Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions

Using a Probe Drug Cocktail in Cynomolgus Monkey

Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, CT (RK, SL, YB, BT, CC, DR, LT, MV); Research Formulations, Pharmaceutical Sciences, Pfizer Worldwide R&D, Groton, CT (DG, SM).
Running title: Transporter DDI assessment in monkey

Corresponding Author: Manthena V. Varma, Pharmacokinetics, Dynamics, and Metabolism, MS 8220-2451, Pfizer Worldwide R&D, Pfizer Inc., Groton, CT 06340; Phone:+1-860-715-0257. Fax: +1-860-441-6402. E-mail: manthena.v.varma@pfizer.com

Number of text pages: 36
Number of Tables: 5
Number of Figures: 6
Number of references: 66
Number of words in Abstract: 240
Number of words in Introduction: 742
Number of words in Discussion: 1850

ABBREVIATIONS: AUC, area under the plasma concentration-time curve; BCRP, breast cancer resistance protein; drug-drug interaction; CL_{renal}, renal clearance; C_{max}, maximum plasma concentration; ECCS, extended clearance classification system; IC_{50}, inhibitory potency; I_{in,max,u}, unbound maximum plasma liver inlet concentration; I_{int}, intestine concentration; MATE, multidrug and toxin extrusion protein; OAT, organic anion transporter; OATP, organic anion-transporting polypeptide; OCT, organic cation transporter; P-gp, P-glycoprotein.
ABSTRACT

We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP) and talinolol (P-gp) were obtained in cynomolgus monkey—alone or in combination with transporter inhibitors. Single dose rifampicin (30 mg/kg) significantly (p<0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin (AUC ratio ~21-39). Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (p<0.05) impacted the renal clearance of rosuvastatin (~8-fold). In vitro, rifampicin (10µM) inhibited uptake of pitavastatin, rosuvastatin and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP; while talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions.
INTRODUCTION

Prediction of drug-drug interaction (DDI) liability of a new molecular entity (NME) is an important factor to consider during drug design/discovery and development, as such DDIs could impact patient safety or diminish drug efficacy (Bjornsson et al., 2003; Zhang et al., 2007; Bloomer et al., 2013). Transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies are expressed in a variety of organs including intestine, liver and kidney and are increasingly recognized for their key role in the absorption, distribution, clearance and elimination (ADCE) of drugs (Begley, 2004; Lee and Kim, 2004; Shitara et al., 2006; Koepsell et al., 2007; Feng et al., 2010; International Transporter Consortium et al., 2010; Varma et al., 2010; El-Kattan and Varma, 2018). On the basis of established evidences P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptides (OATPs), organic anion and cation transporters (OATs and OCTs) and multidrug and toxic compound extrusion (MATE) transporters are suggested to be of clinical relevance (International Transporter Consortium et al., 2010; Varma et al., 2017a). Regulatory guidance from agencies including European Medical Agency (EMA), the Pharmaceuticals and Medical Devices Agency (PMDA, Japan), and United States Food and Drug Administration (USFDA) now recommend appropriate in vitro and/or in vivo assessment of investigational drugs for potential transporter DDIs (European Medicines Agency, 2012; Saito et al., 2014; Food and Drug Adminstration, 2017). For instance, NME with a potential to inhibit OATP1B1, where in vitro measured inhibition potency (IC$_{50}$ or Ki) \leq 10 times the unbound maximum plasma liver inlet concentration ($I_{in,\text{max,u}}$) at the clinical dose, is predicted to increase systemic exposure of substrate drugs (e.g. statins, sartans and glinides) (Food and Drug Adminstration, 2017).
While the $I_{\text{in, max, u}}$ cannot be physically measured and thus carries some uncertainty, accurate determination of IC_{50} or Ki is a key to the reliable prediction using these methods. Intra- and inter-laboratory variability in the \textit{in vitro} IC_{50} or Ki values and considerable discrepancy in the \textit{in vitro} and the estimated \textit{in vivo} inhibitory potency have been noted previously (Varma et al., 2012; Bentz et al., 2013; Li et al., 2014; Vaidyanathan et al., 2016). For instance, substantial variability was observed in the \textit{in vitro} P-gp IC_{50} values of the 16 inhibitors examined at 23 different laboratories (Bentz et al., 2013). Similarly, we previously noted large interlaboratory variability in the \textit{in vitro} IC_{50} values for OATPs inhibitors; and the geometric mean of the reported \textit{in vitro} Ki values are several folds greater than the estimated apparent \textit{in vivo} Ki for OATP inhibitors (Varma et al., 2012; Li et al., 2014). Retrospectively, this disconnect may be explained by the time-dependent inhibition (Amundsen et al., 2010; Gertz et al., 2013) or substrate-dependent inhibition (Noe et al., 2007; Izumi et al., 2013) or contribution of the circulating metabolites (e.g., gemfibrozil 1-O-β-glucuronide) (Shitara et al., 2004; Shen et al., 2015a; Varma et al., 2015a). The differences in Ki values with different probe substrates and/or varied experimental settings raise uncertainty in DDI assessment. Overall, compared to cytochrome P450 (CYP)-mediated DDIs, the risk of underestimating a potentially hazardous drug interactions involving transporters or transporter-enzyme interplay are relatively high. Recent clinical studies showed encouraging data regarding the utility of endogenous biomarkers for assessing investigational drugs as an inhibitor, particularly against OATP1B1/1B3, OAT1/3 and OCT2/MATEs (Lai et al., 2016; Rodrigues et al., 2017). Also, clinical studies employing multiple probe substrate drug cocktails have been proposed to allow simultaneous assessment of inhibition risk (Stopfer et al., 2016; Pruksaritanont et al., 2017). While these studies show promising results, risk assessment prior to first-in-man studies – needed to nominate the best
candidate into clinical development – still remains a major challenge. It is therefore desirable to establish a preclinical animal model that can project the clinical DDI risk. In this regard, some recent studies suggested utility of the cynomolgus monkey to assess inhibition of drug transporters including OATP, P-gp, BCRP and OAT1/3 (Tahara et al., 2006; Shen et al., 2013; Karibe et al., 2015; Shen et al., 2016).

In this study, we evaluated a cocktail of probe substrates for early assessment of transporter-mediated DDIs using cynomolgus monkey as a preclinical model. The cocktail consisted of probe substrates of OATPs (pitavastatin and rosuvastatin), Pgp (talinolol), BCRP (sulfasalazine) and OAT3 (rosuvastatin); and validated against a single dose oral treatment of an OATP inhibitor (rifampicin), P-gp and BCRP inhibitor (elacridar) or OAT1/3 inhibitor (probenecid). In vitro transport (substrate and inhibition) studies were carried out using membrane vesicle systems and primary monkey and human hepatocytes to corroborate the interaction mechanisms.
MATERIALS AND METHODS

Chemicals and Reagents

Rifampicin (rifampin) was purchased from Sigma-Aldrich (St Louis, MO, USA). Pitavastatin and rosuvastatin were purchased from Sequoia Research Products Ltd. (Oxford, UK). Probenecid and sulfasalazine were purchased from USP (Rockville, Maryland) and elacridar and talinolol were purchased from eNovation Chemicals, LLC (Bridgewater, NJ). InVitroGro-HT and CP and hepatocyte media were purchased from Celsis IVT (Baltimore, MD). Collagen I coated 24-well plates were obtained from BD Biosciences (Franklin Lakes, NJ). Cryopreserved cynomolgus monkey hepatocytes (10106012, female) were purchased from In vitro ADMET Laboratories, LLC (Columbia, Maryland). Cryopreserved human hepatocytes (Hu8246, female, Caucasian, 37 year old) were purchased from Thermo Fisher Scientific (Carlsbad, CA). BCA protein assay kit was purchased from PIERCE (Rockford, IL). Cynomolgus monkey P-gp vesicles (cynoP-gp; Gene information - Macaca fascicularis ABCB1, GenBank accession : NM_001287322.1) and BCRP (cynoBCRP; Gene information - Macaca fascicularis ABCG2, GenBank accession : XM_005555388.1) were provided by Solvo Biotechnology (Budapest, Hungary).

In Vivo Studies with Cynomolgus Monkeys

All procedures performed on these animals were in accordance with regulations and established guidelines, were reviewed and approved by Pfizer Institutional Animal Care and Use Committee, and were conducted at Pfizer Groton (Connecticut). Male Cynomolgus macaque Mauritian monkeys (6 to 9 years of age) were used; and the procedures similar to those previously reported were adopted with some modifications (Varma et al., 2017b; de Bruyn et al., 2018; Ufuk et al., 2018). A cross-over study design was employed, where the same four animals were dosed over
all studies, following a minimum one-week wash-out period between each study. Animals were provided a normal food schedule the day before the study (meals at 8:00 am and 11:00 am, with one treat daily) and were allowed free access to water. Animals were housed in metabolism cages during sample collection. On the day of the study, monkeys were fed at approximately 1h and 3h post-dose and allowed water ad libitum. Blank vehicle, rifampicin (30 mg/kg), elacridar (30 mg/kg), or probenecid (30 mg/kg) were administered via oral gavage in a 0.5%w/v methylcellulose (in water) suspension 30 minutes prior to oral cassette dosing of pitavastatin (1 mg/kg), rosuvastatin (1 mg/kg), talinolol (1 mg/kg), and sulfasalazine (0.5 mg/kg). Sulfasalazine (in 2%v/v dimethylsulfoxide (DMSO): 98%v/v phosphate buffered saline) and talinolol (in 2%v/v DMSO: 10%v/v polyethylene glycol 400: 88%v/v of 12%w/v sulfobutyl ether β-cyclodextrin in water) were also dosed individually at 1 mg/kg and 0.2 mg/kg, respectively, via i.v. administration at a dose volume of 0.5 mL/kg in separate studies to calculate oral bioavailability. Serial blood samples were collected via the femoral vein into K₂EDTA tubes prior to dosing and then at 0.083, 0.25, 0.5, 0.75, 1, 2, 3, 5, 6, and 24 h post-oral cassette dosing.

Blood samples were stored on wet ice prior to being centrifuged to obtain plasma (3000 RPM, 10 minutes at 4°C). Urine was also collected on wet ice, pre-dose and at intervals of 0 to 6 h and 6 to 24 h post-dose. Due to the potential instability of rifampicin and possible inter-conversion of lactone to pitavastatin or rosuvastatin, all plasma and urine samples were equally divided into two aliquots prior to being stored frozen. The first aliquot was untreated matrix, while the second aliquot was added to an equal volume of 0.1M sodium acetate buffer (pH 4). All urine and plasma samples, treated and untreated, were kept cold during collection, after which they were stored frozen at -20°C.
Bioanalysis of In Vivo Samples

The concentrations of elacridar, probenecid, rifampicin, talinolol, pitavastatin, rosuvastatin, and sulfasalazine were measured in plasma and urine samples treated with 0.1M sodium acetate buffer (pH 4) using liquid chromatography–tandem mass spectrometry (LC-MS/MS). All standards were prepared in blank monkey plasma mixed with an equal volume of 0.1M sodium acetate buffer (pH 4). Aliquots of 20 µl of standards or plasma samples were prepared by protein precipitation with 100 µl of acetonitrile containing an internal standard mixture of verapamil (2.5 ng/ml), terfenadine (30 ng/ml), propranolol (12.5 ng/ml) and tolbutamide (5 ng/ml). Urine samples were diluted with 9 volumes of a 50/50 mix of blank monkey plasma/0.1 M sodium acetate buffer (pH 4) and analysed with the plasma samples. The plates were vortexed for 2 min, centrifuged at 3000 rpm for 5 min, and 50 µl supernatants of the mixture were transferred to a new sample block, diluted with 100 µl of water containing 0.1% formic acid, and analysed via LC-MS/MS.

Chromatography was performed on a Waters Acquity iClass UPLC System (Milford, MA). The autosampler and column were kept at at 10°C and 40°C, respectively. Separation was achieved with an Acquity UPLC HSS T3 column (2.1x50mm, 1.8 µm), and a gradient of 0.1% formic acid in water (Mobile Phase A) and 0.1% formic acid in acetonitrile (Mobile Phase B) at a flow rate of 0.600 ml/min. An initial mobile phase composition of 5% B was held for 0.3 min, ramped to 95% over 2 min, held at 95% for 0.3 min, and then returned to initial 5% B over 0.1 minutes for re-equilibration. A Valco VICI valve (Valco Instruments Co., Houston, TX) was used to divert the first 0.3 min and the last 0.3 min of HPLC effluent to waste. The total run time for each
injection was 3 min. Data was collected on an AB Sciex API5500 mass spectrometer (Foster City, CA, USA) using either positive or negative Turbo IonSpray™ electrospray ionization (ESI) and multiple reaction monitoring (MRM) mode. Typical source conditions (heated capillary temperature, gas1, gas2, and curtain gas) were set at 500°C, 40, 60 and 20, respectively. MRM transitions for each analyte, along with the internal standard used, are included in a Supplemental Table S1.

Uptake Studies Using Cryopreserved Plateable Monkey Hepatocytes (PMH)

The hepatic uptake assay was performed using short-term culture format as described previously with some modification (Bi et al., 2017; Bi et al., 2018). Briefly, cryopreserved cynomolgus hepatocytes and human hepatocytes were thawed in the InVitro-HT media at 37°C at a ratio of one or two vials/50 ml in a conical tube. The cells were centrifuged at 50g for 3 minutes and resuspended in In VitroGro-CP medium. The cells were seeded into 24-well collagen I coated plates with 0.35×10^6 cells/well in a volume of 0.5 ml/well. The cells were cultured in the InVitro-CP media overnight (~18h). Cell culture was first rinsed twice with HBSS buffer then preincubated for 30 min at 37°C with HBSS with or without inhibitors. The preincubation buffer was aspirated, and the uptake and inhibition reaction was initiated by addition of prewarmed buffer containing substrates with or without inhibitors. The reactions were terminated at designated time points (0.5 and 2 min) by adding ice-cold HBSS immediately after removal of the incubation buffer. The cells were washed three times with ice cold HBSS and lysed with 100% methanol containing internal standard and the samples were analysed by LC-MS/MS (Supplementary methods). Uptake rates were estimated from the initial time-course (0.5-2min) by linear regression.
In Vitro Transport Studies Using Membrane Vesicles

Vesicle assay buffer (10 mM Tris-base, 250 mM sucrose, 10 mM magnesium chloride) and stop buffer (assay buffer plus 100 mM sodium chloride) were prepared at pH 7.4. For substrate assays, HEK293-cynoBCRP, HEK293-cynoP-gp, and HEK293-mock vesicles were diluted to 50 µg/well in assay buffer and treated with 5 mM ATP and 1 µM of test compound (pitavastatin, rosuvastatin, sulfasalazine, talinolol, or n-methyl quinidine). Assays were incubated at 22°C while shaking. Reactions were stopped at 0.25, 0.5, 1, 2.5, 5 and 10 min by the addition of 200 µl of ice-cold stop buffer. The entire reaction was quickly removed from the assay plate and filtered on a vacuum filter plate (Multiscreen Millipore) then washed four times with ice-cold stop buffer. For inhibition assays, HEK293-cynoBcrp and HEK293-cynoPgp vesicles were diluted to 50 µg/well in assay buffer and were treated with 5 mM ATP, 0.2 µM rosuvastatin (BCRP) or 0.2 µM n-methyl quinidine (P-gp) and varied concentrations of inhibitor (elacridar, probenecid, rifampicin, or control inhibitors Ko143 and PCS833). BCRP and P-gp assays were incubated for 1 and 2 min respectively, at 22°C, while shaking, and were stopped as described above.

Intra-vesicle samples for BCRP and P-gp incubations were extracted by treating the vesicles with 0.1 mL of internal standard (IS) solution in 100% methanol. Vesicles were shaken for 15 minutes at room temperature. Vesicle extracts were transferred to 96-well polypropylene deep-well plates by centrifugation and dried down under nitrogen. Samples were reconstituted in 50:50 methanol:water prior to injection onto a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Samples were analyzed for probe and IS peak areas. LC-MS/MS methods are described in supplementary methods.

Data for BCRP and P-gp assays was acquired using Analyst 1.6.2, and peak area ratios (analyte:IS) were exported into Microsoft Excel. For substrate assays, the amount of analyte uptake was calculated as
transfected:mock peak area ratio. For inhibition assays, percent transporter activity was calculated by the equation:

\[
\text{Percent Activity} = \frac{\text{Area Ratio}_{\text{test inhibitor}} - \text{Area Ratio}_{\text{Control inhibitor}}}{\text{Area Ratio}_{\text{no inhibitor}} - \text{Area Ratio}_{\text{Control inhibitor}}} \times 100
\]

Percent activity values were exported into GraphPad Prism to estimate IC\textsubscript{50} values.

Pharmacokinetic Analysis and Statistics

LC-MS/MS data acquisition and peak integration of plasma and urine samples was performed using Analyst 1.6.2 software (Applied Biosystems/MDS Sciex, Canada). Peak area values were imported into Watson LIMS™ version 7.5 (Thermo Fisher Scientific Inc, Waltham, MA) for standard curve regression, quantitation, and for calculation of model independent, non-compartmental pharmacokinetic parameters: area under the plasma concentration-time curve (AUC), maximum plasma concentration (C\textsubscript{max}) and half-life (t\textsubscript{1/2}). One-way ANOVA was applied to test statistical significance across groups with Tukey’s test for multiple comparisons (Graphpad Software, Inc., San Diego, CA).
RESULTS

Effect of Inhibitors on the Oral Pharmacokinetics of Probe Substrates in Cynomolgus Monkey

Oral pharmacokinetics of four probe substrate drugs (pitavastatin, rosuvastatin, talinolol and sulfasalazine) in a cocktail dosed after treatment with vehicle control or inhibitor drugs (rifampicin, elacridar, probenecid) were studied in cynomolgus monkeys (n=4) (Figure 1). Dose-normalized pharmacokinetics of the probe drugs obtained following cocktail dose in the control arm of this study are in good agreement with the data reported following individual oral dosing (Karibe et al., 2015; Shen et al., 2015b; Varma et al., 2017b; Karibe et al., 2018). Single dose oral rifampicin (30 mg/kg) significantly (one-way ANOVA, p<0.01) increased the plasma exposure of all 4 probe drugs (Figure 2, Tables 1-4). Particularly, rifampicin showed marked effects on OATP substrates, pitavastatin and rosuvastatin – with AUC ratios (ratio of AUC in the presence of inhibitor to vehicle control) of about 39±22 (geometric mean ± s.d.), 21±35, respectively. Interindividual variability in AUC was relatively high (coefficient of variance - CV ~50%) for rosuvastatin in each arm resulting in %CVs up to 100% in AUC ratios (±rifampicin). Variability in AUC of other probes is generally low (25-40% CV).

Rifampicin also significantly increased the plasma C$_{\text{max}}$ of all probe drugs (Figure 2, Tables 1-4). P-gp and BCRP inhibitor, elacridar, significantly increased plasma AUC of talinolol and sulfasalazine. Although statistical significance was not reached (p>0.05), the plasma exposure of pitavastatin and rosuvastatin were increased by ~2.8- and 4.4-fold, respectively, with elacridar. Probenecid, an OAT1/3 inhibitor, did not present a significant effect on the plasma exposure of all the drugs tested, although an increasing trend was apparent for pitavastatin and rosuvastatin (~2-fold). No significant change (p>0.05) in the terminal half-life (T1/2) of the probe drugs was
observed. This reflects expected decrease in both systemic clearance and volume of distribution of statins due to OATP1B inhibition by rifampicin (Ufuk et al., 2018). For talinolol and sulfasalazine, lack of T_{1/2} change may suggest limited effect of the inhibitors on their systemic clearance. The plasma T_{max} of pitavastatin, talinolol and sulfasalazine was not affected by any inhibitor. However, rifampicin and elacridar reduced the T_{max} of rosuvastatin from about 3.5h to 0.8-1.8h.

Probenecid, but not rifampicin or elacridar, markedly decreased (p<0.05) the renal clearance of rosuvastatin – renal clearance ratio (i.e., CL<sub>renal,+inh/CL_{renal control}</i>) of ~7.8 (Table 2). However, talinolol renal clearance was not inhibited by any inhibitor. On the other hand, urinary excretion of pitavastatin and sulfasalazine is negligible or often undetectable.

Plasma samples from these studies were measured to obtain concentration-time profiles of inhibitor drugs (Figure 3). The unbound C_{max} of rifampicin was about 10.7µM (total C_{max}, 50.8µM; measured monkey f_{u,plasma}, 0.21). In the case of elacridar, unbound C_{max} is less than 0.1nM (total C_{max}, ~100nM; f_{u,plasma}, 0.001). On the other hand, unbound C_{max} of probenecid at this given dose is about 76µM (total C_{max}, 588µM; f_{u,plasma}, 0.13). Through the time-course of 24h, rifampicin plasma unbound concentrations are well above the in vitro IC₅₀ (0.54 µM (Ufuk et al., 2018)) for uptake inhibition in monkey hepatocytes (Figure 3). Similarly, probenecid plasma unbound concentrations are several fold higher than its in vitro IC₅₀ (3.0µM, (Tahara et al., 2006) obtained in monkeyOAT3 transfected cells. Monkey plasma unbound concentrations of elacridar are however negligible. Additionally, unbound concentrations reached in the present monkey studies are within the range observed in human; 2-6µM for 600 mg rifampicin (Varma et al., 2012; Prueksaritanont et al., 2014; Yoshikado et al., 2017); <1nM for 1000 mg elacridar (Sawicki et al., 2017); 6-51µM for 500-1500 mg probenecid (Mathialagan et al., 2017).
Effect of Inhibitors on the In Vitro Uptake of Probe Substrates by Cynomolgus Monkey and Human Hepatocytes

Uptake of each of the four probe substrate drugs was evaluated in monkey and human hepatocytes (short-term culture format) in the absence and presence of the inhibitors – at concentrations close to their corresponding unbound C_{max} for rifampicin and probenecid. Elacridar was incubated at 0.1μM, which is much above its unbound C_{max}. Rifampicin (10μM) significantly inhibited uptake of pitavastatin, rosuvastatin and sulfasalazine, in both monkey and human hepatocytes (Figure 4). Elacridar (0.1μM) did not show inhibition of hepatic uptake for any substrate. Interestingly, probenecid (50μM) significantly inhibited uptake of statins and sulfasalazine by cynomolgus monkey hepatocytes; however, only a marginal inhibition (10-15%) was noted in human hepatocytes. Apart from this difference, interaction mechanism(s) involving hepatic uptake for each substrate-inhibitor pair are comparable across the two species.

Effect of Inhibitors on the In Vitro Transport of Probe Substrates in cynoBCRP and cynoP-gp Membrane Vesicles

We first evaluated pitavastatin, rosuvastatin, sulfasalazine and talinolol for their substrate affinity to cynoBCRP and cynoP-gp using membrane vesicles prepared from transfected HEK293 cells (Figure 5). Time-dependent uptake was observed with cynoBCRP vesicles for pitavastatin, rosuvastatin and sulfasalazine. Talinolol showed significant uptake by cynoP-gp vesicles compared to mock vesicles. Interestingly, P-gp mediated transport was also seen for rosuvastatin although the activity is notably small compared to cynoBCRP activity (Figure 5 B and F).
Using rosuvastatin and NMQ as substrates (validated for the intended use with control inhibitors Ko143 and PSC833, respectively), cyoBCRP and cyoP-gp inhibition was evaluated for elacridar, rifampicin and probenecid. Elacridar and rifampicin showed concentration-dependent inhibition of both cyoBCRP and cyoP-gp-mediated transport, while probenecid had a minimal effect up to 300 μM (Figure 6). Inhibition potency (IC50) estimates are provided in Table 5. Additionally, IC50s of the inhibitor drugs against human BCRP and P-gp were extracted from the literature and compared to the cynomolgus monkey. Based on the ratio of gut concentration [IGut, calculated as a ratio of dose to gut volume, where gut volume was assumed to be 250 ml for humans and 10 ml/kg for monkey (Amidon et al., 1995; Kararli, 1995)] to IC50, elacridar and rifampicin show high potential for in vivo intestinal efflux inhibition in both cynomolgus monkey and human (i.e., IGut/IC50 >>10) (Table 5).
DISCUSSION

De-risking DDIs involving membrane transporters is an essential part of medicinal chemistry design and drug development. However, translation of in vitro IC$_{50}$ (or Ki) values to assess DDI potential is challenged with poorly understood substrate-, incubation time- and in vitro system-dependent measurements. Here, we evaluated a cocktail of probe substrates to simultaneously assess the in vivo inhibition potency of NMEs against clinically relevant transporters, OATP1B1/1B3, P-gp, BCRP and OAT3, using cynomolgus monkey as a preclinical animal model. The proposed cocktail of four probe drugs has been validated in vivo using relatively selective inhibitor drugs. In vitro studies using primary hepatocytes and membrane vesicles verified the interaction mechanisms in the cynomolgus monkey; and further implied similarities in the transporter-mediated disposition in this preclinical model and humans. Although the concept of a transporter probe drug cocktail has been tested clinically (Stopfer et al., 2016; Prueksaritanont et al., 2017), to our knowledge this is the first report of a study employing such a cocktail in cynomolgus monkeys. This approach can thus be valuable in assessing the transporter inhibition potential of NMEs before advancing into first-in-man studies, in rational staging of clinical DDI studies during drug development, and to substantiate in vitro findings in the regulatory submissions.

The probe substrates selected for the proposed cocktail are shown to be associated with the drug transporters of interest based on the clinical pharmacokinetics, DDI and pharmacogenomics studies. Pitavastatin and rosuvastatin represent extended clearance classification system (ECCS) class 1B and class 3B, respectively, where OATP-mediated hepatic uptake play rate-determining role in the systemic clearance in humans (Shitara et al., 2013; Varma et al., 2015b; El-Kattan et al., 2016). In vitro, both statins are transported by human OATP1B1/1B3/2B1 and NTCP, while
rosuvastatin is also a substrate to BCRP (Shitara et al., 2013). Renal clearance of pitavastatin in humans is low, but rosuvastatin show up to 30% dose excretion in urine, and involve OAT3-mediated renal secretion (Mathialagan et al., 2017). OATP1B1/1B3 inhibition by a single dose rifampicin perpetrates ~3-7 fold AUC increase for rosuvastatin and pitavastatin in humans (Prueksaritanont et al., 2014; Prueksaritanont et al., 2017). On the other hand, sulfasalazine (ECCS class 3A) and talinolol (ECCS class 4) are low permeability drugs with limited oral absorption in humans (El-Kattan et al., 2016). Consequently, clinical pharmacokinetics of sulfasalazine and talinolol are considerably altered when co-administered with BCRP and P-gp inhibitors, respectively (Gramatte et al., 1996; Gramatte and Oertel, 1999). While sulfasalazine is a preferred drug to probe BCRP inhibition in clinical studies (Lee et al., 2015), digoxin is commonly used to assess intestinal P-gp activity (Fenner et al., 2009; Food and Drug Administration, 2017). In our preliminary studies, a combination of single dose digoxin (0.25 mg/kg) and sulfasalazine (1 mg/kg) caused minor adverse events in the cynomolgus monkeys (i.e., emesis in the first 24h and lack of appetite for up to 96h) (data not shown). We speculated that digoxin is the major source for these effects on the basis of its toxicity profile in human (MacLeod-Glover et al., 2016), and thus considered talinolol as an alternative to measure P-gp function. Talinolol is very similar to digoxin in regard to the disposition attributes in human. For instance, P-gp inhibitors such as curcumin, erythromycin and verapamil increase oral exposure of both drugs in humans (Gramatte et al., 1996; Gramatte and Oertel, 1999; Fenner et al., 2009). Additionally, clinical pharmacokinetics of both talinolol and digoxin are influenced by rifampicin induced P-gp mediated secretion (Greiner et al., 1999; Westphal et al., 2000). Finally, the four probe drugs are minimally metabolized in the human and monkey (Elsby et al., 2012; Shitara et al., 2013; Takahashi et al., 2013; Karibe et al., 2015; Shen et al., 2015a; El-Kattan et
al., 2016; Karibe et al., 2018), making them suitable candidates to reliably probe transporter activity.

Of the transporter-mediated clinical DDIs, interactions involving OATP1B1/1B3 often result in larger exposure change for victim drugs and are of particular interest for risk mitigation during drug design (International Transporter Consortium et al., 2010; Varma et al., 2017a; El-Kattan and Varma, 2018). Rifampicin dramatically increased exposure of OATP substrates pitavastatin and rosuvastatin in cynomolgus monkey (Figure 1 and 2). Given high oral absorption (60-80% (Ufuk et al., 2018)) and negligible renal clearance in monkey, pitavastatin interaction may predominantly involve OATP1B1/1B3. Rosuvastatin interaction is likely driven by multiple mechanisms (i.e., intestinal efflux and hepatic uptake); and thus, could serve to confirm the interactions with pitavastatin (OATP1B) and sulfasalazine (BCRP). Moreover, change in rosuvastatin renal clearance can be used as a surrogate for OAT3 inhibition. However, oral AUC change of about 39- and 21-fold for pitavastatin and rosuvastatin observed here in the monkeys is much higher than that noted in humans (~3-7 fold for both statins) (Prueksaritanont et al., 2014; Prueksaritanont et al., 2017). While the magnitude change is also considerably higher than reported by others at slightly lower doses of rifampicin in cynomolgus monkey (up to 15 mg/kg) (Shen et al., 2013; Watanabe et al., 2015), the current results are nevertheless in line with our previous report where a single oral rifampicin dose (30 mg/kg) increased AUC of oral pitavastatin and rosuvastatin by ~19 and ~15-fold, respectively (Ufuk et al., 2018). Rifampicin unbound C_{max} achieved in monkey (~10 µM) at 30 mg/kg dose is relatively higher (~2-5 fold) than the unbound C_{max} in human (~2-6 µM) following single 600 mg dose (Varma et al., 2012; Prueksaritanont et al., 2014; Yoshikado et al., 2017). While this may contribute to the higher exposure change in the monkey study to some degree, other factors such as involvement of
OATP2B1 in hepatic uptake clearance in humans – which is not inhibitable by rifampicin at \textit{in vivo} relevant plasma concentrations (OATP2B1 \textit{in vitro} IC\textsubscript{50} > 60 \mu M), may also contribute to difference in AUC ratios of statins. Notably, monkey express low levels of OATP2B1 in the liver suggesting that the fraction transported by OATP1B1/1B3 is relatively higher in monkey than in humans (Wang et al., 2015). On the other hand, magnitude of interactions registered in this study with the probe substrates and BCRP/P-gp inhibitor (elacridar) are comparable with previous reports (Karibe et al., 2015; Karibe et al., 2018). While clinical data are limited, the AUC change for sulfasalazine with a BCRP inhibitor (curcumin) is about 3-fold in humans (Kusuhara et al., 2012), which is comparable to its exposure change noted in the monkey. Collectively, the mechanisms of transporter interactions are well preserved across the two species. However, further diligence via in vitro studies and mechanistic modeling would be needed to quantitatively extrapolate monkey DDIs to human.

Interestingly, probenecid significantly inhibited statins uptake by monkey hepatocytes (Figure 4A), which may explain ~2-3 fold change in plasma exposure in our monkey studies (Table 1 and 2). However, the effect of probenecid on uptake is nominal and not statistically significant in human hepatocytes (Figure 4B). Previous studies have shown in vitro OATP1B1 inhibition by probenecid at clinically relevant concentrations (Izumi et al., 2016). Clinical data on the inhibitory effect of probenecid on hepatic uptake is not directly available. However, we believe that ~50-70% increase in fexofenadine plasma AUC by probenecid is at least partly due to hepatic uptake inhibition (Liu et al., 2008). Fexofenadine bioavailability is ~35% (Lappin et al., 2010), and therefore, inhibition of OAT3-mediated renal clearance resulting in a change in the amount of dose excreted in urine from ~8% to 4% alone cannot explain the noted AUC change (Liu et al., 2008). On the other hand, sulfasalazine uptake in monkey and human hepatocytes was
inhibited by rifampicin in vitro; therefore, contribution of uptake clearance to sulfasalazine AUC change when dosed with rifampicin cannot be ruled out. Further studies are warranted in understanding role of hepatic uptake in the disposition of sulfasalazine, which is currently recommended as a clinical probe to assess BCRP inhibition.

In our previous study, the AUC ratios of both intravenous and oral pitavastatin with increasing doses of oral rifampicin (1-30 mg/kg) in cynomolgus monkey were well predicted from in vitro IC₅₀ data assuming inhibition of only OATP1B-mediated hepatic uptake (Ufuk et al., 2018). However, in case of rosuvastatin, AUC ratios were well predicted following intravenous administration of rosuvastatin, but underpredicted following oral dose, particularly at higher doses of rifampicin. The current study suggests that the disconnect in the in vitro-in vivo extrapolation of rosuvastatin-rifampicin DDIs is due to lack of consideration to BCRP-mediated intestinal efflux. Rifampicin increased plasma exposure of BCRP (sulfasalazine) and P-gp (talinolol) substrates implying that rifampicin inhibited intestinal efflux in cynomolgus monkey. Rifampicin inhibited cynoBCRP and cynoP-gp in our in vitro studies using membrane vesicles (Figure 6). Simple I₅₀/IC₅₀ calculations suggested that rifampicin considerably inhibit intestinal efflux at the dose employed (Table 5). A comparison of these findings with IC₅₀s for human BCRP and P-gp and the corresponding I₅₀/IC₅₀ values indicate that rifampicin can impact clinical pharmacokinetics of BCRP and P-gp substrates at the dose (600mg single dose) recommended to probe OATP1B activity. Similarly, Iₜₚ/IC₅₀ values of ~0.14-0.76 imply potential for rifampicin to inhibit P-gp and BCRP-mediated biliary secretion in both species. These values are likely an underestimation given rifampicin show high liver-to-plasma free concentrations in vivo (Zaher et al., 2008). However, contribution of this mechanism to the observed plasma exposure changes of probe substrates depend on multiple components of
extended clearance model (Varma et al., 2014). This in vitro–in vivo analysis collectively support the premise that rifampicin clinical DDIs should be rationalized by accounting for both OATP1B-mediated hepatic uptake and biliary efflux, as well as, intestinal efflux of victim drugs.

In agreement with others (Tahara et al., 2006; Shen et al., 2013; Karibe et al., 2015; Shen et al., 2016), the results of the present study support the utility of the cynomolgus monkey as a model species for assessing transporter-mediated DDIs involving OATPs, P-gp, BCRP and OAT1/3. In the case of OATPs and OAT1/3, efforts have been made to identify, characterized, and validate suitable biomarkers to support clinical DDI studies (Rodrigues et al., 2017; Lai et al., 2016). Therefore, it may be possible to use the cynomolgus monkey, integrated with clinically validated biomarkers, to quickly discharge DDI risk or prioritize dedicated (drug probe-based) clinical DDI studies. To date, however, suitable biomarkers for intestinal P-gp and BCRP have not been identified, and DDI predictions as well as in vitro-in vivo extrapolations (IVIVEs) involving both transporters remain challenging. In this regard, the cynomolgus monkey has potential to serve as a model to drive IVIVEs involving P-gp and BCRP inhibition and support human DDI risk assessment. Obviously, one would have to consider, and account for, species differences in perpetrator absorption, exposure, and intrinsic inhibitory potency. As described herein, the latter can be addressed with in vitro studies using human and monkey vesicles and primary hepatocytes.

Although DDIs involving hepatic OCT1 and renal OCT2/MATEs are also suggested to be clinically relevant, the change in pharmacokinetics of substrate drugs is often marginal (AUC ratio <1.5) (Varma et al., 2017a). Arguably, preclinical DDI risk assessments in such cases do not definitively inform the decision to progress NMEs to clinical development. Therefore, the proposed cocktail did not include OCT1/OCT2/MATE probe substrates. Nevertheless, a separate
DDI study in cynomolgus monkey using metformin as a probe substrate could be conducted (Shen et al., 2015a). Alternatively, changes in creatinine levels measured in preclinical toxicology studies potentially indicate inhibition of OCT2 and/or MATEs (Fuchs and Hewitt, 2011). Such findings can form basis for monitoring endogenous biomarkers such as creatinine and N1-methylnicotinamide in first-in-man studies, which in turn can determine the need for a dedicated clinical DDI study with a drug probe (Rodrigues et al., 2017).

CONCLUSION

In conclusion, the proposed approach for simultaneously assessing major transporter-mediated DDIs using a probe substrate cocktail in cynomolgus monkey can be valuable in drug design and clinical development. Such preclinical in vivo data in conjunction with in vitro interaction assessments can help flag the unforeseen interaction risks or avoid unnecessary clinical DDI studies. Finally, this study confirms similarities in drug handling by major transporters between human and cynomolgus monkey, suggesting the latter is a viable in vivo model for mechanistic investigation of transporter-mediated disposition and pharmacokinetic interaction.
ACKNOWLEDGMENTS

Authors would like to thank Solvo Biotechnology (Budapest, Hungary) for providing cynomolgus monkey BCRP and P-gp membrane vesicles. We acknowledge Marko Andric, Emese Kis and Beáta Tóth for the technical inputs regarding the membrane vesicles assays.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Kosa, Lazzaro, Rodrigues, Tremaine, Varma

Conducted experiments: Kosa, Lazzaro, Bi, Tierney, Gates, Modi

Performed data analysis: Kosa, Lazzaro, Bi, Tierney, Gates, Modi, Costales, Varma

Wrote or contributed to the writing of the manuscript: Kosa, Lazzaro, Bi, Tierney, Gates, Modi, Costales, Rodrigues, Tremaine, Varma
CONFLICT OF INTEREST

All authors are full-time employees of Pfizer Inc. The authors have no conflicts of interest that are directly relevant to this study.
REFERENCES

Figure Captions:

Figure 1. Plasma concentration-time profiles of (A) pitavastatin, (B) rosuvastatin, (C) talinolol and (D) sulfasalazine following oral dose of cocktail – alone and in combination with inhibitor drugs, rifampicin, elacridar or probenecid in cynomolgus monkey. N=4 (mean±s.d.). Vehicle control (circles), rifampicin (triangles), elacridar (diamonds) or probenecid (squares) was dosed 1h prior to the oral dose of probe drugs cassette. Inserts show early time points on linear scale for clarity.

Figure 2. Effect of single dose rifampicin, elacridar and probenecid (30mg/kg each) on the plasma AUC_{0-t} and C_{max} of transporter probe drugs (A) pitavastatin, (B) rosuvastatin, (C) talinolol, and (D) sulfasalazine following oral dosing of cocktail in cynomolgus monkey. Bars and error-bars represent mean±s.d. (n=4). Open datapoint, excluded for the analysis in elacridar treatment group due to considerable deviation from the remaining three animals. Individual data points also shown. ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05 (One-way ANOVA with Tukey test for multiple group comparison).

Figure 3. Unbound plasma concentration-time profiles of inhibitor drugs dosed with probe drug cassette in cynomolgus monkey. (A) rifampicin, (B) elacridar, and (C) probenecid were dosed at 30 mg/kg each. N=4 (mean±s.d.). Horizontal lines depict hepatic uptake inhibition IC_{50} of rifampicin and renal OAT3 IC_{50} of probenecid.
Figure 4. In vitro uptake transport of probe substrates by plated monkey hepatocytes (A) and human hepatocytes (B). Uptake was measured in the absence and presence of rifampicin, elacridar and probenecid at concentrations close to their unbound \(C_{\text{max}}\) observed in the in vivo studies. Substrate concentration is 1\(\mu\)M. Mean ± sd. (n=3). *\(p<0.05\) significantly lower than control (One-way ANOVA).

Figure 5. Transport of four probe drugs by cynoBCRP and cynoP-gp in membrane vesicles. Time-course of uptake of pitavastatin (A), rosuvastatin (B), talinolol (C) and sulfasalazine (D) in Mock (squares) and cynoBCRP (circles) membrane vesicles. Time-course of uptake of pitavastatin (E), rosuvastatin (F), talinolol (G) and sulfasalazine (H) in Mock (squares) and cynoP-gp (circles) membrane vesicles. (n=2-3).

Figure 6. Inhibition of cynoBCRP mediated rosuvastatin transport (A) and cynoP-gp mediated uptake of N-methyl quinidine transport (B) by rifampicin, elacridar, probenecid and inhibitor controls in membrane vesicles.
Table 1. Summary of pharmacokinetic parameters of pitavastatin following oral dosing of probe drug cassette in cynomolgus monkey, alone or in combination with single oral doses of rifampicin, elacridar or probenecid.

<table>
<thead>
<tr>
<th>PK Parameters</th>
<th>Control</th>
<th>+ Rifampicin</th>
<th>+ Elacridar<sup>a</sup></th>
<th>+ Probenecid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0-t</sub> (ng*h/mL)</td>
<td>139 ± 46</td>
<td>5322 ± 1655****</td>
<td>341 ± 67</td>
<td>391 ± 120</td>
</tr>
<tr>
<td>AUC Ratio</td>
<td>-</td>
<td>(39 ± 22)</td>
<td>(2.8 ± 1.0)</td>
<td>(1 ± 1.0)</td>
</tr>
<tr>
<td>AUC<sub>0-inf</sub> (ng*h/mL)</td>
<td>206 ± 25</td>
<td>5460 ± 1750</td>
<td>372 ± 54</td>
<td>175 ± 106</td>
</tr>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>35 ± 14</td>
<td>2162 ± 882***</td>
<td>136 ± 9.2</td>
<td>119 ± 95</td>
</tr>
<tr>
<td>C<sub>max</sub> Ratio</td>
<td>-</td>
<td>(62 ± 33)</td>
<td>(3.9 ± 2.6)</td>
<td>(1.8 ± 5.3)</td>
</tr>
<tr>
<td>T<sub>max</sub> (h)</td>
<td>0.7 ± 0.3</td>
<td>0.8 ± 0.2</td>
<td>0.6 ± 0.4</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>T<sub>1/2</sub> (h)</td>
<td>13.9 ± 5.9</td>
<td>4.9 ± 0.5</td>
<td>9.4 ± 3.0</td>
<td>9.9 ± 3.2</td>
</tr>
<tr>
<td>% Bioavailability<sup>b</sup></td>
<td>20 ± 5</td>
<td>-</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>% Unchanged drug in Urine in 24h</td>
<td>0.3 ± 0.2</td>
<td>5.3 ± 1.4</td>
<td>0.2 ± 0.2</td>
<td>ND</td>
</tr>
<tr>
<td>CL<sub>renal</sub> (mL/min/kg)</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Values depict mean ± s.d. for pharmacokinetic parameters, and (geometric mean ± s.d.) where ratio of treatment to control group was shown.

^a(n=3), one animal was excluded for the analysis in this treatment group due to considerable deviation from the remaining three animals.

^b% Bioavailability is calculated based on plasma exposure following intravenous administration of 0.2 mg/kg in the same monkeys (Ufuk et al., 2018).

Statistical significance for AUC_{0-t}, C_{max}, T_{1/2} and CL_{renal} was tested by One-way ANOVA with Tukey test for multiple group comparison. ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05.
Table 2. Summary of pharmacokinetic parameters of rosuvastatin following oral dosing of probe drug cassette in cynomolgus monkey, alone or in combination with single oral doses of rifampicin, elacridar or probenecid.

<table>
<thead>
<tr>
<th>PK Parameters</th>
<th>Control</th>
<th>+ Rifampicin</th>
<th>+ Elacridar<sup>a</sup></th>
<th>+ Probenecid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0-t</sub> (ng*h/mL)</td>
<td>26±12</td>
<td>573±302**</td>
<td>96±56</td>
<td>70±49</td>
</tr>
<tr>
<td>AUC Ratio</td>
<td>-</td>
<td>(21.3±35)</td>
<td>(4.4±3.1)</td>
<td>(2.6±1.3)</td>
</tr>
<tr>
<td>AUC<sub>0-inf</sub></td>
<td>41±9</td>
<td>682±180</td>
<td>106±61</td>
<td>92±33</td>
</tr>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>2.0±0.3</td>
<td>127±62**</td>
<td>13.1±4.1</td>
<td>8.4±6.5</td>
</tr>
<tr>
<td>C<sub>max</sub> Ratio</td>
<td>-</td>
<td>(57±42)</td>
<td>(6.5±1.2)</td>
<td>(3.5±2.8)</td>
</tr>
<tr>
<td>T<sub>max</sub> (h)</td>
<td>3.5±1.7</td>
<td>0.8±0.2</td>
<td>1.8±1.5</td>
<td>3.0±2.2</td>
</tr>
<tr>
<td>T<sub>1/2</sub> (h)</td>
<td>13.0±3.8</td>
<td>6.9±3.1</td>
<td>7.6±0.9</td>
<td>10.5±7.5</td>
</tr>
<tr>
<td>% Bioavailability<sup>b</sup></td>
<td>6±3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Unchanged drug in Urine in 24h</td>
<td>1.1±0.4</td>
<td>9.3±3.3</td>
<td>1.3±0.8</td>
<td>0.3±0.1</td>
</tr>
<tr>
<td>CL<sub>renal</sub> (mL/min/kg)</td>
<td>5.3±1.9</td>
<td>3.3±1.7</td>
<td>3.6±2.8</td>
<td>1.0±0.7*</td>
</tr>
<tr>
<td>CL<sub>renal</sub> Ratio</td>
<td>(1.4±1.1)</td>
<td>(2.1±1.4)</td>
<td>(7.8±3.7)</td>
<td></td>
</tr>
</tbody>
</table>

Values depict mean ± s.d. for pharmacokinetic parameters, and (geometric mean ± s.d.) where ratio of treatment to control group was shown.

^a(n=3), one animal was excluded for the analysis in this treatment group due to considerable deviation from the remaining three animals.

^b% Bioavailability is calculated based on plasma exposure following intravenous administration of 0.2 mg/kg in the same monkeys (Ufuk et al., 2018).

Statistical significance for AUC_{0-t}, C_{max}, T_{1/2} and CL_{renal} was tested by One-way ANOVA with Tukey test for multiple group comparison. ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05.
Table 3. Summary of pharmacokinetic parameters of a P-gp probe substrate, talinolol, following oral dosing of probe drug cassette in cynomolgus monkey, alone or in combination with single oral doses of rifampicin, elacridar or probenecid.

<table>
<thead>
<tr>
<th>PK Parameters</th>
<th>Control</th>
<th>+ Rifampicin</th>
<th>+ Elacridar(^a)</th>
<th>+ Probenecid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(_{0-t}) (ng*h/mL)</td>
<td>108±49</td>
<td>304±65**</td>
<td>261±23*</td>
<td>196±97</td>
</tr>
<tr>
<td>AUC Ratio</td>
<td>-</td>
<td>(3.0±0.9)</td>
<td>(2.4±1.0)</td>
<td>(1.8±0.4)</td>
</tr>
<tr>
<td>AUC(_{0-inf}) (ng*h/mL)</td>
<td>131±44</td>
<td>335±46</td>
<td>270±22</td>
<td>208±94</td>
</tr>
<tr>
<td>C(_{max}) (ng/mL)</td>
<td>31±24</td>
<td>133±35**</td>
<td>105±16*</td>
<td>45±29</td>
</tr>
<tr>
<td>C(_{max}) Ratio</td>
<td>-</td>
<td>(5.3±4.2)</td>
<td>(3.1±1.7)</td>
<td>(1.5±1.1)</td>
</tr>
<tr>
<td>T(_{max}) (h)</td>
<td>1.1±0.6</td>
<td>0.8±0.3</td>
<td>0.5±0.2</td>
<td>1.1±0.6</td>
</tr>
<tr>
<td>T(_{1/2}) (h)</td>
<td>8.8±3.8</td>
<td>5.7±1.4</td>
<td>5.0±1.8</td>
<td>6.6±2.1</td>
</tr>
<tr>
<td>% Bioavailability(^b)</td>
<td>9±2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Unchanged drug in Urine in 24h</td>
<td>2.2±0.7</td>
<td>2.4±0.7</td>
<td>1.8±1.3</td>
<td>1.1±0.5</td>
</tr>
<tr>
<td>CL(_{renal}) (mL/min/kg)</td>
<td>2.9±1.2</td>
<td>1.3±0.4</td>
<td>0.8±0.4</td>
<td>1.1±0.5</td>
</tr>
<tr>
<td>CL(_{renal}) Ratio</td>
<td>(2.2±1.0)</td>
<td>(2.8±0.8)</td>
<td>(2.6±0.8)</td>
<td></td>
</tr>
</tbody>
</table>

Values depict mean ±s.d. for pharmacokinetic parameters, and (geometric mean ±s.d.) where ratio of treatment to control group was shown.
\(^a\)(n=3), one animal was excluded for the analysis in this treatment group due to considerable deviation from the remaining three animals.
\(^b\)% Bioavailability is calculated based on plasma exposure following single intravenous administration of 0.2 mg/kg in the same monkeys (data not shown).
Statistical significance for AUC\(_{0-t}\), C\(_{max}\), T\(_{1/2}\) and CL\(_{renal}\) was tested by One-way ANOVA with Tukey test for multiple group comparison. ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05.
Table 4. Summary of pharmacokinetic parameters of a BCRP probe substrate, sulfasalazine, following oral dosing of probe drug cassette in cynomolgus monkey, alone or in combination with single oral doses of rifampicin, elacridar or probenecid.

<table>
<thead>
<tr>
<th>PK Parameters</th>
<th>Control</th>
<th>+ Rifampicin</th>
<th>+ Elacridar(^a)</th>
<th>+ Probenecid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC(_{0-t}) (ng*h/mL)</td>
<td>100±41</td>
<td>336±55(^**)</td>
<td>298±56(^*)</td>
<td>144±102</td>
</tr>
<tr>
<td>AUC Ratio</td>
<td>-</td>
<td>(3.5±1.3)</td>
<td>(3.2±1.9)</td>
<td>(1.3±1.8)</td>
</tr>
<tr>
<td>AUC(_{0-tf}) (ng*h/mL)</td>
<td>104±38</td>
<td>364±61</td>
<td>397±220</td>
<td>150±104</td>
</tr>
<tr>
<td>C(_{max}) (ng/mL)</td>
<td>78±39</td>
<td>186±61(^*)</td>
<td>200±17(^*)</td>
<td>67±35</td>
</tr>
<tr>
<td>C(_{max}) Ratio</td>
<td>-</td>
<td>(2.5±2.0)</td>
<td>(2.8±2.1)</td>
<td>(1.2±2.8)</td>
</tr>
<tr>
<td>T(_{max}) (h)</td>
<td>0.6±0.3</td>
<td>0.9±0.1</td>
<td>0.7±1.4</td>
<td>0.9±0.3</td>
</tr>
<tr>
<td>T(_{1/2}) (h)</td>
<td>0.7±0.5</td>
<td>4.0±5.0</td>
<td>3.6±5.1</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>% Bioavailability(^b)</td>
<td>5±1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Unchanged drug in Urine in 24h</td>
<td>ND</td>
<td>1.3±0.4</td>
<td>1.4±0.2</td>
<td>ND</td>
</tr>
<tr>
<td>CL(_{renal}) (mL/min/kg)</td>
<td>ND</td>
<td>0.3±0.1</td>
<td>0.4±0.1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Values depict mean ± s.d. for pharmacokinetic parameters, and (geometric mean ± s.d.) where ratio of treatment to control group was shown.

\(^a\)(n=3), one animal was excluded for the analysis in this treatment group due to considerable deviation from the remaining three animals.

\(^b\)% Bioavailability is calculated based on plasma exposure following single intravenous administration of 5 mg/kg, reported by (Karibe et al., 2015).

Statistical significance for AUC\(_{0-t}\), C\(_{max}\), T\(_{1/2}\) and CL\(_{renal}\) was tested by One-way ANOVA with Tukey test for multiple group comparison. ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05.
Table 5. In vitro and in vivo inhibition potency of intestinal efflux transporters by inhibitors.

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Cyno P-gp IC<sub>50</sub> (µM)</th>
<th>Cyno BCRP IC<sub>50</sub> (µM)</th>
<th>Human P-gp IC<sub>50</sub> (µM)<sup>†</sup></th>
<th>Human BCRP IC<sub>50</sub> (µM)<sup>†</sup></th>
<th>Cyno Gut conc (µM)<sup>‡</sup></th>
<th>Human Gut conc (µM)<sup>‡</sup></th>
<th>Cyno P-gp I<sub>Gut/IC<sub>50</sub></i></th>
<th>Human P-gp I<sub>Gut/IC<sub>50</sub></i></th>
<th>Cyno BCRP I<sub>Gut/IC<sub>50</sub></i></th>
<th>Human BCRP I<sub>Gut/IC<sub>50</sub></i></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampicin</td>
<td>14.3</td>
<td>79</td>
<td>23</td>
<td>14</td>
<td>3645</td>
<td>2916</td>
<td>255</td>
<td>46</td>
<td>127</td>
<td>208</td>
</tr>
<tr>
<td>Elacridar</td>
<td>0.6</td>
<td>0.16</td>
<td>0.09</td>
<td>0.5</td>
<td>5319</td>
<td>2837</td>
<td>8865</td>
<td>3324</td>
<td>31521</td>
<td>5674</td>
</tr>
<tr>
<td>Probenecid</td>
<td>-</td>
</tr>
<tr>
<td>PSC833 (P-gp control)</td>
<td>0.24</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ko143 (BCRP control)</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[†]Human IC₅₀ values were extracted from University of Washington drug interaction database (DIDB, www.druginteractioninfo.org).

[‡]Monkey I_{Gut} was calculated based on rifampicin/elacridar dose of 30 mg/kg and assuming luminal volume of 10 ml/kg. Human I_{Gut} was calculated based on rifampicin/elacridar dose of 600 mg/400 mg and assuming luminal volume of 250 ml (Amidon et al., 1995; Kararli, 1995).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

CynoBCRP mediated transport

(A) (B) (C) (D)

CynoP-gp mediated transport

(E) (F) (G) (H)
Figure 6