, this present study has confirmed rare xenobiotic phosphorylation of a drug molecule that is not intended to be a kinase substrate. The fact that the phosphorylation is mediated by red blood cells and the phosphoryl transfer does not come from ATP may have made this case particularly unusual. However, a number of questions are still yet to be addressed — whether the low turnover of phosphorylated-AZ2381 in rat blood than in mouse blood was due to the lower formation rate or due to the higher hydrolysis rate of phosphorylated-AZ2381, what specific enzyme in red blood cells is responsible for the phosphorylation, and what structural feature of AZ2381 has triggered a phosphorylation that is usually intended for endogenous substances.
ACKNOWLEDGMENT

The authors are grateful to Dr. Lars Weidolf of AstraZeneca Gothenburg, Sweden, for stimulating discussions, and are indebted to Dr. Richard J. Lewis AstraZeneca Gothenburg, Sweden, for helpful editing and improving the language of the manuscript. The authors thank Ms. Aixiang Xue and Ms. Crystal Brown for conducting the in-life phase of the mouse PK study, Mr. Robert Casella for the formulation method of AZ2381 in mouse in vivo studies, Ms. Debora Roaquin for incubation experiment of AZ2381 in cryopreserved mouse hepatocytes.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Gu, Wen, Doig

Conducted experiments: Gu, Wen, Gangl, Zheng, Wang

Contributed new reagents or analytic tools: Zheng, Johannes

Performed data analysis: Gu, Gangl

Wrote or contributed to the writing of the manuscript: Gu, Wen, Gangl, Zheng, Johannes
DMD # 76869

References

GE Healthcare. “Isolation of mononuclear cells: methodology and applications”.

Human Immunology Portal. “Preparing a buffy coat from whole blood”.

13:1550-1563.

SCHEME LEGENDS

Scheme 1. AZ2381 and phosphorylated-AZ2381

Scheme 2. Chemical synthesis of phosphorylated-AZ2381

FIGURE LEGENDS

Figure 1. Mouse plasma metabolite profile of AZ2381 at 1 h after an oral dose of 90 mg/kg, recorded in UV chromatogram at 315 nm (A), and extracted ion chromatogram with the peaks marked with accurate mass of protonate molecular ions, i.e. m/z of [M+H]+ ions (B).

Figure 2. Plasma mean concentration of AZ2381 parent drug (blue) and phosphorylated-AZ2381 metabolite (red) as the function of time after an oral dose of 25 mg/kg AZ2381 (solid dots) or 90 mg/kg AZ2381 (open squares) in mice. Error bars of the 90 mg/kg dose group are plotted as the S.D. of triplicate animal samplings. No error bars are provided for the 25 mg/kg dose group as only duplicate animal samplings were made.

Figure 3. LC-MS accurate-mass extracted ion chromatograms following a 2 h incubation of 10 µM AZ2381 at 37 °C in mouse blood with heparin as anticoagulant (A), the mouse blood fortified with 5 mM ATP and 10 mM MgCl2 (B), the mouse blood with 100 mM EDTA added (C), and the heparinized mouse plasma fortified with 5 mM ATP and 10 mM MgCl2 (D), leukocytes collected after lysing red blood cells in the mouse blood and fortified with 5 mM ATP and 10 mM MgCl2 (E). Displayed are extracted ion chromatograms consisting of singly and doubly protonated molecular ions of the parent drug and the metabolite, as well as an in-source fragment ion of doubly protonated metabolite via the neutral loss of a H3PO4.

Figure 4. Percent yields of phosphorylated-AZ2381 determined by LC-UV signal responses of the metabolite and remaining parent drug after an incubation of 10 µM AZ2381 at 37 °C for 2 h in mouse whole blood with heparin as anticoagulant, the total cellular fractions after removing plasma, leukocytes, and red blood cells (RBC). The bar chart is plotted as the Mean ± S.D. of
triplicate incubations. These incubations were fortified with 5 to 10 mM ATP and/or 10 mM MgCl₂.

Figure 5. The molecular ion region of LC-MS spectra showing the phosphorylated or ¹⁸O-phosphorylated metabolite produced after a 2 h incubation of 10 μM AZ2381 at 37°C in mouse blood (A), mouse blood added with 10 mM γ-¹⁸O₄-ATP (B), mouse blood added with approximately 6 mM inorganic ¹⁸O-phosphate buffer pH 7.4 (C), mouse blood added with 10 M ¹⁸O-water (D).

Figure 6. LC-MS accurate-mass extracted ion chromatograms comparing the formation of the phosphorylated metabolite following a 2 h incubation of 10 μM AZ2381 at 37 °C in mouse blood with heparin as anticoagulant (A), rat blood with heparin as anticoagulant (B), the rat blood in the presence of 100 mM EDTA (C). Displayed are extracted ion chromatograms consisting of the same ions as in Fig. 3.
Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
SUPPLEMENTAL DATA

Mouse Red Blood Cell Mediated Rare Xenobiotic Phosphorylation of a Drug Molecule Not Intended To Be a Kinase Substrate

Chungang Gu*, Shenghua Wen, Peter Doig, Eric Gangl, Xiaolan Zheng, Yanjun Wang, Jeffrey W. Johannes

Oncology DMPK (C.G. & E.G.), Oncology Biosciences (S.W. & Y.W.), Discovery Sciences (P.D.), Oncology Medicinal Chemistry (X.Z. & J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, MA 02451

*To whom correspondence should be addressed. Current E-mail: chuck.gu@biogen.com
Supplemental Fig. 1. Confirmation of phosphorylated-AZ2381 metabolite by LC-MS & MS/MS matching to the synthetic standard: UV chromatogram of a pooled plasma sample collected at 1 hour after an oral dose of 90 mg/kg AZ2381 in CD-1 mice (A) vs. phosphorylated-AZ2381 synthetic standard and AZ2381 in a mixed solvent (B); LC-high resolution MS spectra acquired by an LTQ-Orbitrap instrument showing protonated molecular ion region of the metabolite (C) vs. the synthetic standard (D); LC-MS/MS CID spectra obtained in the LTQ linear ion trap for the metabolite (E) vs. the synthetic standard (F).
Supplemental Fig. 2. LC-MS/MS chromatograms of oral dosing formulation of AZ2381 showing the selected reaction monitoring for AZ2381 (top panel) and phosphorylated-AZ2381 (bottom panel). The baseline noise trace in the bottom panel indicates no contamination by the phosphate prodrug that was also studied in the same drug discovery project.

Supplemental Fig. 3. A hypothetical sulfate metabolite would have the same nominal mass as the phosphate. Both sulfate and phosphate would give exactly the same fragment ion by the neutral loss of a H_2SO_4 and a H_3PO_4 molecule respectively. However, the sulfate and the phosphate would differ by 9.5 mDa (relative error 18 ppm) in high resolution mass spectrometry.
Supplemental Fig. 4. \(\log_{10} \) (UV peak area of phosphorylated-AZ2381) vs. the incubation time of 2 \(\mu \)M phosphorylated-AZ2381 standard in freshly collected mouse plasma with heparin as anticoagulant at 37 °C (A). LC-UV chromatogram recorded at 315 nm and LC-MS extracted ion chromatogram showing the formation of AZ2381 as the result of a 2 h incubation of phosphorylated-AZ2381 standard in the mouse plasma at 37 °C (B). The half-life \((t_{1/2}) \) of phosphorylated-AZ2381 in the mouse plasma was approximately 4.5 h, as derived from the slope of the semi-log plot in panel A with the assumption for a first-order reaction.
Supplemental Table 1. LC-MS accurate mass measurement of phosphorylated metabolite formed when inorganic $^{18}\text{O}_4$-phosphate was added to the mouse blood incubation of AZ2381.

<table>
<thead>
<tr>
<th>Formula of $[\text{M+H}]^+$ ions</th>
<th>Calculated exact mass (m/z)</th>
<th>Observed accurate mass (m/z)</th>
<th>Error (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}{27}\text{H}{31}\text{N}_5\text{O}_4\text{P}^+$</td>
<td>536.2057</td>
<td>536.2063</td>
<td>1.1</td>
</tr>
<tr>
<td>$\text{C}{27}\text{H}{31}\text{N}_5\text{O}_4^{^{18}\text{O}}\text{P}^+$</td>
<td>538.2100</td>
<td>538.2105</td>
<td>0.9</td>
</tr>
<tr>
<td>$\text{C}{27}\text{H}{31}\text{N}_5\text{O}_3^{^{18}\text{O}_2}\text{P}^+$</td>
<td>540.2142</td>
<td>540.2149</td>
<td>1.3</td>
</tr>
<tr>
<td>$\text{C}{27}\text{H}{31}\text{N}_5\text{O}_2^{^{18}\text{O}_3}\text{P}^+$</td>
<td>542.2185</td>
<td>542.2195</td>
<td>1.8</td>
</tr>
</tbody>
</table>