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ABSTRACT 

Pharmacokinetic interactions between natural products (NPs) and conventional medications 

(prescription and non-prescription) are a longstanding but understudied problem in contemporary 

pharmacotherapy. Consequently, there are no established methods for selecting and prioritizing 

commercially available NPs to evaluate as precipitants of NP-drug interactions (NPDIs). As such, 

NPDI discovery remains largely a retrospective, bedside-to-bench process. This Recommended 

Approach, developed by the Center of Excellence for Natural Product Drug Interaction Research 

(NaPDI Center), describes a systematic method for selecting NPs to evaluate as precipitants of 

potential clinically significant pharmacokinetic NPDIs. Guided information-gathering tools were 

used to score, rank, and triage NPs from an initial list of 47 candidates. Triaging was based on 

the presence and/or absence of an NPDI identified in a clinical study (≥20% or <20% change in 

the object drug area under the concentration versus time curve, respectively), as well as 

mechanistic and descriptive in vitro and in vivo data. A qualitative decision-making tool, termed 

the ‘fulcrum model’, was developed and applied to 11 high-priority NPs for rigorous study of NPDI 

risk. Application of this approach produced a final list of five high-priority NPs, four of which are 

currently under investigation by the NaPDI Center. 
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INTRODUCTION  

Natural products (NPs), which include botanical dietary supplements and foods, can 

precipitate clinically significant pharmacokinetic interactions with conventional drugs. These 

interactions can manifest as enhanced or reduced pharmacological effect(s) of the object drug. 

Discovered ≥20 years ago, the pharmacokinetic interactions between St. John’s wort and 

cyclosporine (Barone et al., 2000; Breidenbach et al., 2000; Mai et al., 2000; Ruschitzka et al., 

2000; Moschella and Jaber, 2001), and between grapefruit juice and felodipine (Bailey et al., 

1989; Paine and Oberlies, 2007), are now textbook examples of clinically significant 

pharmacokinetic NP-drug interactions (NPDIs). Despite the clinical impact of these interactions, 

guidelines for systematically prioritizing commercially available NPs for NPDI investigations are 

nonexistent. As such, discovery of clinically significant NPDIs is left to chance and remains almost 

exclusively a bedside-to-bench process. This Recommended Approach, the first in a series of 

Recommended Approaches to be released by the Center of Excellence for Natural Product Drug 

Interaction Research (NaPDI Center) (citation for accompanying commentary), proposes a 

solution to this problem: a decision-making strategy for systematically identifying high-priority NPs 

that are likely to precipitate clinically significant pharmacokinetic NPDIs that warrant rigorous 

evaluation. 

The need for development and widespread adoption of the aforementioned prospective 

strategy is evident. Historically, identification of clinically significant NPDIs has been driven by 

case reports of unexpected adverse drug reactions or loss of efficacy that were indicative of 

pharmacokinetic or pharmacodynamic perturbations of an object drug (Gardiner et al., 2008a). 

However, the value of these case reports for accurately identifying NPDIs is unclear. By one 

estimation, 68% of a representative sample of these case reports were inadequately documented 

such that determination of whether an NPDI occurred was not possible (Fugh-Berman and Ernst, 

2001).  
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Adverse event reporting is a similarly flawed and inefficient method of NPDI discovery. A 

survey of NP consumers indicated that just 30% of users would report any adverse reaction to 

either a drug or an herbal remedy to their primary care physician, and only 6-7% would report 

such an adverse reaction to their pharmacist (Barnes et al., 1998). In addition, 26% indicated they 

would report an adverse reaction to a conventional drug, yet would not report the same adverse 

reaction to an herbal remedy (Barnes et al., 1998). Adverse events to food have traditionally been 

reported more frequently to poison control centers than the FDA, but the FDA now administers 

reporting of dietary supplement-related adverse events and serious adverse events (SAEs) via 

MedWatch (Gardiner et al., 2008b; Frankos et al., 2010). Whether or not these reporting 

mechanisms lead to substantial advances in identification of NPDIs remains to be seen. Given 

the inherent limitations of anecdotal case reports and postmarket SAE reporting, a prospective 

and systematic research method for identifying high-risk NPs for NPDI studies is clearly needed. 

The accompanying commentary (citation for accompanying commentary) introduces the 

premise, overarching goals, and objectives of the NaPDI Center and provides an anticipated list 

of Recommended Approaches to be released by the Center. These Recommended Approaches 

will present a coherent strategy for surmounting the unique challenges commonly encountered 

during the investigation of NPs as precipitants of NPDIs. This Recommended Approach, the first 

in the series, describes a systematic approach for identifying and prioritizing NPs that merit 

rigorous evaluation of NPDI risk. 

 

CHALLENGES AND A POTENTIAL SOLUTION TO CURRENT PRACTICES 

Current regulatory guidances for evaluating drug-drug interactions are not sufficient for 

evaluating NPDIs 

Current draft regulatory guidances for evaluating drug-drug interactions (DDIs) 

recommend the following structured approach for testing a new chemical entity (NCE) as a 

pharmacokinetic DDI precipitant: (1) in vitro evaluation of the potency of the NCE as an inhibitor 
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or inducer of a standard panel of major drug metabolizing enzymes and transporters; (2) 

simulation of in vivo interaction potential using static or dynamic models, the latter including 

physiologically-based pharmacokinetic models; and, if necessary, (3) evaluation of the DDI in 

human subjects (EMA, 2012; FDA, 2017).  

Although these guidances provide an essential framework for NPDIs, they are not fully 

suited for evaluating NPDIs, partly due to the inherent complexity of NPs. The diversity and 

complexity of NP composition is underscored by the inclusiveness of the definition established by 

the National Center for Complementary and Integrative Health: “a large and diverse group of 

substances from a variety of sources…produced by marine organisms, bacteria, fungi, and plants” 

encompassing both “complex extracts from these producers, but also the isolated compounds 

derived from those extracts.” (NCCIH, 2017) The typical commercial formulation of an NP is 

usually a complex botanical mixture consisting of a prodigious assemblage of phytoconstituents 

from multiple plant species and/or organs (Freedman et al., 2011; Alolga et al., 2015). Predictably, 

these mixtures often vary significantly in composition depending on sourcing and processing, thus 

complicating the selection of a single product, formulation, or constituent for NPDI studies (Ross 

et al., 2000; Vandermolen et al., 2013; VanderMolen et al., 2014; Raclariu et al., 2017; Raman et 

al., 2017).  

Basic experimental hurdles also preclude NPs from being evaluated in accordance with 

regulatory DDI guidelines. For example, authentic analytical standards do not always exist for 

quantification of the NP constituents or associated metabolites in human biologic matrices, and 

well-designed human pharmacokinetic studies of NP constituents and metabolites have not been 

routinely conducted. The complex stereochemistry of botanical constituents introduces additional 

challenges. Collectively, these experimental impediments have historically precluded 

development of a systematic approach for selecting NPs to study as potential precipitants of 

NPDIs. Thus, assessing and predicting the drug interaction liability of individual NP constituents 
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requires a strategic adaptation and/or inversion of the DDI assessment process for NCEs (Fig. 

1). 

Recommended Approach for identifying and selecting NPs as precipitants of 

pharmacokinetic NPDIs 

The NaPDI Center, in consultation with the National Center for Complementary and 

Integrative Health, developed a systematic approach to select high-priority NPs for investigation 

as precipitants of clinically significant pharmacokinetic NPDIs (Fig. 2). The Center’s 

Pharmacology Core developed the ‘fulcrum model’ (Fig. 3), a decision-making tool that is the crux 

of this approach. By facilitating a balanced evaluation of mechanistic and descriptive in vitro and 

in vivo data, the fulcrum model enabled visual identification of the final high-priority NPs. 

Currently, four of the remaining five high-priority NPs are under investigation by the NaPDI Center. 

Although the following strategy was developed with a focus on pharmacokinetic NPDIs involving 

the North American NP market, the approach is generalizable, and the accompanying tools also 

may be adapted to pharmacodynamic NPDIs. 

Phase I: Screening of candidate NPs. An initial list of 47 candidate NPs (Table 1) was 

compiled from two sources: the 40 top-selling botanical NPs reported by HerbalGram (Smith, 

2015) and seven from the University of Washington’s Drug Interaction Database (DIDB), which 

houses the largest manually curated collection of in vitro and in vivo data related to drug 

interactions in humans (http://www.druginteractioninfo.org/) (DIDB®, 2018). Only human data 

were evaluated for the in vivo information gathering step due to the well-established species 

differences in common interaction targets (e.g., drug metabolizing enzymes and transporters) 

(Baillie and Rettie, 2011). 

DIDB Query Strategy. DIDB searches were conducted for each of the 47 initial candidates 

using the “Therapeutic Class Queries” tool, with the key words “Herbal Medications” as 

“Precipitants,” and the condition as “In Vivo.” The “Overall Effect” column of the resulting table 

was filtered using the term “20% effect” (i.e., ≥20% change in the object drug area under the 
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concentration versus time curve, or AUC) to identify NPs that could potentially precipitate a 

clinically significant pharmacokinetic NDPI. When common names from the HerbalGram sales 

report did not coincide with those listed in the DIDB (e.g., horny goat weed, feverfew, grass), the 

Latin or scientific name was used to query the DIDB. Rather than names of specific extracts or 

formulations, the broadest possible terms were used in queries.  

Scoring. NPs for which no in vivo interaction data existed in the DIDB were triaged (n=24). 

An information-gathering form was subsequently used to compile query results for the 23 

remaining NPs (Table 2). This form tabulated counts of the presence of an in vivo interaction 

(≥20% increase or decrease in object drug AUC), absence of an in vivo interaction (<20% 

increase or decrease in object drug AUC), and in vitro targets (i.e., drug metabolizing enzymes, 

transporters, nuclear receptors) for which data were collated in the DIDB.  

Phase II: Identifying low-, intermediate-, and high-priority NPs. The 23 remaining NPs 

were binned into one of three priority levels – low, intermediate, or high – to triage NPs that were 

unlikely to precipitate interactions, or for which interactions were markedly under- or overstudied. 

A low priority was assigned if the DIDB query returned any of the following: 

1) very high counts of the presence of an in vivo interaction, indicating that the NP was 

overstudied or well-characterized as an NPDI precipitant (e.g., St. John’s wort, milk 

thistle); 

2) counts of exclusively the absence of an in vivo interaction, indicating that the NP was 

understudied or had a low interaction liability (e.g., saw palmetto, valerian); or 

3) counts of either the presence or absence of an in vivo interaction, but no counts of an 

in vitro interaction, again indicating that the NP was understudied or had a low 

interaction liability (e.g., evening primrose oil). 

An intermediate-priority was assigned if the query returned a ≥3:1 ratio of counts of the absence 

of an in vivo interaction relative to counts of the presence of an in vivo interaction (e.g., ginkgo, 

black cohosh). Based on these criteria, a high-priority was assigned to the remaining 11 NPs: 
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cannabinoids, cinnamon, garlic, ginseng, goldenseal, green tea, licorice, red yeast rice, 

resveratrol, Schisandra spp., and turmeric.  

Phase III: Gap analysis.  

Data Mining. For each of the 11 high-priority NPs identified in Phase II, a systematic 

primary literature search and gap analysis was conducted by the NaPDI Center’s Pharmacology 

Core, which is composed of experts in the fields of NPDIs and DDIs. Gaps were identified by 

evaluating the primary literature and reputable websites (e.g., the DIDB) to determine which of 

the following mechanistic or descriptive elements were missing or understudied: names and 

structures of known NP constituents, potential enzyme and/or transporter target(s) of NPDI-

precipitating constituents, human pharmacokinetic studies, and current liquid 

chromatography/mass spectrometry bioanalytical methods. The gap analysis was précised into 

an executive summary (Supplement A). Brief summaries of each section of the gap analysis are 

provided below. 

1) Known NP constituents. The first section of the gap analysis consisted of profiling 

constituents within NPs and determining whether these constituents had been evaluated for NPDI 

liability. Constituents containing functional groups with known potential to trigger time-dependent 

inhibition of the cytochromes P450 (CYPs) were flagged, especially if these constituents had 

shown NPDI potential (Table 3). Sub-structures associated prominently with time-dependent 

inhibition, including alkylamines and methylenedioxyphenyls, the metabolism of which can lead 

to “quasi-irreversible” metabolite-intermediate complexes that are known to feature in DDIs 

(Grimm et al., 2009; Orr et al., 2012), were reported in constituents of many NPs, including those 

in goldenseal and Schisandra spp. catechols, olefins, acetylenes, and α,β-unsaturated Michael 

acceptors, which may give rise to reactive intermediates that could impact CYP function 

(Kalgutkar et al., 2005), also were identified. 

2) Potential enzyme and/or transporter target(s) and essential experimental systems. The 

second section of the gap analysis consisted of an evaluation of the strength of NPDI evidence 
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for each constituent identified in section 1. Detailed categories of essential experimental systems, 

including panels of key drug metabolizing enzymes, transporters, and nuclear receptors, were 

defined by the Pharmacology Core (section 2.1). Next, experimental data for any potential targets 

within these categories were compiled (section 2.2). These data included details of experimental 

systems, NP source, probe substrate(s) used to test the NPDI, the form of the NP (e.g., extracts 

and/or as isolated constituents), enzyme/transporter/receptor target(s), induction or inhibition 

parameter (e.g., Ki, IC50, Emax), and the data source. As the function, expression, and tissue 

distribution of key drug metabolizing enzymes and transporters exhibit known inter-species 

differences (Baillie and Rettie, 2011), only data from human-derived systems were included in 

this analysis. Missing elements were summarized as key gaps in the executive summary.  

3) Human pharmacokinetic NPDI studies. The third section of the gap analysis consisted 

of the following data extracted from any report of an in vivo pharmacokinetic study for each 

constituent of the NP: formulation and route of NP administration, object drug(s), description of 

the study participants, pharmacokinetic outcome(s), and reference(s). These data were evaluated 

for gaps, such as unstudied major constituents, unknown pharmacokinetic endpoints, and 

unstudied interaction targets. 

4) Bioanalytical methods. The fourth section of the gap analysis consisted of reports of 

LC/MS/MS-based bioanalytical method(s) for quantifying NP constituents in human biological 

matrices, including microsomes, hepatocytes, plasma, and urine. If a large number of LC/MS/MS 

methods were available for a given NP (e.g., forensic methods for analysis of cannabinoids), the 

most recent reports (typically within the last five years) were recorded. Data elements collected 

from each report included the NP constituent(s), the biological matrix analyzed, any other 

pertinent data such as lower limits of detection, and the reference(s). If methods for some 

constituents were not found, this gap was noted in the executive summary. 

5) Executive summary. Members of the Pharmacology Core compiled the gap analysis for 

each NP into an executive summary. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on May 7, 2018 as DOI: 10.1124/dmd.118.081273

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 81273 

Page 11 of 20 
 

Application of the fulcrum model. Mechanistic and descriptive data gaps from each 

executive summary were used to populate the fulcrum model (Fig. 3). This qualitative, conceptual 

decision-making tool was developed to facilitate identification of the final high-priority NPs. For 

this final triage, NPs with a large number of gaps were eliminated because completing the required 

in vitro and in vivo studies during the five-year funding period was not feasible. Conversely, NPs 

with a small number of gaps were triaged because additional experiments were unlikely to yield 

novel information. Finally, NPs with unbalanced gap categories were eliminated because (1) the 

existing evidence could not adequately guide future experiments or (2) at least one of the 

complementary categories of evidence was not sufficient to substantiate the other. Thus, NPs 

that balanced the fulcrum with a moderate quantity of gaps in each category were prioritized. A 

final list of five high-priority NPs emerged from application of this fulcrum model: cannabinoids, 

goldenseal, green tea, licorice, and turmeric. The first four NPs are currently under evaluation by 

the NaPDI Center (Kellogg et al., 2017; Tian et al., 2018).  

 

SUMMARY 

This NaPDI Center Recommended Approach provides one possible solution to the 

longstanding question of how to identify high-priority NPs for NPDI studies. The major labor-

intensive aspect of this Approach is data extraction from both the primary literature and a curated 

database. In the future, this process could be partially automated with appropriate database 

querying methods (Wu et al., 2014). This Recommended Approach also suggests categories of 

evidence gaps that should be considered essential when evaluating NPs and their individual 

constituents as potential NPDI precipitants. 

Application of this Recommended Approach identified five popularly consumed NPs for 

which existing evidence is sufficient to guide further investigation and currently warrants 

reasonable suspicion of clinically significant NPDI liability. Four of these NPs are now the subjects 
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of targeted Interaction Projects, which are designed to fill essential scientific gaps related to NPDI 

potential and, if warranted, conduct clinical pharmacokinetic NPDI studies.  
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FIGURE LEGENDS 

 

Fig. 1. Pathways to drug interaction testing for new chemical entities and natural products. 

Comparison of drug interaction identification processes for new chemical entities (NCEs) (solid 

arrows) versus natural products (dashed arrows). Drug interaction testing for NCEs is an early 

step during preclinical assessment, which includes predicting pharmacokinetic drug-drug 

interactions using in vitro data and static or dynamic models to guide the need for clinical 

assessment. In contrast, drug interaction testing for natural products is not required and is 

typically conducted after case reports of unexpected adverse drug reactions or an unexpected 

loss of efficacy has been reported in humans. 

 

Fig. 2. The NaPDI fulcrum model: balancing evidence in natural product-drug interaction 

prediction. A qualitative, conceptual decision tool, termed the fulcrum model, was developed to 

facilitate selection of the final list of high-priority natural products for drug interaction liability testing 

by the NaPDI Center. The magnitude of evidence gaps in mechanistic (“M”) and descriptive (“D”) 

data categories were balanced against each other. Natural products for which moderate levels of 

evidence gaps balanced each other were prioritized over those that had too few gaps (small 

circles), many gaps (large circles), and/or unbalanced gaps.  

 

Fig. 3. Workflow for identifying natural products as high-risk precipitants of 

pharmacokinetic natural product-drug interactions (NPDIs). An initial list of natural products 

(NPs) was gathered from HerbalGram and the University of Washington Drug Interaction 

Database. A series of elimination steps were used to triage 42 of these NPs, leaving five for 

advancement to NPDI studies by the NaPDI Center. 
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Table 1. Initial list of 47 candidate natural products to study as precipitants of pharmacokinetic 

natural product-drug interactions.  

Rank Natural Product  Rank Natural Product 

1 Horehound  25 Chia seed/chia oil 

2 Cranberry  26 Turmeric 

3 Echinacea  27 Maca 

4 Black cohosh  28 Fenugreek 

5 Flaxseed/flaxseed oil  29 Isoflavones 

6 Valerian  30 Ginseng 

7 Yohimbe  31 St. John’s wort 

8 Bioflavonoid complex  32 Green tea 

9 Saw palmetto  33 Fennel 

10 Ginger  34 Horsetail 

11 Aloe vera  35 Tribulus 

12 Milk thistle  36 White kidney bean 

13 Garlic  37 Evening primrose oil 

14 Cinnamon  38 Kelp 

15 Rhodiola  39 Gymnema 

16 Horny goat weed  40 Grass 

17 Ginkgo  - Berberine 

18 Plant sterols  - Cannabinoids 

19 Red yeast rice  - Feverfew 

20 Elderberry  - Glycyrrhizin 

21 Guarana  - Goldenseal 

22 Coconut oil  - Shisandra chinensis 

23 Senna  - Resveratrol 

24 Ivy leaf    

Candidates 1-40 were obtained from the 2015 HerbalGram report of the top 40 herbal products 

by sales (Smith, 2015). Candidates without a sales rank were obtained from the University of 

Washington Drug Interaction Database (DIDB®, 2018).  
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Table 2. Precipitant natural product candidates advanced to Phase II (n=23).d  

Natural Product 
Presence of In Vivo 
Interactiona (count) 

Absence of In Vivo 
Interactionb (count) 

Total In Vivo 
Interactions (count) 

Total In Vitro 
Targetsc (count) 

Priority 
Level 

Cannabinoids 9 7 16 11 High 

Ginseng 5 3 8 5 High 

Green tea 5 5 10 13 High 

Berberine (from 
goldenseal) 

5 3 8 12 High 

Resveratrol 5 0 5 25 High 

Garlic 4 9 13 5 High 

Glycyrrhizin (from licorice) 3 1 4 14 High 

Goldenseal 2 2 4 3 High 

Cinnamon 1 0 1 2 High 

Red yeast rice 1 1 2 1 High 

Turmeric 1 0 1 3 High 

Schisandra chinensis 

extract 
1 0 1 1 High 

Ginkgo 8 32 40 21 Intermediate 

Echinacea 4 15 19 9 Intermediate 

Cranberry (juice) 2 10 12 4 Intermediate 

Black cohosh 1 5 6 4 Intermediate 

St. John’s wort 50 27 77 12 Low 

Milk thistle 
(including Silymarin 

and silibinin) 
31 17 48 54 Low 

Evening primrose oil 1 0 1 0 Low 

Echinacea (extract 
combination) 

0 1 1 1 Low 

Valerian 0 6 6 7 Low 

Saw palmetto 0 6 6 6 Low 

Ginger 0 3 3 2 Low 

aReports indicating ≥20% change in object drug AUC. bReports indicating <20% change in object 

drug AUC. cReports of in vitro enzyme-, transporter-, or nuclear receptor-mediated interactions 

(inhibition, induction, or activation). Data were extracted from the University of Washington Drug 

Interaction Database (DIDB®, 2018) and tabulated. dEntries are listed by descending priority 

level. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on May 7, 2018 as DOI: 10.1124/dmd.118.081273

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 81273 

 

Page 20 of 20 

Table 3. Structural alerts for constituents in select natural products. 

Constituent(s) / Natural Product Structural Alert 
Alert 

Substructure 

Flavonoids, phenylpropanoids / Echinacea 
Glycyrrhizin, glycyrrhizinic acid / licorice 

Catechols 
 

Isoquinoline alkaloids / goldenseal 
Terpenoids / cinnamon 
Curcuminoids / turmeric 

Masked catechol  

 

Isoquinoline alkaloids / goldenseal 
Shizandrins / Schisandra spp. 
Gomisins / Schisandra spp. 

Methylenedioxyphenyl  
 

Cycloartenol / black cohosh Subterminal olefin 
 

Polyacetylenes / Echinacea 
Terminal and 

subterminal acetylenes 
 

 

Terpenoids / cinnamon 
Diallyl di- and tri-sulfides / garlic 

Terminal olefin 

 

Cinnamaldehyde / cinnamon 
α,β-Unsaturated 

aldehyde 
 

Curcuminoids / turmeric 
α,β-Unsaturated 

ketone 
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