When does the rate-determining step in the hepatic clearance of a drug switch from sinusoidal uptake to all hepatobiliary clearances? Implications for predicting drug-drug interactions

Gabriela I. Patilea-Vrana and Jashvant D. Unadkat

Department of Pharmaceutics, University of Washington, Seattle, WA, USA
a) **Running title:** RDS switch from uptake to all hepatobiliary clearances

b) **Corresponding author:** Jashvant D. Unadkat, Ph.D.

 Department of Pharmaceutics
 University of Washington
 Box 357610
 Seattle, WA 98195
 Phone: +1-206-685-2869
 Fax: +1-206-543-3204
 Email: jash@uw.edu

c) **Number of:**

 Text Pages = 18
 Tables = 1
 Figures = 7
 Supplemental Tables = 1
 Supplemental Figures = 4
 References = 43
 Word in Abstract = 250/250
 Words in Introduction = 522/750
 Words in Discussion = 1587/1500

d) **Nonstandard abbreviations:** AUCR = area under the curve ratio; CL*bile* = biliary (canalicular) efflux clearance; CL*int* = intrinsic clearance; CL*met* = metabolic clearance; CL*5,*in* = sinusoidal influx clearance; CL*5,*ef* = sinusoidal efflux clearance; DDI = drug – drug interaction; ECM = extended clearance model; IVIVE = *in vitro* to *in vivo* extrapolation; HPGL = 10^6 hepatocytes per gram
liver; NDA = new drug application; NME = new molecular entity; OATP = organic anion transporting polypeptide; $P_{\text{met+bile}} = \text{percent inhibition of } CL_{\text{met+bile}}$ necessary for RDS_{uptake} to switch to RDS_{all}; PBPK = physiologically based pharmacokinetics; MPPGL = microsomal protein per gram liver; SCRH = sandwich cultured rat hepatocytes; SCHH = sandwich cultured human hepatocytes; RDS = rate-determining step
ABSTRACT

For dual transporter/enzyme substrate drugs, the extended clearance model (ECM) can be used to predict the rate-determining step(s) (RDS) of a drug and hence predict its drug-drug interaction (DDI) liabilities (i.e. transport, metabolism, or both). If the RDS of the hepatic clearance of the drug is sinusoidal uptake clearance (CL$_{\text{in}}$), even if the drug is mainly eliminated by hepatic metabolism, its DDI liability (as viewed from changes to systemic drug concentrations) is expected to be inhibition or induction of uptake transporters but not hepatic enzymes. However, this is true only if the condition required to maintain CL$_{\text{in}}$ as the RDS is maintained. Here, we illustrate through theoretical simulations that the RDS condition may be violated in the presence of a DDI. That is, the RDS of a drug can switch from CL$_{\text{in}}$ to all hepatobiliary clearances (i.e. metabolic/biliary clearance [CL$_{\text{met+bile}}$] and CL$_{\text{in}}$) leading to unexpected systemic DDI’s, such as metabolic DDI’s when only transporter DDI’s are anticipated. As expected, these analyses revealed that the RDS switch depends on the ratio of CL$_{\text{met+bile}}$ to sinusoidal efflux clearance (CL$_{\text{ef}}$). Additional analyses revealed that for intravenously administered drugs, the RDS switch also depends on the magnitude of CL$_{\text{in}}$. We analyzed published in vitro quantified hepatobiliary clearances and observed that most drugs have CL$_{\text{met+bile}}$/CL$_{\text{ef}}$ ratio < 4, and hence in practice, the magnitude of CL$_{\text{in}}$ must be considered when establishing the RDS. These analyses provide insights, previously not appreciated, and a theoretical framework to predict DDI liabilities for drugs that are dual transporter/enzyme substrates.
INTRODUCTION

Identifying liabilities with respect to drug – drug interactions (DDI) is important in drug development. In 2015, 25 out of the 33 new drug applications (NDA’s) contained in vitro transporter data and out of 20 clinical trials using the new molecular entities (NME’s) as victim drugs, only 9 resulted in a significant area under the curve (AUC) change (Yu et al., 2017). These data acknowledge that drug transporters are important in determining drug disposition (Giacomini et al., 2010; Hillgren et al., 2013; Patel et al., 2016).

As shown by the hepatic extended clearance model (ECM), when a drug is both transported into and metabolized/biliary excreted by the liver, the rate-determining step (RDS) in the systemic clearance of the drug can be its hepatic uptake clearance, metabolic clearance, biliary (canalicular efflux) clearance, or all hepatobiliary clearances (Miyauchi et al., 1987; Sirianni and Pang, 1997; Shitara et al., 2006; Kusuhara and Sugiyama, 2009; Li et al., 2014; Patilea-Vrana and Unadkat, 2016). The RDS of a drug can be identified using models such as the Extended Clearance Concept Classification System (ECCCS) and the Extended Clearance Classification System (ECCS) that use the drug’s in vitro quantified hepatobiliary clearance values or the drug’s physicochemical properties, respectively (Camenisch and Umehara, 2012; Varma et al., 2015). Using such models is advantageous since the RDS of a drug helps identify where the DDI liabilities lie. Of note, unless indicated otherwise, all subsequent reference to DDI should be interpreted as those DDI that can be observed from measurement of the systemic concentrations of the victim drug. For example, if the RDS of a drug is its hepatic uptake clearance (RDS\textsubscript{uptake}), then the focus of the DDI studies should be transporter-based (e.g. hepatic organic anion-transporting polypeptide (OATP) – mediated uptake of atorvastatin, (Maeda et al., 2011)) or if the RDS is both hepatic uptake and metabolic/biliary clearance (RDS\textsubscript{all}), the focus of DDI studies should be all hepatobiliary pathways (e.g. OATP and CYP-mediated clearance of cerivastatin, (Mück et al., 1999; Backman et al., 2002)).
Here, we ask if knowledge of the RDS of a drug is enough to predict DDI liabilities for drugs that are dual transporter/enzyme substrates? If it is not, the focus of DDI studies will be misdirected and will result either in a negative or unexpected DDI and therefore toxicity. Under the worst-case scenario, the latter will lead to discontinuation of drug development. The end result is that both outcomes will increase drug development cost (Paul et al., 2010). For these reasons, it is important to ask: can the RDS switch from hepatic uptake clearance to all hepatobiliary clearance pathways, thus resulting in unexpected systemic DDIs? Using the ECM theory and simulations, we aimed to: i) provide a theoretical framework of when the RDS\textsubscript{uptake} switches to RDS\textsubscript{all} in the presence of a DDI, and ii) apply the RDS framework to predict DDI liabilities through theoretical and practical examples. The resulting analyses and simulations provide novel insights, hitherto not appreciated, into factors that determine when a victim drug experiences the RDS\textsubscript{uptake} switch to RDS\textsubscript{all} and elucidate important considerations when predicting DDI liabilities for drugs that are substrates of both hepatic transporters and enzymes.
MATERIALS AND METHODS

Theoretical background

The ECM describes complex hepatobiliary clearance in terms of transport at the sinusoidal membrane via sinusoidal influx (CL
\textsubscript{in}) and efflux (CL
\textsubscript{ef}), transport at the canicular membrane via biliary efflux (CL\textsubscript{bile}), metabolism (CL\textsubscript{met}), hepatic blood flow (Q\textsubscript{h}), and fraction unbound in blood (fu\textsubscript{b}) (Eq. 1). CL\textsubscript{in} and CL\textsubscript{ef} terms incorporate both transport-mediated plus passive diffusion clearance while CL\textsubscript{bile} describes active transport only. The interrelationships between the hepatobiliary clearances defined by the ECM create the RDS in the hepatic clearance of a drug. As described by us and others (Miyauchi et al., 1987; Sirianni and Pang, 1997; Shitara et al., 2006; Patilea-Vrana and Unadkat, 2016), these can be: i) RDS\textsubscript{met+bile} when the metabolic and biliary efflux clearances of the drug are much less than sinusoidal efflux clearance (CL\textsubscript{met+bile} \ll CL\textsubscript{ef}) and the drug is highly permeable (passive diffusion >> active transport, CL\textsubscript{in} \approx CL\textsubscript{ef}) and can thus rapidly distribute across the sinusoidal membrane, ii) RDS\textsubscript{uptake} when the metabolic plus biliary efflux clearances are much greater than the sinusoidal efflux clearance (CL\textsubscript{met+bile} >> CL\textsubscript{ef}), or iii) RDS\textsubscript{all} when a drug has both active transport and metabolism but the two extreme scenarios from above do not apply (CL\textsubscript{in} \neq CL\textsubscript{ef}).

\[
CL\textsubscript{h} = \frac{Q\textsubscript{h}fu\textsubscript{b}CL\textsubscript{in}(CL\textsubscript{met} + CL\textsubscript{bile})}{Q\textsubscript{h}(CL\textsubscript{ef} + CL\textsubscript{met} + CL\textsubscript{bile}) + fu\textsubscript{b}CL\textsubscript{in}(CL\textsubscript{met} + CL\textsubscript{bile})} \tag{1}
\]

Identifying the RDS of a drug can be used to predict the liability of transporter versus metabolic DDI's (see Patilea-Vrana and Unadkat, 2016 for simulations of systemic and hepatic AUC when hepatobiliary clearances are inhibited). For example, while a victim drug has RDS\textsubscript{uptake}, inhibition of CL\textsubscript{met+bile} will not result in a significant increase in the systemic AUC even though such DDI could result in significant drug accumulation in the liver and hence potentially enhanced hepatic efficacy or toxicity of the drug. That is, from the point of view of a systemic (e.g. victim plasma concentrations) measurements, inhibition of CL\textsubscript{met+bile} will be incorrectly
interpreted as negative because there will be no change in systemic concentrations of the drug. On the other hand, inhibition of CL\textsubscript{h} will result in an increase in the drug’s systemic AUC (and therefore potentially non-hepatic efficacy and toxicity of the drug) but will result in no changes in the hepatic AUC provided the liver is the primary eliminating organ (see Patilea-Vrana and Unadkat, 2016 for examples). However, less appreciated is the fact that in the presence of metabolic/biliary efflux DDI, the RDS of a drug can switch from \text{RDS}\textsubscript{uptake} to \text{RDS}\textsubscript{all} and hence switch the DDI liability from uptake transporters to both metabolic/biliary and uptake pathways. Consequently, the drug’s systemic AUC will significantly change due to metabolic and biliary efflux DDI’s even though uptake was the RDS of the drug in the absence of a DDI. This would lead to unexpected DDIs as viewed from the systemic concentrations of the victim drug. Therefore, through MATLAB simulations (R2016a; MathWorks, Natick, MA), we illustrated when the \text{RDS}\textsubscript{uptake} to \text{RDS}\textsubscript{all} switch occurs for a victim drug in the presence of a DDI. We then applied our proposed RDS framework to published \textit{in vitro} hepatobiliary clearances to determine if \textit{in vivo} observed DDI liabilities can be correctly predicted. While the insights illustrated can be derived from analytical solutions of the ECM equation (Eq. 1), for clarity, we chose to use simulations to illustrate the principles of these DDI liabilities within the RDS framework.

Simulation assumptions

The hepatic ECM was simulated using the governing differential equations as previously described (Endres et al., 2009; Patilea-Vrana and Unadkat, 2016) and for simplicity, the following assumptions about the victim drug were made: i) it was administered intravenously (IV); ii) fraction unbound (fu) in blood and tissue (liver) was set to 1; iii) liver was the only eliminating organ; iv) Q\textsubscript{h} was set to 1 L/min. All references to systemic AUC are derived from drug concentrations in blood. Our conclusions regarding the RDS switch are generalizable to when victim drugs are administered orally but our conclusions of the RDS dependence on CL\textsubscript{h} only apply for IV administered drugs (see text below). Furthermore, for oral drug administration,
our findings apply only to changes to the hepatic clearance/bioavailability of the victim drug and do not address the intestinal availability of the victim drug. If there is significant non-hepatic clearance, our conclusions will stand except that the magnitude of the change observed in the systemic and/or hepatic AUC of the drug will differ (Patilea-Vrana and Unadkat, 2016).

Identifying when the RDS\textsubscript{uptake} switches to RDS\textsubscript{all} and factors that influence this switch

First, we determined when the RDS of a drug switches from uptake clearance to all hepatobiliary clearance pathways. This requires violating the condition $\text{CL}_{\text{met+bile}} >> \text{CL}^s_{\text{ef}}$, the condition necessary for uptake clearance to be the RDS in the hepatic clearance of drug. To illustrate this effect, for three theoretical victim drugs where $\text{CL}_{\text{met+bile}} >> \text{CL}^s_{\text{ef}}$, ($\text{CL}_{\text{met+bile}} = 1, 10, 100$ L/min, $\text{CL}^s_{\text{ef}} = 0.1$ L/min, and $\text{CL}^s_{\text{in}} = 1\times Q_h$), the systemic AUC ratio (AUCR) of the victim drug in the absence and presence of 10-99% inhibition of $\text{CL}_{\text{met+bile}}$ was simulated. Following the FDA guidelines, an AUCR of 1.25 was considered to be significant.

To illustrate that the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio and not the absolute magnitude of $\text{CL}_{\text{met+bile}}$ and/or CL^s_{ef} determines when the RDS\textsubscript{uptake} switches to RDS\textsubscript{all} we conducted the following simulations: the systemic AUC of the drug was simulated for CL^s_{ef} values ranging from 0.1 to 10 L/min (representing 0.1x to 10xQ_h) with $\text{CL}_{\text{met+bile}}$ set to 1-20 fold the value of the corresponding CL^s_{ef} value. The simulated systemic AUC’s when $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio was held constant were compared to the simulated systemic AUC’s when $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio varied.

Next, we defined the tipping point as the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio at which RDS\textsubscript{uptake} switches to RDS\textsubscript{all}. Following the same strategy as above, we simulated the AUCR for various $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratios for victim drugs that originally had RDS\textsubscript{uptake} to illustrate the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio at which AUCR = 1.25, thus signifying that RDS\textsubscript{uptake} switched to RDS\textsubscript{all}. The systemic AUC where the RDS is uptake was simulated such as $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio = 1000 (AUCR\textsubscript{ratio = control}, $\text{CL}_{\text{met+bile}} = 100$ L/min, $\text{CL}^s_{\text{ef}} = 0.1$ L/min). Then, systemic AUC was simulated for $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$...
“test” ratios ranging from 0.1 – 10 (CL_{met+bile} = 0.01 - 1 L/min, CL_{s ef} = 0.1 L/min) and the resulting AUC (AUC_{ratio = test}) was normalized to the control simulation (AUCR = AUC_{ratio = test}/AUC_{ratio = control}). The decrease in CL_{met+bile}/CL_{s ef} ratio is akin to inhibition of CL_{met+bile} since CL_{s ef} is held constant. The CL_{met+bile}/CL_{s ef} ratio which resulted in a significant change to the systemic AUC (AUCR = 1.25) compared to control was identified as the tipping point.

To illustrate that the magnitude of CL_{s in} contributes to the tipping point, we simulated the tipping point for CL_{s in} values ranging from 0.01xQ_h – 4xQ_h (henceforth, for simplicity, CL_{s in} notation will be used instead of fu_bCL_{s in} since fu_b = 1). The tipping point can be explicitly derived from the ECM (Eq. 1) by defining the RDS switch for any chosen AUCR as AUCR = RDS_{uptake}/RDS_{all} and solving for the CL_{met+bile}/CL_{s ef} ratio (Eq. 2). This relationship (Eq. 2 with AUCR = 1.25) was used later to identify DDI liabilities when considering CL_{s in} magnitude and CL_{met+bile}/CL_{s ef} ratio of a drug.

\[
\text{Tipping point} = \frac{1}{(AUCR - 1)\left(1 + \frac{CL_{s in}}{Q_h}\right)} \tag{2}
\]

Quantifying when a drug with RDS_{uptake} will switch to RDS_{all} due to metabolic/biliary efflux DDI’s

We defined PI_{met+bile} as the percent inhibition of CL_{met+bile} required for RDS_{uptake} to switch to RDS_{all}. This quantifies when a significant DDI (AUCR ≥ 1.25) will occur due to inhibition of CL_{met+bile} even when uptake was the RDS in the absence of DDI. For CL_{met+bile}/CL_{s ef} ratios ranging from 1-100, CL_{met+bile} was inhibited 10-99%. Simulations were conducted for CL_{s in} values = 0.25x, 1x, 4xQ_h. CL_{s in} values were chosen to represent ER = 0.2, 0.5, and 0.8 (low, mid, and high extraction ratio (ER), respectively) and were back calculated from Eq. 3-4. The percent inhibition of CL_{met+bile} at which the CL_{met+bile}/CL_{s ef} ratio reaches the tipping point (i.e. PI_{met+bile}) and thus causes the RDS_{uptake} to switch to RDS_{all} was calculated as shown in Eq. 5.

\[
CL_h = Q_h \cdot ER \tag{3}
\]
Applying the RDS framework to *in vitro* and *in vivo* examples

Published data sets where all hepatobiliary clearance pathways (\(\text{CL}_{\text{in}}\), \(\text{CL}_{\text{ef}}\), \(\text{CL}_{\text{bile}}\), \(\text{CL}_{\text{met}}\)) were quantified *in vitro* were collected. The *in vivo* hepatobiliary clearances must be used to identify the RDS of a drug. As such, the provided *in vitro* to *in vivo* extrapolated (IVIVE) clearances were utilized; otherwise, *in vitro* hepatobiliary clearance values were scaled to *in vivo* using IVIVE scaling factors (i.e. MPPGL, HPGL, liver weight) as provided by the authors.

For all drugs, \(\frac{\text{fu}_{\text{b}}\text{CL}_{\text{in}}}{Q_{\text{h}}}\) was used to calculate the tipping point using Eq. 2 (see Results section below). RDS was labeled as RDS\(_{\text{uptake}}\) and RDS\(_{\text{all}}\) if the \(\frac{\text{CL}_{\text{met+bile}}}{\text{CL}_{\text{ef}}}\) ratio was above and below the tipping point, respectively. For drugs with RDS\(_{\text{uptake}}\), the \(\text{Pl}_{\text{met+bile}}\) was calculated using Eq. 5.

Finally, for selected drugs, the predicted DDI liabilities using the RDS and \(\text{Pl}_{\text{met+bile}}\) were compared to the observed *in vivo* data. To ensure that only the systemic clearance, and not bioavailability of the victim drug was affected, clinical DDI studies were included if the victim was a dual transporter/enzyme substrate and co-administered with a selective enzyme inhibitor administered IV. It should be noted that the availability of such studies was limited.
RESULTS

Identifying the tipping point (i.e. when RDS_{uptake} switches to RDS_{all}) and factors that influence this switch

As described under theoretical background, RDS_{uptake} occurs when $\text{CL}_{\text{met+bile}} >> \text{CL}^s_{\text{ef}}$, and as such, inhibition of $\text{CL}_{\text{met+bile}}$ will not manifest in the systemic AUC of a victim drug. However, when the above condition is violated due to extensive inhibition of $\text{CL}_{\text{met+bile}}$, there will be a significant increase in the systemic AUC of the victim drug when $\text{CL}_{\text{met+bile}}$ is inhibited further. In other words, when $\text{CL}_{\text{met+bile}}$ is no longer $>> \text{CL}^s_{\text{ef}}$, then RDS_{uptake} switches to RDS_{all}. In Fig.1A, 84%, 98%, 99.8% inhibition of $\text{CL}_{\text{met+bile}}$ led to a clinically significant increase in the systemic AUC of the three theoretical victim drugs shown (AUCR ≥ 1.25). Even though the victim drugs had different pre-inhibition $\text{CL}_{\text{met+bile}}$ values (1, 10, 100 L/min), the post-inhibition $\text{CL}_{\text{met+bile}}$ values were all the same (0.2 L/min). Since CL^s_{ef} was kept constant (0.1 L/min), an AUCR of 1.25 was observed when $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}} = 2$ for all three victim drugs. This simulation illustrates that the RDS_{uptake} switch to RDS_{all} depends on the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio and not the extent of $\text{CL}_{\text{met+bile}}$ inhibition.

To further emphasize the dependence on the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio, we simulated the systemic AUC of the victim drug (in the absence of DDI) for different $\text{CL}_{\text{met+bile}}$ and CL^s_{ef} values while holding CL^s_{in} constant. The systemic AUC remained unchanged when the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio remained fixed even though the $\text{CL}_{\text{met+bile}}$ and CL^s_{ef} values varied, demonstrating that the RDS in the hepatic clearance of a drug is dependent on the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio and not on the absolute value of these clearances (Fig. 1B). This was true for both when $\text{CL}_{\text{met+bile}}$ was higher and lower than CL^s_{ef} (also see Supplementary Fig. 1). Since the systemic AUC decreased as the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio increased, only the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{ef}}$ ratio needs to be considered when determining when the RDS_{uptake} switch to RDS_{all} for a victim drug.
Next, we identified the tipping point, defined here as the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{el}}$ ratio when $\text{RDS}_{\text{uptake}}$ switches to RDS_{all}. The $\text{RDS}_{\text{uptake}}$ switch to RDS_{all} signifies when DDI’s due to inhibition of $\text{CL}_{\text{met+bile}}$ start to become significant for a victim drug that has $\text{RDS}_{\text{uptake}}$. As demonstrated above, the $\text{RDS}_{\text{uptake}}$ switch to RDS_{all} depends on the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{el}}$ ratio. As such, we identified the tipping point as the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{el}}$ ratio at which the systemic AUC increases significantly ($\text{AUCR} = 1.25$) due to decrease in the $\text{CL}_{\text{met+bile}}/\text{CL}^s_{\text{el}}$ ratio for a victim drug that has $\text{RDS}_{\text{uptake}}$ (Fig. 1C). As demonstrated in Fig. 1C, the tipping point for a low, mid, and high ER drug was 3.2, 2, and 0.8, respectively.

Since the tipping point varied for a low, mid, and high ER, the magnitude of CL^s_{in} is also an important factor in determining when the $\text{RDS}_{\text{uptake}}$ switches to RDS_{all} (Fig. 1C). Extending the simulations to identify the tipping point across a range of CL^s_{in} values, we established a theoretical (Eq. 2) and practical (Fig 2.) relationship between $\text{CL}^s_{\text{in}}/Q_n$ and the tipping point. The tipping point decreases as CL^s_{in} increases. In other words, as a drug’s CL^s_{in} (and therefore its ER) increases, the drug is more likely to have $\text{RDS}_{\text{uptake}}$ and a larger $\text{Pi}_{\text{met+bile}}$, therefore making the drug more resistant to switching its RDS. In addition, as the influx across the sinusoidal membrane becomes large, hepatic clearance becomes limited by blood flow and therefore less likely to result in a change in AUCR when either CL^s_{in} (or for that matter $\text{CL}_{\text{met+bile}}$) is inhibited. On the other hand, when CL^s_{in} (or ER) is small and the hepatic clearance becomes proportional to CL^s_{in}, the victim drug becomes more susceptible to a change in RDS. This demonstrates that low ER drugs are more susceptible to $\text{RDS}_{\text{uptake}}$ switching to RDS_{all} whereas high ER drugs are more resistant to the RDS switch.

It should be noted that the relationship between $\text{CL}^s_{\text{in}}/Q_n$ and the tipping point (Eq. 2 and Fig. 2) depends on the chosen AUCR cutoff. Here, an AUCR of 1.25 was chosen based off FDA guidelines of what constitutes a positive DDI. If a higher AUCR cutoff were to be selected (Supplementary Fig. 2), this would lead to estimation of lower tipping points, thus making it more
likely that drugs are labeled with RDS_{uptake}. Labeling a drug with RDS_{uptake} when in fact it has RDS_{all} can lead to underpredictions of DDI liabilities due to metabolic enzymes and biliary transporters.

By understanding the relationship between CL_{in}^s and the tipping point, the RDS can be identified for any combination of a drug’s hepatobiliary clearance values (Fig. 2). For example, a high ER drug with a $CL_{\text{met+bile}}/CL_{\text{ef}}^s$ ratio of 3 will have RDS_{uptake} but a low ER drug with the same $CL_{\text{met+bile}}/CL_{\text{ef}}^s$ ratio will have RDS_{all}. Furthermore, a drug will always have RDS_{uptake} if the $CL_{\text{met+bile}}/CL_{\text{ef}}^s$ ratio is greater than 4, irrespective of the magnitude of CL_{in}^s. It should be noted that for orally administered drugs, the tipping point will no longer depend on the magnitude of CL_{in}^s, and therefore will always be 4, because blood flow limitations from systemic clearance are cancelled out by blood flow limitations of hepatic bioavailability.

Quantifying the PI$_{\text{met+bile}}$ for drugs with RDS_{uptake}

Identifying the RDS of a drug as well as when the RDS_{uptake} to RDS_{all} switch will happen identifies the drug’s DDI liabilities. We quantified the PI$_{\text{met+bile}}$, defined here as the percent inhibition of $CL_{\text{met+bile}}$ needed to cause the RDS_{uptake} switch to RDS_{all}, to understand when inhibition of $CL_{\text{met+bile}}$ starts to become a DDI liability for victim drugs that have RDS_{uptake}. As the $CL_{\text{met+bile}}/CL_{\text{ef}}^s$ ratio of the victim drug (prior to inhibition) increases, the PI$_{\text{met+bile}}$ increases (Fig. 3A). This is because as $CL_{\text{met+bile}}$ becomes $>>$ than CL_{ef}^s, the victim drug become resistant to the RDS_{uptake} switch to RDS_{all}. High ER drugs have a higher PI$_{\text{met+bile}}$ than low ER drugs, demonstrating again that high ER drugs are resistant to the RDS switch while low ER drugs are sensitive (Fig. 3A). Fig. 3B illustrates that while a low, mid, and high ER victim drug with $CL_{\text{met+bile}}/CL_{\text{ef}}^s$ ratio of 6 have RDS_{uptake} (prior to inhibition), inhibition of $CL_{\text{met+bile}}$ greater than 46%, 66%, and 87%, respectively, will cause the RDS_{uptake} to switch to RDS_{all}. This translates to observing a positive DDI due to inhibition of $CL_{\text{met+bile}}$ for a victim drug that has been identified to
have RDS\textsubscript{uptake} (prior to inhibition). Without knowledge of the PI\textsubscript{met+bile}, such a DDI may not be expected.

The purpose and conclusions of the simulations that have been used to established the RDS framework up to this point are summarized in Fig. 4. As discussed, identifying the drug’s RDS is not enough to correctly predict the drug’s DDI liabilities. The tipping point concept is an important consideration when identifying DDI’s for victim drugs are dual substrates of enzymes and transporters.

The flowchart in Fig. 5 can be used as a guide to identify the DDI liabilities for dual transporter/ enzyme substrates. All drugs with CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio > 4 will have RDS\textsubscript{uptake} whereas drugs with CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio < 4 will have RDS\textsubscript{uptake} as long as this ratio is greater than the tipping point. Drugs with CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio less than the tipping point will have RDS\textsubscript{all}. If the drug has RDS\textsubscript{uptake}, then uptake transporters will become a DDI liability, whereas if the drug has RDS\textsubscript{all}, then transporters and enzymes will be a DDI liability. However, even for drugs that have RDS\textsubscript{uptake}, CL\textsubscript{met+bile} can become a DDI liability if inhibition of CL\textsubscript{met+bile} is greater than the predicted PI\textsubscript{met+bile} and thus causes the RDS\textsubscript{uptake} switch to RDS\textsubscript{all}. The flowchart identifies the CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios at which 25%, 50%, 75%, and 95% expected inhibition of CL\textsubscript{met+bile} is going to result in the RDS switch. This information can be used to assess when CL\textsubscript{met+bile} starts to become a DDI liability for drugs with RDS\textsubscript{uptake}. It also helps answer the question of how much larger does CL\textsubscript{met+bile} needs to be compared to CL\textsubscript{ef} in order for sinusoidal uptake clearance to become and maintain as the RDS in the hepatic clearance of any drug. Such information may be used during drug development to select drug candidates if a certain RDS is desired.

Applying the RDS framework to in vitro and in vivo examples

To provide context to the theoretical framework presented, examples from literature, where available, were utilized. For drugs with in vitro quantified hepatobiliary clearances that
were extrapolated to \textit{in vivo} via IVIVE, the tipping point and PI\textsubscript{met+bile} were calculated using Eq. 2 and 5, and a subset of the analyzed data set, which includes primarily statin drugs, is shown in Fig. 6 (also see Supplementary Table 1) (Camenisch and Umehara, 2012; Jones et al., 2012; Varma et al., 2014; Kunze et al., 2015; Riede et al., 2017). If no empirical scaling factors (such as for active uptake clearance to match observed \textit{in vivo} clearance) are included in the IVIVE process, then almost all drugs have RDS\textsubscript{all}, except for valsartan and pravastatin (Fig. 6A). This is because most CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios < 4 and since the IVIVE CL\textsubscript{in} magnitudes were small, most CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios were less than the tipping point. Because many statins have been identified to have RDS\textsubscript{uptake}, the trend in Fig. 6A suggests that CL\textsubscript{in} was underestimated \textit{in vitro}. When hepatobiliary clearances were adjusted by empirical scaling factors (Varma et al., 2014) or parameters were fitted from \textit{in vivo} IV concentration-time profiles using a PBPK model (Jones et al., 2012), the distribution of drugs is altered such as low drugs (ER < 0.2) tended to have RDS\textsubscript{all} whereas mid and high ER drugs (ER > 0.2) were more likely to have RDS\textsubscript{uptake} (Fig. 6B). This analysis of the published \textit{in vitro} hepatobiliary clearances provides insight that drugs with RDS\textsubscript{uptake} exist within the moderate RDS framework space, meaning that in general their CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio is < 4 and are quite susceptible to the RDS switch (Supplementary Table 1). It further elucidates that current \textit{in vitro} quantification techniques may underestimate CL\textsubscript{in} which can lead to erroneous labeling of the RDS and thus incorrect DDI liability predictions (Fig 7, Supplementary Fig. 3).

To further illustrate the applicability of the RDS framework, predicted DDI liabilities using the RDS framework were compared to \textit{in vivo} DDI examples. As indicated in Table 1, when empirical scaling factors are utilized during the IVIVE process or hepatobiliary clearances were estimated from \textit{in vivo} via PBPK, atorvastatin and repaglinide have RDS\textsubscript{uptake} and PI\textsubscript{met+bile} of 10-51\% and 15-40\%, respectively, while bosentan has RDS\textsubscript{all}. For atorvastatin and repaglinide, the \textit{in vitro} data predicted that uptake transporters (OATPs) are the primary DDI liability with the
drugs’ major metabolic enzymes (CYP3A and CYP2C8, respectively) becoming a potential liability only if the *in vivo* hepatic metabolic inhibition is greater than the $P_{\text{met+bile}}$. For bosentan, the *in vitro* data predicted that both OATPs and CYP3A4 are a potential DDI liability. Clinically, for atorvastatin, co-administration of rifampin (an OATP inhibitor) lead to AUCR of 12 whereas 33% inhibition of CYP3A4 due to IV itraconazole (as measured using CYP3A4 probe midazolam) did not change atorvastatin systemic AUC even though inhibition of atorvastatin metabolism was observed via a decrease in the 2-hydroxyatorvastatin concentrations (Maeda et al., 2011). In a similarly conducted experiment, co-administration of rifampin resulted in AUCR of 3.2 and 1.9 for bosentan or repaglinide, respectively, whereas 73% inhibition of CYP3A4 due to IV itraconazole did not significantly change the systemic AUC of these drugs (Yoshikado et al., 2017). Furthermore, repaglinide co-administered with PO rifampin and trimethoprim (CYP2C8 selective inhibitor) resulted in AUCR was 2.6 and 1.8, respectively (Kim et al., 2016). The *in vivo* DDI liability for OATPs was well predicted for all three victim drugs. The *in vivo* DDI liability for CYP3A4 was well predicted for atorvastatin. Since a probe was not used to assess the degree of CYP2C8 inhibition, it is difficult to interpret if the significant DDI when repaglinide was co-administered with trimethoprim was because $R_{\text{uptake}}^{\text{RDS}}$ switched to $R_{\text{all}}^{\text{RDS}}$, or because repaglinide truly has $R_{\text{all}}^{\text{RDS}}$. The *in vitro* metrics as well as a whole-body PBPK DDI model suggests that repaglinide has $R_{\text{uptake}}^{\text{RDS}}$ (Varma et al., 2013) and thus the repaglinide-trimethoprim DDI is likely due to the RDS switch. Lastly, since bosentan was predicted to have $R_{\text{all}}^{\text{RDS}}$, a DDI was expected due to CYP3A4 inhibition but none was observed. It should be noted that the metabolic DDI liability prediction is assuming one main drug metabolizing enzyme and no significant biliary efflux (e.g. $CL_{\text{met+bile}} = CL_{\text{CYP3A4}}$ for atorvastatin and bosentan). This assumption predicts the highest DDI risk due to inhibition of $CL_{\text{met+bile}}$ and has a higher chance of predicting false positive DDI results.
In the published *in vitro* datasets, discrepancies in the *in vitro* quantified values, particularly for CL_sⁱⁿ, can be observed (Table 1 and Supplementary Table 1). For example, in one report the authors used empirical scaling factors for active sinusoidal uptake clearance in order to match hepatic clearance with clinical observed data that ranged from 1.1 – 101.8 with geometric mean of 10.6 (Varma et al., 2014). However, the scaling factor used severely impacted the labeling of the RDS (e.g. fluvastatin, glyburide, and pravastatin) or impacted the predicted P_{IM+bile} of drugs (e.g. atorvastatin, rosuvastatin, fluvastatin, and repaglinide) (Supplementary Table 1). Assumptions regarding CL_s^{ef} also caused discrepancies. In all reports, CL_s^{ef} was assumed to be equal to passive diffusion across the sinusoidal membrane, except in one report where CL_s^{ef} was back-calculated from total SCHH CL_{int} (Camenisch and Umehara, 2012). The assumptions surrounding CL_s^{ef} impacted the CL_{met+bile}/CL_s^{ef} ratio which either changed how the RDS was labeled or the magnitude of the P_{IM+bile} (e.g. aliskerin, ciprofloxacin, and digoxin) (Supplementary Table 1). All in all, mispredictions of any of the hepatobiliary clearances impact the RDS labeling, magnitude of the P_{IM+bile}, and DDI liability predictions.

Errors from *in vitro* quantification of hepatobiliary clearances can propagate when establishing the RDS and the predicted DDI liabilities. Underprediction of both CL_sⁱⁿ and CL_{met+bile} may erroneously label a drug with RDS_{all} when it is truly RDS_{uptake} (Fig. 7). CL_{met+bile} is the more sensitive parameter when determining the RDS because underpredictions of CL_sⁱⁿ may mislabel the RDS only for drugs with CL_{met+bile}/CL_s^{ef} ratio < 4 (Supplementary Fig. 4). For such drugs, even moderate (e.g. 2-5 fold) underpredictions of either clearance pathway will lead to RDS mislabeling (Supplementary Fig. 4). Furthermore, underpredictions of both CL_sⁱⁿ and CL_{met+bile} leads to underprediction of P_{IM+bile}, resulting in predicting a larger DDI liability due to CL_{met+bile} inhibition for a drug with RDS_{uptake} (Fig. 7; Supplementary Fig. 4). While underpredictions of hepatobiliary clearances will result in conservative DDI decisions, they also increase the chances of negative DDI studies.
DISCUSSION

We built a theoretical RDS framework and identified important considerations when predicting DDI liabilities for dual transporter/enzymes substrate drugs. First, inhibition of CL\textsubscript{met+bile} can cause the RDS of a victim drug to switch from RDS\textsubscript{uptake} to RDS\textsubscript{all} and hence result in an unexpected systemic DDI. Two metrics have been developed to identify when the RDS switch occurs: the \textit{tipping point}, defined as the CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio at which RDS\textsubscript{uptake} will switch to RDS\textsubscript{all} and the PI\textsubscript{met+bile}, defined as the percent inhibition of CL\textsubscript{met+bile} at which a significant AUC change (AUCR > 1.25) for a drug with RDS\textsubscript{uptake} will start to be observed. The tipping point depends on the drug’s CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio and on the magnitude of CL\textsubscript{in}. The former but not latter condition is relevant when victim drugs are administered orally. Second, we showed that the CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio must be > 4 in order for any drug to have RDS\textsubscript{uptake}. Third, we applied the RDS framework to \textit{in vitro} quantified hepatobiliary clearances and observed that most drugs have CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio < 4, and hence in practice, the magnitude of CL\textsubscript{in} must be considered when establishing the RDS.

Our theoretical analysis demonstrates that the CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio and not the absolute magnitudes of the clearances determines the RDS in the hepatic clearance of a drug. Previous publications allude to this relationship. The authors of the ECCCS observed through experimental data that when CL\textsubscript{met+bile} is 2xCL\textsubscript{sef}, drugs that have RDS\textsubscript{uptake} can be separated from those that do not (Riede et al., 2016). Furthermore, β value (β = CL\textsubscript{met+bile}/(CL\textsubscript{met+bile} + CL\textsubscript{sef})) introduced by Yoshikado et al., can be used to differentiate the RDS, such as when β approaches unity (i.e. CL\textsubscript{met+bile} >> CL\textsubscript{sef}), a drug has RDS\textsubscript{uptake} (Yoshikado et al., 2016). Our analyses corroborate and expand upon these results to provide a quantitative definition of the demarcation point between RDS\textsubscript{uptake} and RDS\textsubscript{all}, i.e. the tipping point, and illustrate that the magnitude of CL\textsubscript{in} in addition to the CL\textsubscript{met+bile}/CL\textsubscript{sef} ratio is an important factor in determining the
RDS of a drug. That is, as a drug’s \(\text{CL}^{\text{in}} \) value increases, the drug is more likely to have \(\text{RDS}_{\text{uptake}} \) and to become resistant to the \(\text{RDS}_{\text{uptake}} \) switch to \(\text{RDS}_{\text{all}} \).

We found good agreement for atorvastatin \textit{in vivo} predicted DDI liabilities (Table 1). For bosentan, the overprediction of expected DDI due to inhibition of \(\text{CL}_{\text{met+bile}} \) may be due to errors in the quantification of the hepatobiliary clearances. Indeed, a study in cynomolgus monkey where bosentan plasma and liver drug concentrations were quantified found that the \textit{in vitro} scaled \(\text{CL}^{\text{in}} \) and \(\text{CL}_{\text{met}} \) were 28 and 13-fold underpredicted while \(\text{CL}^{\text{ef}} \) (assumed equal to passive diffusion) was overpredicted by 2-fold when compared to the \textit{in vivo} fitted values (Morse et al., 2017). Combining the \textit{in vitro} metrics that identify \(\text{RDS}_{\text{uptake}} \) for repaglinide with \textit{in vivo} repaglinide DDI’s, it appears CYP2C8 but not CYP3A4 inhibition may lead to \(\text{RDS}_{\text{uptake}} \) switch to \(\text{RDS}_{\text{all}} \). Indeed, inhibition of repaglinide with gemfibrozil (CYP2C8 and OATP1B1 inhibitor) led to an 8-fold increase in systemic AUC while co-administration of itraconazole or cyclosporine (OATP1B1 and CYP3A4 inhibitor) led to much more modest 1.4 and 2.4-fold increase in systemic AUC (Niemi et al., 2003; Kajosaari et al., 2005).

The DDI liabilities discussed so far are relevant for systemic drug exposure but not necessarily for hepatic drug exposure and thus efficacy/toxicity if the site of action is in the liver. For example, the LDL cholesterol lowering effect mediated by atorvastatin does not change for subjects with OATP1B1 polymorphism c.521T>C even though there is a significant increase in atorvastatin systemic AUC (Maeda, 2015). This is because if the liver is the main eliminating organ, changes to sinusoidal uptake alters the hepatic concentration-time profile but not the hepatic AUC. However, systemic increase of atorvastatin may lead to off-target toxicity, such as muscle myopathy. We refer the readers to our previous publication (Patilea-Vrana and Unadkat, 2016), where simulations demonstrate the impact of inhibition of uptake or metabolism on both systemic and hepatic AUC when the liver is and is not the main eliminating organ.
The contrast between *in vitro* quantified \(\text{CL}_{\text{in}} \) with and without empirical scaling factors in Fig. 6 demonstrates that IVIVE of accurate transporter mediated clearance remains challenging (Chu et al., 2013; Feng et al., 2014). The system used for *in vitro* quantification may be crucial, since \(\text{CL}_{\text{in}} \) for statins quantified in SCHH appeared to be lower in magnitude than when quantified in suspended hepatocytes (Table 1 and Supplementary Table 1). This may be mediated by significant intracellular localization of plasma membrane transporters (Kumar et al., 2017), or high interindividual variability when using individual donors (Vildhede et al., 2014). These reasons may also cause underpredictions of \(\text{CL}_{\text{in}} \) or \(\text{CL}_{\text{bile}} \). For transporter IVIVE, we have previously recommended using a bottom-up proteomic approach and adjusting for *in vitro* activity via *in vitro* to *in vivo* transporter expression based scaling factors (Prasad and Unadkat, 2014). We have recently demonstrated the successful prediction of hepatobiliary clearance of rosvuastatin in rat using the aforementioned approach (Ishida et al., 2017).

Special emphasis needs to be put on quantifying \(\text{CL}_{\text{ef}} \) along with \(\text{CL}_{\text{met+bile}} \) since the \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}} \) ratio is one of the anchor points when establishing the RDS. Because \(\text{CL}_{\text{ef}} \) is a difficult parameter to quantify *in vitro*, it is typically assumed to be equal to passive diffusion across the sinusoidal membrane. However, there are examples of active sinusoidal efflux transport, such as MRP3 efflux of rosvuastatin (Pfeifer et al., 2013). Active sinusoidal efflux would increase the magnitude of \(\text{CL}_{\text{ef}} \) and decrease the \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}} \) ratio, making a drug more likely to have RDS. One approach to measuring \(\text{CL}_{\text{ef}} \) is to use an integrative temporal modeling approach in SCRH (Pfeifer et al., 2013; Ishida et al., 2017).

Errors in the quantification of \(\text{CL}_{\text{in}} \) and/or the \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}} \) ratio can impact DDI liability predictions. For example, patients with OATP1B1 polymorphism c.521T>C have a ~2-fold higher atorvastatin AUC compared to the wild type allele (Maeda, 2015). Because of the lower \(\text{CL}_{\text{in}} \) and therefore higher susceptibility to the RDS, patients with OATP1B1 polymorphism may experience a DDI due to inhibition of CYP3A whereas patients with the wild-type...
type allele may not. The same trend would be true for patients with polymorphic enzymes that result in lower CL_{met+bile} and thus lower CL_{met+bile}/CL_{ef} ratios. Polypharmacy use can also impact DDI liability predictions. For example, highly active antiretroviral therapy (HAART) typically includes potent CYP3A4 and moderate OATP inhibitor ritonavir among other drugs, which can impact the CL_{met+bile}/CL_{ef} ratio more severely than if only one drug is administered. Indeed, the systemic AUC of atorvastatin increased 3.9 and 9.4-fold when co-administered with saquinavir/ritonavir and tipranavir/ritonavir, respectively (Fichtenbaum et al., 2002; Pham et al., 2009). Lastly, saturation of enzymes, leading to a lower CL_{met} with increased dose, may lower the CL_{met+bile}/CL_{ef} ratio and cause DDI’s due to the RDS_{uptake} switch to RDS_{all}.

If a victim drug has RDS_{all} but it has been mislabeled as RDS_{uptake}, then the DDI liability due to inhibition of both transporter and metabolic activity could be underestimated. Considering potential DDI risks, it would be most conservative to assume a drug has RDS_{all}; however, making such an assumption would lead to an increase in negative DDI studies, particularly when conducting metabolic/biliary efflux DDI studies if the drug has RDS_{uptake}. An analysis of the DDI’s performed for a cohort of NME’s in 2013 showed a modest return on investment because 57% (n=141) of all in vivo DDI’s were negative (Lesko and Lagishetty, 2016). Given the high prevalence of negative DDI’s, it may be more appropriate to make mechanistic-based rather than conservative decisions with regard to DDI liabilities.

The RDS framework presented here should be used as a guide when identifying the DDI liabilities whereas PBPK models should be used to predict the direction and magnitude of complex transporter-enzyme DDI’s. Several examples of such models (e.g. repaglinide, simvastatin, rosuvastatin) exist that predict complex interactions due to chemical inhibition or genetic polymorphism (Varma et al., 2013; Rose et al., 2014; Tsamandouras et al., 2015). Even with PBPK models, there are limitations. For example, when a drug has RDS_{uptake}, the CL_{met+bile} is unidentifiable from plasma concentrations data since only CL_{in} plays a significant role in
determining hepatic clearance. Focusing on capturing the correct $CL_{\text{met+bile}}$ magnitude and not the $CL_{\text{met+bile}}/CL_{\text{ef}}$ ratio can be misleading and will impact PBPK predictions. For instance, in an atorvastatin PBPK model, when cyclosporine CYP3A4 K_i was modulated 100-fold, a maximum 1.6-fold AUCR was achieved (Duan et al., 2017). While the tendency is to run sensitivity analysis on the active components (transport and metabolism), a sensitivity analysis on CL_{ef} value (in the model it was assumed to be equal to passive diffusion) should also be run as, for the specific example provided, it would likely have revealed a larger impact of cyclosporine on atorvastatin systemic AUC. Such an analysis may be helpful in consolidating in vitro K_i data with observed in vivo DDI data.

In summary, we introduced a theoretical RDS framework to better predict DDI liabilities for drugs that are dual transporter/enzyme substrates. We provide useful insights, such as: i) the RDS_{uptake} switch to RDS_{all} depends on the ratio of $CL_{\text{met+bile}}/CL_{\text{ef}}$ and the magnitude of CL_{in}, ii) $CL_{\text{met+bile}}/CL_{\text{ef}}$ ratio > 4 ensures RDS_{uptake} independent of CL_{in} magnitude or administration route iii) existing drugs exist within a moderate space within the RDS framework and are susceptible to the RDS_{uptake} switch to RDS_{all}. While the above insights were obtained from the hepatic ECM, they can be equally applied to other organs such as the kidneys where vectorial (basal to apical) transport of drugs is possible.
ACKNOWLEDGEMENTS

We would like to thank Bhagwat Prasad and Neha Maharao for insightful and constructive comments/suggestions. We would also like to thank the anonymous reviewers, who gave excellent feedback to help improve the clarity and significance of this work and whose suggestions prompted us to derive the explicit solution for the tipping point.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Patilea-Vrana and Unadkat

Conducted experiments: Patilea-Vrana

Contributed new reagents or analytical tool: Patilea-Vrana

Performed data analysis: Patilea-Vrana

Wrote or contributed to the writing of the manuscript: Patilea-Vrana and Unadkat
REFERENCES

Niemi M, Backman JT, Neuvonen M, and Neuvonen PJ (2003) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of
repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide.

Diabetologia **46**:347-351.

FOOTNOTES

This research was supported in part by National Institutes of Health National Institute of Drug Abuse [P01DA032507].
Figure 1. Identifying when RDS_{uptake} switches to RDS_{all}, i.e. the tipping point.
A) Extensive inhibition of CL_{met+bile} can lead to a significant increase in the systemic AUC for three theoretical victim drugs that have RDS_{uptake} (i.e. CL_{met+bile} >> CL_{s ef}) in the absence of DDI. When inhibition of CL_{met+bile} eventually violates the condition required for RDS_{uptake}, the RDS_{uptake} switches to RDS_{all}. An AUCR \geq 1.25 was observed when CL_{met+bile} was inhibited \geq84\%, \geq98\%, and \geq99.8\% for CL_{met+bile} = 1, 10, 100 L/hr, respectively. However, for all three victim drugs, the CL_{met+bile} value after such inhibition was similar (0.2 L/min) as was the CL_{met+bile}/CL_{s ef} ratio (= 2). Simulations were performed as follows: CL_{s in} = 1xQ_h, CL_{met+bile} = 1, 10, 100 L/hr, CL_{s ef} = 0.1 L/min.
B) The systemic AUC (in the absence of any DDI) of a theoretical drug remains unchanged when the CL_{met+bile}/CL_{s ef} ratio remains fixed (blue bars) but not when the CL_{met+bile}/CL_{s ef} ratio is varied (yellow bars) even though the absolute value of CL_{met+bile} and CL_{s ef} is varied in both scenarios. This trend was observed irrespective of the value of CL_{s in} (Supplementary Fig. 1). Furthermore, this trend is true for when CL_{met+bile} > CL_{s ef} or CL_{met+bile} < CL_{s ef} (also refer to Supplementary Fig. 1). Thus, the CL_{met+bile}/CL_{s ef} ratio, irrespective of the magnitude of the absolute values of these clearances, is important for establishing the RDS and henceforth when the RDS switches from uptake to all hepatobiliary clearances. Simulations were performed as follows: CL_{s in} = 0.25xQ_h and the other input clearance values for scenarios A-E are shown in the table provided.
C) Since the RDS depends on the CL_{met+bile}/CL_{s ef} ratio, we define the tipping point as the CL_{met+bile}/CL_{s ef} ratio at which RDS_{uptake} switches to RDS_{all}. Similar to panel A, the RDS_{uptake} switch to RDS_{all} is represented by an AUCR of 1.25 and the decrease in CL_{met+bile}/CL_{s ef} ratio is akin to inhibition of CL_{met+bile} when CL_{s ef} is kept constant. As shown by the gray arrows, the tipping point for a low, mid, and high ER drug is 3.2, 2, and 0.8, respectively. For example, if the CL_{met+bile}/CL_{s ef} ratio for the low ER drug is above the tipping point (i.e. CL_{met+bile}/CL_{s ef} > 3.2), then the drug will have RDS_{uptake} and therefore DDI’s due to
CLin but not CL\textsubscript{met+bile} should be expected. However, inhibition of CL\textsubscript{met+bile} that makes the CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio lower than the tipping point (i.e. CL\textsubscript{met+bile}/CL\textsubscript{ef} < 3.2) will lead to a significant increase in the systemic AUC. Crossing the tipping point is indicative of the RDS\textsubscript{uptake} switch to RDS\textsubscript{all}. Simulations were performed as follows: systemic AUC were simulated for CLin = 0.25x, 1x, 4xQ\textsubscript{h} (representing low, mid, and high ER, respectively) and CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios from 1-10, then normalized to a control simulation where the CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio was set to 1000 (i.e. RDS\textsubscript{uptake}).

Figure 2. The RDS framework helps identify DDI liabilities. The CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio and CLin magnitude of a drug determines the RDS of the drug and when RDS\textsubscript{uptake} switches to RDS\textsubscript{all}. Combinations of hepatobiliary clearances found in the shaded area have RDS\textsubscript{all} while those in the non-shaded area have RDS\textsubscript{uptake}. Any alterations in hepatobiliary clearances that causes a drug to switch from the non-shaded to the shaded area will cross the tipping point (dashed line – Eq. 2) and therefore switch the RDS from uptake to all hepatobiliary clearances. The consequence of this switch is that DDI’s due to inhibition of CL\textsubscript{met+bile} will now manifest in the systemic AUC of a victim drug that originally had RDS\textsubscript{uptake}. Consistent with Fig. 1C, the tipping point decreases as the magnitude of CLin (and therefore the drug’s ER) increase. This suggests that the greater the ER of the drug, the more likely it will have RDS\textsubscript{uptake} and it will be more resistant to switch to RDS\textsubscript{all}. Furthermore, when CL\textsubscript{met+bile}/CL\textsubscript{ef} > 4, the RDS will always be uptake clearance irrespective of the value of CLin/Q\textsubscript{h}. However, when CL\textsubscript{met+bile}/CL\textsubscript{ef} < 4, the RDS can be either uptake or all hepatobiliary pathways depending on the magnitude of CLin. It should be noted that if a drug is administered orally, the tipping point will always be 4 because the blood flow limitations are no longer relevant. Simulations were performed as follows: the tipping point was simulated for CLin values (0.01xQ\textsubscript{h} – 4xQ\textsubscript{h}) using Eq. 2.
Figure 3. Identifying when drugs with RDS\textsubscript{uptake} will start to experience a DDI due to inhibition of CL\textsubscript{met+bile}. A) The P\textsubscript{met+bile}, defined as the % inhibition of CL\textsubscript{met+bile} required for the RDS\textsubscript{uptake} switch to RDS\textsubscript{all}, depends on the CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio (prior to inhibition) and the magnitude of CL\textsubscript{in} (represented as low, mid, and high ER drugs). The P\textsubscript{met+bile} identifies when a positive DDI due to inhibition of CL\textsubscript{met+bile} for a drug with RDS\textsubscript{uptake} would be expected. Lower CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios as well as low ER drugs are the most susceptible for the RDS\textsubscript{uptake} switch to RDS\textsubscript{all} due to CL\textsubscript{met+bile} inhibition. B) In order for RDS\textsubscript{uptake} to switch to RDS\textsubscript{all} for a theoretical victim drug with CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio of 6, CL\textsubscript{met+bile} must be inhibited by >46%, >66%, or >87% if the drug is low, mid, and high ER, respectively. Visually, the RDS\textsubscript{uptake} switch to RDS\textsubscript{all} happens when the theoretical victim drug crosses the dashed line (the tipping point) from the unshaded area (RDS\textsubscript{uptake}) to the shaded area (RDS\textsubscript{all}). Additional examples of P\textsubscript{met+bile} are given in the table provided. Simulations were performed as follows: P\textsubscript{met+bile} was calculated using Eq. 5 for CL\textsubscript{met+bile}/CL\textsubscript{ef} ratios ranging 1-40 and for CL\textsubscript{in} = 0.25x, 1x, 4xQ\textsubscript{h} (representing low, mid, and high ER, respectively).

Figure 4. Summary of the purpose and conclusions for the simulations used to establish the RDS framework.

Figure 5. Applying the RDS framework to identify DDI liabilities for dual transporter/enzyme substrate drugs. If CL\textsubscript{met+bile}/CL\textsubscript{ef} > 4, then the drug will have RDS\textsubscript{uptake}, irrespective of the magnitude of CL\textsubscript{in}. For drugs with RDS\textsubscript{uptake}, DDIs due to inhibition of CL\textsubscript{met+bile} can become significant depending on the drug’s CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio and the expected inhibition of CL\textsubscript{met+bile}. For example, 50% inhibition of CL\textsubscript{met+bile} may result in a significant DDI for a drug with RDS\textsubscript{uptake} and CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio < 8 but no DDI will be observed if the drug has CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio > 8. The DDI liability due to inhibition of CL\textsubscript{met+bile} increases as the CL\textsubscript{met+bile}/CL\textsubscript{ef} ratio decrease and the expected CL\textsubscript{met+bile} inhibition increases.
Figure 6. The distribution of drugs within the RDS framework using hepatobiliary clearance quantified in vitro and extrapolated to in vivo. Published in vitro hepatobiliary clearance values, when extrapolated to in vivo via IVIVE, can identify the RDS based on $f_{ub} CL^s_{in}/Qh$ and $CL_{met+bile}/CL^s_{ef}$ ratio (Eq. 2). A) When no empirical scaling factors, such as to scale up active transport, are applied during the IVIVE process, all drugs except for valsartan and pravastatin have RDS$_{all}$. Most drugs had $CL_{met+bile}/CL^s_{ef}$ ratio < 4, indicating drugs primarily exist within the moderate RDS framework space. Furthermore, most drugs have $f_{ub} CL^s_{in}/Qh$ < 0.4, indicating severe underprediction of CL$_{in}$. B) When empirical scaling factors are used or hepatobiliary clearances are estimates from in vivo data using PBPK modeling, the RDS of the drugs is altered severely. Now, RDS$_{uptake}$ occurs more often for mid and high ER drugs with RDS$_{all}$ primarily for low ER drugs (ER was calculated from in vivo hepatic clearance and blood flow). Furthermore, since all drugs have $CL_{met+bile}/CL^s_{ef}$ ratio < 4, information about both the magnitude of $f_{ub} CL^s_{in}$ and the $CL_{met+bile}/CL^s_{ef}$ ratio is necessary to correctly predict DDI liabilities. The dashed line represents the tipping point (Eq. 2). The data shown are from Jones et al., 2012 and Varma et al., 2014, and represent a subset of the complete data set presented in Supplementary Table 1.

Figure 7. The impact of underpredictions of hepatobiliary clearance on DDI liability predictions. A representative 3-fold underprediction of either A) CL$_{in}$ or B) CL$_{met+bile}$ can lead to erroneous labeling of the RDS for low, mid and high ER drugs (shown by the filled circles crossing from the non-shaded to shaded area, i.e. RDS$_{uptake}$ switches to RDS$_{all}$). Mislabeled the RDS impacts the expected DDI risk due to transporters versus enzymes. Furthermore, underpredictions of either CL$_{in}$ or CL$_{met+bile}$ leads to identifying both transporters and enzymes as DDI liabilities when truly only uptake transporters are the true DDI liability. Please refer to Supplementary Fig. 4 for more detailed simulations.
Table 1. Comparison of predicted DDI liabilities from *in vitro* data to *in vivo* clinical studies

Hepatobiliary clearances, following IVIVE, can be used to identify the RDS of a drug, such as if the $\frac{CL_{met+bile}}{CL_{s,ef}}$ ratio is > or < than the tipping point (Eq. 2), then the drug will have RDS$_{uptake}$ or RDS$_{all}$, respectively. If a drug has RDS$_{uptake}$, then the $PI_{met+bile}$ can be quantified (Eq. 5) in order to predict when a significant DDI should be expected due to inhibition of metabolic/biliary efflux clearance.

An expanded analysis is shown in Supplementary Table 1.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Hepatobiliary clearance (ml/min/kg)</th>
<th>$fu_b\frac{CL_{s,in}}{Qh}$</th>
<th>$CL_{met+bile}/CL_{s,ef}$</th>
<th>Tipping point</th>
<th>$PI_{met+bile}$</th>
<th>RDS in vitro</th>
<th>RDS in vivo</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>61a 24.9 58.3 4.3</td>
<td>0.12</td>
<td>2.52</td>
<td>3.59</td>
<td>--</td>
<td>all</td>
<td>Varma et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1194b 24.9 58.3 4.3</td>
<td>2.27</td>
<td>2.52</td>
<td>1.22</td>
<td>>51% uptake</td>
<td>uptakeg</td>
<td>Camenisch and Umehara, 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>405c 24.9 58.3 4.3</td>
<td>0.77</td>
<td>2.52</td>
<td>2.26</td>
<td>>10% uptake</td>
<td>uptakeg</td>
<td>Kunze et al., 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>198a 359 64.6 11.8</td>
<td>0.80</td>
<td>0.21</td>
<td>2.22</td>
<td>--</td>
<td>all</td>
<td>Maeda et al., 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>198a 359 64.6 11.8</td>
<td>0.80</td>
<td>1.32</td>
<td>2.22</td>
<td>--</td>
<td>all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosentan</td>
<td>132a 28.9 19.5 5.8</td>
<td>0.36</td>
<td>0.87</td>
<td>2.95</td>
<td>--</td>
<td>all</td>
<td>Varma et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142b 28.9 19.5 5.8</td>
<td>0.38</td>
<td>0.87</td>
<td>2.90</td>
<td>--</td>
<td>all</td>
<td>Jones et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1117c 28.9 19.5 5.8</td>
<td>3.02</td>
<td>0.87</td>
<td>0.99</td>
<td>--</td>
<td>all</td>
<td>Yoshikado et al., 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35a 12.1 -- -- 39e</td>
<td>0.02</td>
<td>3.24</td>
<td>3.93</td>
<td>--</td>
<td>all</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035d 14 -- -- 5.0e</td>
<td>1.09</td>
<td>0.36</td>
<td>1.91</td>
<td>--</td>
<td>all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repaglinide</td>
<td>166a 63.6 128 0.3</td>
<td>0.19</td>
<td>2.01</td>
<td>3.35</td>
<td>--</td>
<td>all</td>
<td>Varma et al., 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>193b 63.6 128 0.3</td>
<td>2.32</td>
<td>2.01</td>
<td>1.21</td>
<td>>40% uptake</td>
<td>uptakeg</td>
<td>Jones et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1151c 63.6 128 0.3</td>
<td>1.35</td>
<td>2.01</td>
<td>1.71</td>
<td>>15% uptake</td>
<td>uptakeg</td>
<td>Yoshikado et al., 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>299a 223 125 0.0</td>
<td>0.22</td>
<td>0.56</td>
<td>3.27</td>
<td>--</td>
<td>all</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3671d 352 125 0.0</td>
<td>2.73</td>
<td>0.35</td>
<td>1.07</td>
<td>--</td>
<td>all</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a - *in vitro* quantified + IVIVE

b - *in vitro* quantified + IVIVE + empirical scaling factor for active uptake transport (individual scaling factor)

c - *in vitro* quantified + IVIVE + empirical scaling factor for active uptake transport (geometric mean scaling factor)

d - fitted parameters from *in vivo* using PBPK model

e - composite $CL_{met+bile}$

f - fu_b and Qh values as noted in each reference were used for analysis – note that fu_b may vary for the same drug across different references

g - RDS$_{uptake}$ was established *in vivo* for atorvastatin and bosentan, since there was no significant AUC change to victim drugs when co-administered with IV itraconazole (CYP3A inhibitor) which resulted in 33% and 73% CYP3A inhibition, respectively (Maeda et al., 2011; Yoshikado et al., 2017). Midazolam, a CYP3A
probe, was used to assess magnitude of CYP3A inhibition. \(\text{RDS}_{\text{uptake}} \) was established for repaglinide via whole-body PBPK modeling of complex transporter- and enzyme-mediated DDI's (Varma et al., 2013).

\(h - \text{RDS}_{\text{all}} \) was established in vivo for repaglinide since even though there was no change to systemic AUC by IV itraconazole, because CYP2C8 is the major hepatic drug metabolizing enzyme (Yoshikado et al., 2017). In a different study, PO trimethoprim, a selective CYP2C8 inhibitor, increased repaglinide AUC by 1.8-fold (Kim et al., 2016).
Figure 1

A)

- **CL\textsubscript{met+bile} = 1L/hr**
- **CL\textsubscript{met+bile} = 10L/hr**
- **CL\textsubscript{met+bile} = 100L/hr**

B)

- **Fixed Ratio**
- **Varying Ratio**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL\textsubscript{met+bile} (L/min)</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>CL\textsubscript{mef} (L/min)</td>
<td>0.1</td>
<td>0.4</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>CL\textsubscript{met+bile} / CL\textsubscript{mef}</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

C)

- **Low ER (CL\textsubscript{in} = 0.25*Q\textsubscript{h})**
- **Mid ER (CL\textsubscript{in} = Q\textsubscript{h})**
- **High ER (CL\textsubscript{in} = 4*Q\textsubscript{h})**
Figure 2

$\frac{CL_{met+bile}}{CL_{ef}}$ vs. $\frac{CL_{in}^s}{Q_h}$

- RDS_{uptake}
- RDS_{all}
Figure 3

A) A graph shows the relationship between the percentage of metabolites and bile (PI\text{met+bile}) and the CL\text{met+bile} to CL\text{ef} ratio for Low ER, Mid ER, and High ER.

B) A graph illustrates the RDS\text{uptake} and RDS\text{all} as functions of the CL\text{S/In}/Q\text{h} ratio. The table below summarizes the CL\text{met+bile}/CL\text{S/ef} for different fold changes and corresponding PI\text{met+bile} percentages:

<table>
<thead>
<tr>
<th>CL\text{met+bile}/CL\text{S/ef}</th>
<th>Low ER</th>
<th>Mid ER</th>
<th>High ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – fold</td>
<td>>19%</td>
<td>>50%</td>
<td>>80%</td>
</tr>
<tr>
<td>8 – fold</td>
<td>>60%</td>
<td>>75%</td>
<td>>87%</td>
</tr>
<tr>
<td>16 – fold</td>
<td>>80%</td>
<td>>90%</td>
<td>>95%</td>
</tr>
</tbody>
</table>
How to predict DDI liabilities for dual enzyme/transporter substrates?

What factors determine the switch from \(\text{RDS}_{\text{uptake}} \) to \(\text{RDS}_{\text{all}} \)?

Fig. 1A

The magnitude of \(\text{CL}_{\text{met+bile}} \) inhibition that leads to a DDI for a drug with \(\text{RDS}_{\text{uptake}} \) depends on the starting \(\text{CL}_{\text{met+bile}} \) value.

Fig. 1B

The \(\text{RDS}_{\text{uptake}} \) switch to \(\text{RDS}_{\text{all}} \) depends on the \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}}^s \) ratio and not the absolute \(\text{CL}_{\text{met+bile}} \) magnitude.

Fig. 1C

The \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}}^s \) ratio that results in an AUCR = 1.25 signifies when \(\text{RDS}_{\text{uptake}} \) will switch to \(\text{RDS}_{\text{all}} \). This ratio is defined as the tipping point.

How to use the RDS framework to determine DDI liabilities?

Fig. 2

1. Identify the drug’s RDS in the absence of DDI.
 - The \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}}^s \) ratio and \(\text{CL}_{\text{in}}^s/Q_h \) in relation to the tipping point defines the RDS of the drug.

Fig. 3

2. Identify when \(\text{RDS}_{\text{uptake}} \) will switch to \(\text{RDS}_{\text{all}} \) in the presence of DDI.
 - Inhibition of \(\text{CL}_{\text{met+bile}} \) that results in the \(\text{CL}_{\text{met+bile}}/\text{CL}_{\text{ef}}^s \) ratio to be less than the drug’s tipping point, is defined as \(\text{PI}_{\text{met+bile}} \).
 - \(\text{PI}_{\text{met+bile}} \) identifies when inhibition of \(\text{CL}_{\text{met+bile}} \) starts to become a DDI liability for victim drugs that have \(\text{RDS}_{\text{uptake}} \).
Inhibition of $\text{CL}_{\text{met+bile}}/\text{CL}_{\text{s ef}} > 4$?

Yes

DDI liability: uptake transporters

No

$\text{RDS}_{\text{uptake}}$

Yes

$\text{CL}_{\text{met+bile}}/\text{CL}_{\text{s ef}} > \text{tipping point}$?

No

RDS_{all}

DDI liability: transporters and enzymes

Inhibition of $\text{CL}_{\text{met+bile}}$ will lead to DDI if:

- $\text{CL}_{\text{met+bile}}/\text{CL}_{\text{s ef}}$ ratio
 - 5.3
 - 8
 - 16
 - 81

Expected $\text{CL}_{\text{met+bile}}$ Inhibition

- 25%
- 50%
- 75%
- 95%