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Abstract

Animal models such as rats and primates provide body-wide information for drug and metabolite
responses, including organ-specific toxicity and any unforeseen side effects on other organs.
While effective in the drug screening process, their translatability to humans is limited due to the
lack of high concordance and correlation between enzymatic mechanisms, cellular mechanisms
and resulting toxicities. A significant mode of failure for safety prediction in drug screening is
hepatotoxicity, resulting in ~30% of all safety-related drug failures and withdrawals from the
market. The liver is a multi-functional organ with diverse metabolic, secretory and inflammatory
response roles and is essential for maintaining key body functions. Conventional cell culture
platforms (such as multi-well plate cultures) and metabolic enzyme (microsomes, CYP450
enzyme) systems have been routinely utilized to assess drug pharmacokinetics and metabolism.
However, current in vitro models often fail to recapitulate the complexity and dynamic nature of
human tissues, imposing a heavy reliance on in vivo testing using preclinical species that have
metabolic processes, disease mechanisms and modes of toxicity distinct from humans. Recently,
microphysiological systems (MPS) have gained attention as powerful tools with the potential to
generate human-relevant information that can supplant and fill the gap of knowledge between
preclinical animal models and simpler, conventional in vitro cell culture systems. Developments
in microfabrication technologies for generating complex microfluidic systems, along with the ability
to establish and maintain multi-cellular models to capture dynamic, human-relevant behavior,
have provided new avenues to generate such physiologically-relevant systems. These MPS
platforms, when designed and developed with in vivo-derived design parameters, have the
potential to capture key aspects and better mimic organ functionality. In this review, we discuss
developments in microtechnologies for fabricating, establishing and maintaining hepatic cell
culture systems, with a specific focus on models that aim to capture in vivo physiology in vitro. By

designing microscale systems to impart specific in vivo physiological parameters, it is possible to
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create a dynamic system that can capture multiple aspects of the hepatic microenvironment,

bringing us closer to a comprehensive in vitro testing platform for hepatic responses and toxicities.
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Introduction

The liver is a central organ performing critical roles within the human body, with metabolic,
storage, synthesis, and filtration functions, as well as mediating inflammatory responses (Lee and
Senior, 2005; Godoy et al., 2013; Lauschke et al., 2016). The drug screening process relies
heavily on animal models to evaluate drug metabolism and its body-wide influence (Olson et al.,
2000; Greaves et al., 2004). Hepatotoxicity accounts for ~ 50% of cases of acute liver failure and
remains a major factor responsible for withdrawal or restricted use of approved drugs (Olson et
al.,, 2000; Schuster et al., 2005; Wilke et al., 2007; Kaplowitz, 2013). Apart from drug
hepatotoxicity, liver-generated metabolites are transported to other tissues in the human body
through the systemic circulation, resulting either in therapeutic effects (e.g., pro-drugs) or

unwanted side effects (Bale, Moore, et al., 2016; Hughes et al., 2017).

In vitro cell culture is an attractive alternative to animal models and ex vivo organ culture, and is
an integral component of biomedical research and drug screening (Guillouzo, 1998; Zguris et al.,
2005; Emoto et al., 2006; Ewart et al., 2018). Hepatic platforms with varying complexity and
composition have been actively used in the development of therapeutic drugs, providing
information regarding hepatic biology, pharmacokinetics and pharmacodynamics (Godoy et al.,
2013; Lauschke et al., 2016; Ewart et al., 2018). Current state-of-the-art techniques for assessing
human-relevant hepatic responses include in vitro models comprising either primary hepatocyte
monocultures or co-cultures in 2D and 3D formats (Fourches et al., 2010; Godoy et al., 2013;
Lauschke et al., 2016). However, most of these systems are hepatocyte-centric static systems,
and fail to capture the dynamic and multi-cellular nature of the liver. Recently, developments in
microscale manufacturing technologies have enabled the construction of well-defined
microenvironments mimicking native microarchitectures, thereby leading to remarkable advances
in recapitulation of niche environments of organs in vitro (Bale et al., 2014; Bhatia and Ingber,

2014; Wikswo, 2014; Abbott and Kaplan, 2015; Yoon No et al., 2015; Bale, Moore, et al., 2016;
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Lauschke et al., 2016; Ewart et al., 2018). These microscale cell culture platforms represent
attractive alternatives to animal models, providing easily accessible, highly reproducible and
human-relevant information in advance of further pre-clinical and human studies. Key
requirements for the development of such MPS platforms for capturing liver functionality are
aimed at 1) constructing complex microscale structures suitable for mimicking in vivo
microarchitecture, cellular composition and interactions, 2) simulating liver pathophysiology under
an in vivo-like microenvironment, and 3) providing a rapid, easy and high-throughput process for
screening of diverse treatment methods and toxic materials using a small number of human cells.
Further, capturing hepatic responses in MPS models can drive the generation of multi-organ MPS
systems that are capable of capturing inter-organ interactions and assaying for compounds and

their metabolites, and drug responses (Bale, Moore, et al., 2016; Hughes et al., 2017).

In this review, we provide an overview of current state-of-the-art microtechnologies and strategies
aiding the development of liver MPS platforms. We describe the novel technical advances and
approaches adapted in microfluidic organ-on-chip systems to extend the longevity of hepatic
cultures and to recapitulate the microenvironment of the liver. Studies have shown that
recapitulation of physiological levels of mass transport, fluid flow, media-to-cell ratios and oxygen
supply to the hepatic cultures enhances hepatic function, and allows for the interrogation of
chemicals at a human translatable scale. Advanced liver MPS platforms, both in recapitulating
liver physiology and implementation in high-throughput formats represent an attractive option for
investigating healthy and disease models of the liver, cellular interactions and therapeutic

responses.
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Microarchitecture of Liver

The basic structural unit of the liver is the hepatic lobule, a roughly hexagonal unit consisting of
parenchymal (hepatocytes) and non-parenchymal (Kupffer, stellate, sinusoidal endothelial, and
cholangiocytes) cells between the portal triad and the central vein (Figure 1A). Cells within the
liver have well-defined functions with hepatic responses to any external stimuli or perturbation
(chronic or acute) being a cumulative response of the constituent cells. In addition to multiple cell
types, the liver is a highly vascularized organ perfused by a dual blood supply, with arterial blood
via the hepatic artery and venous blood via the portal vein. Spent blood from the liver is collected
into the central vein, and the bile ducts collect bile, which is then concentrated in the gall bladder.
The functional unit of the liver is the acinus, comprising of sinusoidal capillaries which are defined
by the venous blood capillary connecting the portal triad (hepatic artery, hepatic vein and bile
ducts) draining into the central vein (Figure 1B). The sinusoid is lined with a layer of fenestrated
endothelial cells (Wisse et al., 1996; Braet and Wisse, 2002) that regulate nutrient and xenobiotic
transport, and a layer of hepatocytes (major metabolic component). The stellate cells (Friedman,
2008), matrix producing, myofibroblast-like cells, reside in the matrix between sinusoidal
endothelial cells and hepatocytes, identified as the space of Disse. Kupffer cells (Wisse et al.,
1996; Haubrich, 2004; Bilzer et al., 2006) are the resident macrophages that reside in the
sinusoid. The oxygen-rich arterial blood from the hepatic artery mixes with the venous blood via
the portal vein that is low in oxygen saturation but rich with hormones and nutrients from the
gastrointestinal tract. The mixed blood supply travels along the liver sinusoid to the central vein,
generating a unique, complex environment (Figure 1B) (Vollmar and Menger, 2009). Hepatocytes
utilize high amounts of oxygen, and are involved in the secretion and metabolism of several
molecules, and thus the environment within the sinusoid is dynamic, driven by hepatocyte
metabolism. In addition, the transport of nutrients and oxygen from the liver sinusoid occurs

through the endothelial cells and the space of Disse, creating a unique environment whose
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physiological responses are driven by the mass transport occurring within the micro-architecture

of the liver sinusoid.

Micro-technologies for Hepatic culture

Cell types, culture systems and heterotypic interactions: Key hepatic model developments have
focused on culturing primary hepatocytes aimed at (1) extending the longevity of hepatocyte
cultures (viability, protein secretion and enzymatic activity) and (2) capturing multi-cellular
complexity and responses. In addition to precision-cut liver slices, which capture the complex
microenvironment of the liver, metabolic enzyme components, and in vitro cell-culture systems
based on cell lines, primary cells and stem cell-derived cells have been investigated, providing a
variety of levels of function and responses. Liver slices comprise multiple cells of the liver and
capture the tissue complexity, however they have a relatively short life (several days) in culture
(Vickers et al., 2004; van de Bovenkamp et al., 2006; Olinga and Schuppan, 2013). Isolation of
purified primary hepatocyte fractions enables their incorporation in suspension and plate cultures,
ideal for developing assays for evaluating drug metabolism, and widely used in various culture
formats (Godoy et al., 2013; Lauschke et al., 2016). Major advances in extending the longevity of
primary hepatocyte culture include sandwich culture (Dunn et al., 1991, 1992), micro-patterned
co-cultures (Bhatia et al., 1999; Khetani and Bhatia, 2008), 3D printing (Nguyen et al., 2016;
Nguyen and Pentoney, 2017), and spheroid formation (Messner et al., 2013). These models often
incorporate extracellular matrix materials, and co-cultures, extending hepatocyte cell cultures for
several weeks, and thereby providing a suitable platform for drug testing. Collagen (or matrigel)
sandwich primary hepatocyte provide an in vivo-like environment, stabilizing and enabling
hepatocyte polarization driven by cell-cell contacts and leading to the formation of bile junctions
in culture. Such stabilization allows the recovery of several hepatic secretory and metabolic
functions in a relatively short time frame (3-4 days) and allowing retention of function for several

weeks (Dunn et al., 1991, 1992; Bale, Golberg, et al., 2015). Hepatic co-cultures generated using
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micro-patterning methods and co-cultures enable hepatic stabilization, driven by the interactions
of secreted matrix, integrins and secreted molecules (Yaakov et al., 2006; Bale, Golberg, et al.,
2015; Bale, Geerts, et al., 2016; Lauschke et al., 2016). Micropatterned hepatic co-cultures have
been developed with fibroblasts (Bhatia et al., 1999) and hepatic-relevant non-parenchymal cells,
(Yaakov et al., 2006) providing an environment that can capture paracrine and autocrine signaling
functionality. Spheroid and 3D printing models are driven by the self-assembly of hepatocyte
cultures, enhancing hepatic functionality by mimicking the 3D environment and increasing cell-
cell contacts (Messner et al., 2013; Nguyen et al., 2016). In addition to hepatocytes, isolation of
non-parenchymal cells to obtain pure populations has been challenging, although advances in
methods are currently yielding Kupffer and hepatic stellate cells that can be utilized in developing
hepatic co-cultures. Hepatocyte co-cultures with non-parenchymal cell fractions (Kostadinova et
al., 2013; Esch et al., 2015; Bale, Geerts, et al., 2016; Du et al., 2017), Kupffer cells (Tukov et al.,
2006; Zinchenko, Culberson, et al., 2006; Zinchenko, Schrum, et al., 2006), stellate cells (Thomas
et al., 2006) and sinusoidal endothelial cells (Hwa et al., 2007; Kim and Rajagopalan, 2010; Bale,
Golberg, et al., 2015) are providing valuable information regarding cellular cross-talk and hepatic

responses.

While significantly extending the cell-culture life, the limited quantity of primary hepatocytes and
non-parenchymal hepatic cells from isolations limits their extensive use, particularly in high-
throughput culture systems. Hepatic cell lines (such as Hepa-RG™ and HepG2) are attractive
alternatives to primary hepatocytes in multiple cell-culture models, but lack many of the active
cellular machinery and metabolic components (when compared with primary hepatocytes),
limiting their applicability to such in vitro screening platforms (Szabo et al., 2013). Emerging
alternatives to primary hepatocytes are populations of renewable cells from embryonic stem cells
(ESCs) and adult-induced pluripotent stem cells (iPSC) that can be matured into functional,

hepatocyte-like cells (Yiet al., 2012; Shan et al., 2013; Subba Rao et al., 2013). Stem-cell-derived
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hepatocyte-like cells offer a unique opportunity to revolutionize pharmacological and toxicological
assessment by providing a large supply of cells and representing genetic diversity, however, the
current state-of-art cell development methods require further improvement before their

incorporation into main-stream toxicology assays (Shan et al., 2013; Godoy et al., 2015).
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Capturing physiological relevance in MPS platforms

The liver, with its complex architecture and multiple functions, is in many ways an ideal organ for
in vitro model development utilizing microfabrication techniques to generate models that precisely
control the microenvironment, while accommodating cellular complexity to capture heterotypic
interactions. Hepatocytes, being the major fraction of the liver and active metabolic component,
have been the focus of numerous scientific studies. Key advances in hepatocyte stabilization and
culture in vitro include sandwich, spheroid and micro-patterned cultures that have extended static
hepatocyte cultures for weeks (Godoy et al., 2013; Yoon No et al., 2015; Lauschke et al., 2016).
Recent advances in the development of microfluidic systems have focused on translating
hepatocyte culture to dynamic cell culture systems, mimicking an in vivo environment (Soldatow

et al., 2013; Bale et al., 2014; Bhatia and Ingber, 2014).

The liver sinusoid comprises a complex microenvironment with multi-cellular composition,
capillary fluid flow, and dynamic responses to external stimuli (Reilly et al., 1981, 1982;
McCuskey, 2008). The biochemical microenvironment consists of growth factors, hormones,
signaling molecules, and reaction products that combine to produce complex signaling pathways
contributing to the fate of the cells. Further, chemical and hormonal gradients exist within the
microenvironment due to diffusion through the matrix materials (space of Disse), modulated by
cellular secretion, enzymatic functions and flow. For MPS platforms, it is important to not only
capture the cellular complexity, but also aspects of physiological exchange of materials between
the sinusoid blood flow, hepatocytes, and multiple cells in the liver. In addition to mimicking liver
physiology, MPS platforms need to capture the cellular interactions and associated feedback
responses that modulate hepatic behavior. Recently, microscale technologies have become
capable of generating physical structures that enable assaying the coupling between biochemical

gradients and physical cues, for evaluation of combinatorial effects of soluble factor signaling and
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cell-cell and cell-matrix interactions. Several physiological phenomenon have been explored as

part of the MPS platform design and function.

1. Nutrient transport: Hepatocytes in vivo are arranged in monolayer plate structures enclosed by
the extracellular matrix of the space of Disse, and are faced on both sinusoidal surfaces by blood
(Figure 1 A,B). Nutrient transport to hepatocytes in the sinusoid primarily occurs through (1)
sinusoidal blood flow, and (2) diffusion through the space of Disse, generating a continuous
nutrient gradient parallel to the axis of blood flow (Figure 1b). Hepatocytes in the sinusoid are
surrounded by extracellular matrix in the space of Disse, protecting them from any direct contact
with blood flow (Reilly et al., 1981, 1982; Wisse et al., 1996; Vollmar and Menger, 2009; Géraud
et al., 2010), and thus any fluid shear imparted by a perfusion flow rate on the culture medium
becomes the limiting factor for designing MPS systems. Several microfluidic systems have
overcome this limitation by designing models that incorporate a physical separation between
regions of flow and cells, in the form of endothelial cell-like barriers with dedicated hepatocyte
culture channels (Lee et al., 2007) or microfluidic bilayer devices with tissue culture membrane
separating flow and cell-culture channels (Bader et al., 1998; Borenstein et al., 2003; Dash et al.,

2013; Hegde et al., 2014; Ljupcho et al., 2015; Du et al., 2017)

In their work, Lee and co-workers have utilized microfabrication techniques to generate a two-
channel microfluidic device with an endothelial cell-like barrier that physically separates the cell
culture and nutrient transport compartments (Lee et al., 2007). The utilization of a endothelial cell-
like barrier separating the cell culture chamber from the media flow chamber enables independent
manipulation of flow to precisely control, and thus optimize mass transport to hepatocytes (Figure
2A). Flow in the endothelial cell-like barrier is defined by the channel thickness, providing a
diffusion-dominated nutrient exchange and by designing the channels to mimic mass transport in
the space of Disse, and manipulating flow to mimic the mass transport of proteins, such as

matching the Péclet number using in vivo-derived parameters. Utilizing this system, Lee and co-
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workers demonstrated hepatic stabilization and functional maintenance for up to 7 days; and
hepatic response to diclofenac as a test compound. Similar endothelial-cell like barrier strategies
have been developed to culture hepatocytes and cell lines long-term (Toh et al., 2007; Goral et

al., 2010).

Microfluidic bilayer models provide a similar microarchitecture for hepatocyte culture by
separating the media flow chamber from the cell culture chamber and protecting hepatocytes from
any flow-induced shear stresses (Borenstein et al., 2003; Hegde et al., 2014; Ljupcho et al., 2015;
Du et al., 2017). The basic structure of microfluidic bilayer systems is the overlap of two
independently accessible microfluidic channels, with a tissue-culture membrane separating the
two channels. By incorporating primary rat hepatocytes in a collagen-sandwich in the bottom
channel, and providing media by flow in the top channel, Hegde and coworkers demonstrate the
importance of achieving optimal flow rates for hepatic stabilization and long-term hepatic function
(Figure 2B) (Hegde et al., 2014). By optimizing the media flow, the authors demonstrated
increased secretions, metabolic activity, and bile junction formation, and increased collagen
production by the hepatocytes, suggesting a level of hepatocyte stabilization that mimics an in
vivo-like environment. This results in increased secretion (albumin, urea), metabolic function
(CYP1A1/2) and formation of bile junctions within the hepatocyte monolayer culture. A key aspect
of the collagen sandwich model is the stabilization and polarization of hepatocytes, driven by the
collagen secreted by hepatocytes in situ (Dunn et al., 1989, 1991). These authors demonstrated
collagen-driven stabilization as a driving factor for hepatic culture, showing increased expression
of Collagen 1A1, 4A1 and 5A1 in flow when compared with static culture conditions. Further, by
incorporating cis-Hydroxyproline (an isomer of proline essential for collagen synthesis) in the
media the authors demonstrate the loss of hepatocyte monolayer integrity (driven by the
disruption of triple helix structure of collagen by cis-Hydroxyproline), and subsequently loss of

function (Uitto et al., 1975). Using a similar bilayer model, Prodanov and co-workers incorporated
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multiple hepatic cells, including primary hepatocytes, cell lines representing endothelial (Ea.hy
926), Stellate (LX-2) and Kupffer (U-937) cells capturing the major cell types present in the liver
sinusoid (Ljupcho et al., 2015). Hepatocytes and stellate cells were cultured in one chamber, while
the flow channel was comprised of endothelial cells as a mono-layer (exposed to flow) and Kupffer
cells in the flow channel mimicking the architecture of the sinusoid (Figure 2C). Mass transport in
the device (between flow channel and hepatocytes) is optimized using Péclet number estimates,
generating a hepatic culture with optimal functions (secretions, bile canaliculi formation and

CYP3A4) for up to 4 weeks.

Dash and co-workers have utilized a combination of a spinning cone and perfusion flow to achieve
controlled hemodynamics, mimicking the sinusoidal and interstitial blood flow to hepatocytes in
culture (Dash et al., 2013). The system used a standard transwell plate, with hepatocytes cultured
in a standard sandwich culture format on the underside of the membrane, and a spinning cone
producing shear conditions on top of the membrane (Figure 2D). In combination with media
perfusion in both the well and transwell, the authors demonstrated recovery of hepatic function,

measured by albumin and urea secretions and polarization

2. In vitro zonation: A key physiological feature of the liver sinusoid is zonation, identified with
cells of varying metabolic and enzymatic functionality along the capillary (Jungermann and Katz,
1982; Lindros, 1997). Immunohistochemical staining of tissue sections reveals this signature
variation in hepatic function, presenting as compartmentalization of oxidative energy,
carbohydrate, lipid and nitrogen metabolism, bile conjugation and xenobiotic metabolism (Giffin
et al., 1993). This change in functionality occurs over the length of the sinusoid, which is
approximately 25 hepatocytes long. For instance, zone 1 hepatocytes are efficient in glucose
uptake, urea formation, amino acid breakdown and phase Il conjugation of molecules, while zone
3 hepatocytes are efficient at glucose uptake, glutamine formation, alcohol degradation and phase

I metabolism (Figure 3A). This variation along the length of the liver sinusoid contributes to the

15

20z ‘LT 1udy UoSeUINor 13dSY e BIo'sfeuIno fipdsepuwip Woly papeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on August 16, 2018 as DOI: 10.1124/dmd.118.083055
This article has not been copyedited and formatted. The final version may differ from this version.

DMD #83055

overall function of the liver as a glucose regulator and process several environmental agents and

xenobiotics.

Methods to isolate location-specific hepatocytes from the liver using micro-dissection have met
with limited success and do not provide cells with significant quantity for extensive use in in vitro
models (Teutsch, 1986; Bars et al., 1992). Several studies have utilized mixed populations of
isolated hepatocytes in culture to generate an in vitro-like zonation in a continuous hepatocyte
culture by varying oxygen and environmental cues, such as hormones and chemicals. In an effort
to capture zonal features of the liver, Allen and co-workers developed a biomimetic flat-plate
bioreactor with either hepatocyte monoculture or hepatocyte-fibroblast co-cultures generating an
oxygen gradient along the axis of flow (Allen and Bhatia, 2003; Allen et al., 2005). The custom
flat-plate bioreactor is manufactured from oxygen impermeable polysulfone and designed to
receive a microscope slide seeded with hepatocyte cultures, as well as integrated with a media
oxygenator upstream and oxygen monitor downstream of the bioreactor (Figure 3B). Cells are
seeded onto a microscope slide and stabilized in static culture for 5-7 days prior to incorporation
into the bioreactor. By introducing oxygenated media and flowing through the length of the cell
culture, an oxygen gradient is generated within the bioreactor, driven by the balance of oxygen
content in the media, consumption by cells and the flow rate of media. Spatial expression of
metabolic enzymes (CYP2B, CYP3A) showed a location-dependent expression along the length
of the flow, suggesting that oxygen-dependent (and location-dependent) function is generated
along the length of media flow within the bioreactor. Further, the authors demonstrate
location/zone-dependent toxicity of acetaminophen, a compound known to target zone 3

hepatocytes specifically.

In a different study, McCarty and co-workers developed a microfluidic device to generate a
continuous gradient across a hepatocyte culture to capture hepatic zonation using chemical and

hormonal gradients (McCarty et al., 2016). The model generates spatially-controlled zonation
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across multiple hepatocyte metabolism levels through controlled application of hormonal and
chemical gradients (Figure 3C). A key difference in the device is generation of “zonation”
perpendicular to the flow, while the gradient exists in the direction of flow in vivo. Utilizing this
model, the authors demonstrate variations in carbohydrate and nitrogen metabolism in a
glucagon-insulin gradient; and enzymatic variations using chemical (3-Methylcholanthrene, 3-
MC) gradient. Further, variations in enzymatic activity within the chemical-driven zonation are
revealed by assaying for acetaminophen toxicity zone-dependent response. In a recent work,
similar devices have been developed to capture zonation using hormones and inducers in both

rat and human hepatocyte cultures (Kang et al., 2018).

3. Oxygen transport in in vitro systems: Hepatocytes are metabolically active cells requiring high
amounts of oxygen to perform various enzymatic processes. In vivo, the liver receives two-thirds
of its blood supply from partially oxygen-depleted venous blood and one-third from fully
oxygenated arterial blood, and active consumption of oxygen from the blood results in the
formation of zonation. Development of cell culture systems and microfluidic systems in particular
requires the careful consideration of requirements for oxygen transport to the hepatocytes. In
vitro, oxygen requirements by hepatocytes vary depending upon the stage of the culture (seeding,
stabilization and continued culture), and it is essential to provide sufficient oxygen at all stages.
Depending on the ability to interact with oxygen in the incubator environment (maintained at 21%
ambient oxygen), in vitro cell culture systems can be broadly classified as open and closed cell
culture systems. For example, conventional multi-well cell culture platforms have an open air-
liquid interface surface that interacts directly with the incubator environment and provides
adequate oxygen to hepatocytes. In case of closed bioreactor systems and microfluidic systems
(Bale et al., 2014), oxygen replenishment in the media is accomplished by either (1) in-line
oxygenation of the media in the fluidic circuit, or (2) utilization of materials with high oxygen

diffusivity (e.g., Poly(DiMethylSiloxane), PDMS). Media oxygenation systems are large-volume
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systems, increasing the quantity of media utilized for cell culture and leading to an apparent
reduction of secreted factors. PDMS is an attractive material for microfluidic systems from
fabrication, ease-of-use, and optical transparency perspectives. As a result, PDMS has found
extensive use in several microscale platforms for organ-on-chip systems. However, recent studies
have shown the significant loss of drugs within PDMS based microfluidic systems due to
absorption; and have highlighted the incompatibility of soft polymeric materials with fabrication of

high-throughput multi-chip systems (Halldorsson et al., 2015; Shirure and George, 2017).

To generate a microscale model that utilizes non-PDMS materials (such as thermoplastics), an
alternate strategy is to incorporate active oxygen transport systems within the microfluidic device
as active structural elements. Bader and co-workers demonstrated the incorporation of gas-
permeable films in the construction of microscale bioreactors to provide oxygen to collagen-
sandwich hepatocyte cultures (Bader et al., 1998). The active oxygen transport layer used in the
system is a collagen-coated, gas-permeable Teflon layer that not only supports oxygen transport
but also provides an active attachment surface for hepatocytes, enabling the generation of a
collagen sandwich layer in later stages (Figure 4A). Media and nutrients were introduced through
a channel between a microporous film and a glass on top of the collagen sandwich. Utilizing this
model, rat hepatocytes were cultured for 14 days, maintaining albumin and urea secretions.
Further, the influence of serum, fibronectin and collagen in cell culture media are evaluated,
suggesting a 5% Serum and 0-30 pg/mL fibronectin proved higher levels of albumin and urea
secretions over a period of 28 days. Active oxygen transport to hepatic cultures can be achieved
by incorporating oxygen-transport layers using PDMS as a structural element, as shown by Kane
and coworkers (Kane et al., 2006). Micropatterned co-culture of hepatocytes and 3T3-J2
fibroblasts were seeded on a glass substrate followed by capping the top surface using a PDMS-
oxygen permeable layer as a composite lid. Media was introduced above the cells in culture and

perfused, demonstrating maintenance of hepatic functions (Figure 4B).

18

20z ‘LT 1udy UoSeUINor 13dSY e BIo'sfeuIno fipdsepuwip Woly papeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on August 16, 2018 as DOI: 10.1124/dmd.118.083055
This article has not been copyedited and formatted. The final version may differ from this version.

DMD #83055

In a different study, Ochs and co-workers determined the oxygen consumption by hepatocytes in
thermoplastic devices by directly measuring oxygen concentrations in the cell culture (Ochs et al.,
2014). The device comprised of an oxygen sensing foil forming the bottom of the microfluidic
device with the top channel formed using either (1) PDMS, which has high oxygen diffusivity, or
(2) Polymethyl Pentene (PMP), with high oxygen diffusivity and excellent processability and
biocompatibility and (3) Cyclic Olefin Copolymer (COC), which is oxygen-impermeable. Oxygen
content within 1 hour of cell seeding for hepatocyte cultures in the device decreased to ~4% in
case of COC and ~ 10% in case of PMP, while it remained at ~18% in the case of PDMS,
demonstrating high oxygen consumption by hepatocytes. In comparison, endothelial cells seeded
in similar devices did not show any appreciable loss in oxygen content in the case of PDMS and

PMP chips, and a decrease to ~13% in the case of COC chips.

4. Small-volume effects in microfluidic cell culture devices: Spatial confinement in the in vivo
microenvironment is a less studied component in in vitro model systems, particularly in microscale
models designed to capture the responses of endogenous signals, secreted molecules, drugs
and their metabolites (Mehling and Tay, 2014; Wikswo, 2014). Conventional cell culture methods
such as standard multi-well platforms and bio-reactors incorporate large fluid volumes per unit
surface area, resulting in the dilution of secreted molecules (Mehling and Tay, 2014; Wikswo,
2014). Further, these systems require complete medium exchange providing renewed media and
nutrient components; however, consistent media exchange results in the removal of any
autocrine, paracrine factors and, particularly in case of the liver, metabolites that have
accumulated over the course of exposure. In comparison, microscale manufacturing techniques
generate models with fixed dimensions (length, breadth and height), providing large areas for cell
attachment with constrained volumes, and fixed media-to-cell ratios (Mehling and Tay, 2014,

Wikswo, 2014; Bale, Moore, et al., 2016). This constrained microenvironment allows for the
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precise control over the volume from which nutrients/compounds are consumed; and molecules,

including hormones, signaling molecules, and reaction products are excreted.

In a recent study, Bale and co-workers demonstrated the importance of such dilution effects in
capturing a short-lived therapeutic molecule in a liver- breast cancer model, utilizing the reduced
dilution effects in a microscale bilayer device when compared with standard transwell cultures
(Bale, Sridharan, et al., 2015). Initially, the authors compare the metabolic performance of
hepatocytes in a microfluidic device (100 pm height) with a standard 24-well plate culture with a
0.1 nL/hepatocyte and 1 nL/hepatocyte media dilution levels respectively. Making a simplistic
comparison, there are ~60 hepatocytes per 1 nL of blood in the human body (Wikswo et al., 2013;
Bale, Sridharan, et al., 2015; Hughes et al., 2017). By comparing the products of a CYP3A4 assay
(Luciferin-IPA), and reduced dilution of metabolites in the microfluidic device, the authors
demonstrated increased accumulation and increased concentration (3-4 times higher) of products
in the microfluidic device when compared with standard plate cultures. The authors extended
these findings by co-culturing rat primary hepatocytes and breast cancer (MCF-7) cells in a
microfluidic bilayer device, resulting in a low combined volume of 0.35 nL/hepatocyte (Figure 5A).
In comparison, a typical 12 well transwell culture, primary hepatocytes and MCF-7 cells require
1,500 pL of cell culture medium, resulting in an increased volume of 3 nL/hepatocyte. Utilizing the
membrane bilayer model with a liver-cancer system, the authors demonstrated the metabolism of
Tegafur, a chemotherapeutic pro-drug, and the formation of its metabolite 5-Fluorouracil (5-FU),
by the metabolic functionality of hepatocytes and its toxic effect on cancer (MCF-7) cells. A key
observation was a low but measurable concentration of 5-FU detected in the microscale system,
which is not detectable in case of multi-well plate cultures. This suggests the need for careful
consideration of platform design for drug metabolism studies, particularly in the case of short-
lived therapeutic metabolites. Similarly, confinement of endogenous signals in small volumes in

microfluidic devices can influence the phenotype and longevity of hepatocyte cultures, as
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demonstrated by Haque and co-workers (Haque et al.,, 2016). Hepatic performance was
evaluated in both microscale chambers and multi-well plates; and influence of culture dimensions
on protein synthesis, metabolic activity and epithelial morphology of hepatocytes are evaluated
(Figure 5B). Hepatocytes in small volume culture showed higher albumin secretory functions, and
upregulation of hepato-inductive signals (growth factors such as HGF, EGF, IGF and FGF7) and
downregulation of hepato-disruptive signals (TGF- and CTGF) when compared with multi-well

plates.

5. Fluidic flow in microfluidic systems:

Dynamic cell culture systems, such as bioreactors and MPS models, utilize various strategies to
introduce and remove media from cell culture environment at a controlled rate, including pressure-
driven pumping and gravity. Pressure-driven systems include syringe pumps, peristaltic pumps
and custom-built pumping systems while gravity-driven flow systems utilize height differential in
channels either by pumping media or tilting the platform to drive media flow. A key advantage of
microfluidic MPS platforms is the relative reduction in media-to-cell ratio in the cell culture
chamber in comparison with the overall media in the system, which includes connecting tubing
and reservoirs. Accumulation of signaling molecules, cellular secretions and reaction products
plays an important role hepatic functionality and capturing such mechanisms via media flow is
essential. For instance, any influence on active enzymatic and metabolic components due to
cellular secretions (e.g., cytokine response from Kupffer cells in inflammatory conditions) in a
hepatic cell culture results in a regulated hepatic function and response (Bale, Geerts, et al.,
2016). In addition, modulating media flow is critical in maintaining and extending the longevity of
hepatocyte cultures by optimizing flow to match in vivo mass transport parameters, as discussed
earlier. While providing media flow at a rate intended to enhance hepatic function, careful
consideration should be given to the “residence time” of the media within the cell culture system

to capture the hepatic secretions, metabolites and feedback. While systems that incorporate flow
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in a single-pass format are capable of generating flow-dependent physiology, systems that re-
circulate media within a reasonable time frame with reduced dilution effects hold the promise of
capturing enzymatic products, secretions and feed-back responses, particularly for studies
dealing with chronic exposure and stimuli. Development of low-volume and preferably on-board
pumping systems is an important step in this direction to (1) conserve the reduced media-to-cell
ratios that are achieved by the microfluidic systems and (2) generate hepatic systems with media
recirculation, allowing the interrogation of active feedback responses that arise from cellular
secretions and cellular interactions. The reduced media-to-cell ratio in the microfluidic systems
open the possibilities of capturing short-lived metabolites, multi-cellular interactions and feedback
(Bale, Sridharan, et al., 2015; Haque et al., 2016) and aid in the generation of multi-organ systems

(Bale, Moore, et al., 2016) with better in vitro-in vivo correlations.

High-throughput platforms for drug screening

High-throughput MPS platforms are an attractive option for pharmaceutical industry, allowing their
adaptation as advanced cell-culture models for pre-clinical drug evaluation. Several static hepatic
cell culture systems have already been modified for high-throughput format, including micro
patterning - Hepregen, bio printing - Organovo, Solidus, mixed co-cultures — Regenemed and
spheroids - Insphero to name a few. Standalone, individual, microfluidic systems are currently
available as options for hepatic culture, such as Hurel, Emulate and Hemoshear. Case studies
and proof-of-concept demonstrations utilizing these systems have yielded some results validating
their applicability and human-translatability. Several of these models have been tested in the
industry setting and are currently in active collaboration with pharmaceutical companies for drug
screening and validation studies. With advances in microscale manufacturing techniques, several
microfluidic systems and MPS platforms have been adapted to, and manufactured in a high-
throughput format, notably Cell-ASIC Pearl and Mimetas systems.
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In addition, adaptation of high-throughput MPS systems into mainstream drug screening process
requires the development of analytical tools for molecular and genetic analyses, and imaging tools
for rapid assessment of cellular function. High-throughput imaging systems are already in use for
multi-well plate systems, requiring minimal development for deployment to MPS systems. Analyte
measurement in MPS systems with limited volume and low concentrations (in comparison with
traditional multi-well plate systems) is now possible with commercially available systems, such as
Luminex and Mass Spectrometry analysis. In addition to the suite of analytical capabilities,
development of novel tools incorporating genetic, proteomic and metabolomics will aid in the

generation of human-relevant data to accelerate drug-screening process.

Conclusion

In vitro models capable of more accurately predicting human hepatotoxicity and mechanisms
involved in liver diseases are urgently needed to address gaps in the drug development process.
Enhancing early detection capabilities of compound toxicity would provide a major advancement
in drug discovery and screening processes. The role of MPS technologies in generating human-
relevant, preclinical data is evolving with major advancements in understanding the native
microenvironment and utilizing microscale fabrication methods to generate in vitro mimics.
Emerging capabilities in microfabrication technologies, microfluidic control systems, biomaterials
and multi-cell culture formats are converging to provide an opportunity to address these gaps.
The major current challenge is the validation of these systems in establishing in vitro — in vivo
correlations to build confidence in these tools for drug development. Once validation is achieved,
the focus will shift toward the development of practical higher throughput systems that can be

implemented in pharmaceutical laboratories.
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Figure Legends:

Figure 1. Structure of the liver. A) Schematic showing hepatic lobular structure with cells located
in a vascularized structure between the portal triad (Hepatic artery, portal vein and bile ducts) and
the central vein. Hepatocytes within the lobule have varying functionality, roughly identified by the
various zones. B) The liver sinusoid is a dynamic environment receiving blood flow from portal
vein and hepatic artery and draining into the central vein. Nutrients and oxygen are transported

through the sinusoidal endothelial cells and extracellular matrix to the hepatocytes.

Figure 2. Capturing hepatic mass transport in in vitro models. A) Device with endothelial-like
barrier, separating flow from cell culture area, regulating nutrient flow through the intervening
barrier (Lee et al., 2007). B) Microfluidic bilayer model for culturing hepatocytes in collagen gel
and flow, demonstrating in situ production of collagen for hepatic stabilization (Hegde et al., 2014).
C) Incorporation of multiple cells within the microfluidic bilayer model to mimic the liver sinusoid,
and extending hepatic culture to 4 weeks (Prodanov et al., 2016). D) Cone and plate model for

hepatocyte culture, capturing aspects of interstitial flow and hemodynamics (Dash et al., 2013).

Figure 3. Hepatic zonation in in vitro models A) Hepatic zonation in the liver sinusoid results
in hepatocytes with distinct enzymatic and metabolic functionality along the length of the sinusoid.
B) Flat-plate bioreactor model to generate zonation with active oxygen consumption in the
direction of media flow (Allen et al., 2005). Gas exchanger (02, CO2, N2) upstream oxygenates
the media and consumed along the length of the bioreactor. C) Microfluidic device with a gradient
generator to create hormonal/chemical gradients across multiple hepatocytes (McCarty et al.,

2016).

Figure 4. Oxygen transport for optimal hepatocyte culture. A) Microfluidic device for
hepatocyte culture in a collagen gel incorporating a gas permeable membrane (Bader et al.,

1998). B) Cross section of a microfluidic device with a gas perfusion channel sandwiched within
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PDMS layers for optimal hepatocyte function (Kane et al., 2006).

Figure 5. Dilution effects in in vitro systems. A) Microfluidic device with reduced media-to-cell
ratio to capture primary metabolite toxicity in a hepatocyte — breast cancer model system (Bale,
Sridharan, et al., 2015). B) Effect of small volumes in maintaining the differentiated phenotype of

hepatocytes in micro chamber culture (Haque et al., 2016).
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