The Effects of Traditional Chinese Medicine on P-Glycoprotein
Mediated Multidrug Resistance and Approaches for Studying the
Herb–P-Glycoprotein Interactions

Yuhong Cao¹, Yiwei Shi¹, Ying Cai¹,², Zhanying Hong¹*, Yifeng Chai¹

¹ School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory
for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai
200433, China
² School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou
350122, China
Running title: TCM Natural Products as P-gp mediated MDR Reversal Agents.

* Corresponding author:
Zhanying Hong, Professor
Tel: 86-21-81871269 (Zhanying Hong)
E-mail address: hongzhy001@163.com
School of Pharmacy, Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical (Chinese Materia Medica) Metabolites Research, Shanghai 200433, China

Number of text pages: 35
Number of tables: 2
Number of figures: 3
Number of words in Abstract: 219
Number of words in introduction: 772
Number of words in discussion: 545

Keywords: P-Glycoprotein, modulation, multidrug resistance, traditional Chinese medicine, interaction, approach.
ABBREVIATIONS:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2780/T</td>
<td>trabectedin-resistant ovarian carcinoma cell</td>
</tr>
<tr>
<td>A549</td>
<td>human non-small cell lung cancer cell</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ADR</td>
<td>adriamycin</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-Brain Barrier</td>
</tr>
<tr>
<td>B-CSF</td>
<td>Blood-Cerebrospinal Fluid</td>
</tr>
<tr>
<td>BTB</td>
<td>Blood-Testis Barrier</td>
</tr>
<tr>
<td>Caco-2</td>
<td>human colon cancer cell</td>
</tr>
<tr>
<td>CEM</td>
<td>human leukemia cell line</td>
</tr>
<tr>
<td>CR</td>
<td>Coptidis Rhizoma</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>cytochrome P450, family 1, members A1</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epigallocatechin-3-gallate</td>
</tr>
<tr>
<td>GQ</td>
<td>7-O-geranylquercetin</td>
</tr>
<tr>
<td>GSK 3β</td>
<td>Glycogen synthase kinase 3β</td>
</tr>
<tr>
<td>HeLaS3</td>
<td>human cervical cancer cell</td>
</tr>
<tr>
<td>HepG2</td>
<td>liver cancer cell</td>
</tr>
<tr>
<td>IC50</td>
<td>concentration which inhibits cell viability by 50%</td>
</tr>
<tr>
<td>K562</td>
<td>human erythroleukemia cell</td>
</tr>
<tr>
<td>KB</td>
<td>human mouth epidermal carcinoma</td>
</tr>
<tr>
<td>KB-C2</td>
<td>multidrug-resistant subclone human mouth epidermoid</td>
</tr>
</tbody>
</table>
LC-MS/MS: liquid chromatography tandem mass spectrometry
LS180: human colon carcinoma cell
MAPK/ERK: mitogen-activated protein kinase/extracellular
MCF7: human breast adenocarcinoma cell line
MDCK-MDR1: MDR1-transfected Madin–Darby canine kidney cell
MDR: multidrug resistance
MDA-MB-231/MDR1: drug-induced resistant human breast cancer cell
MRP: Multidrug Resistance associate Protein
MSI: Mass spectrometry imaging
mTOR: mammalian target of rapamycin
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
NBD: nucleotide-binding domain
NCI/ADR-RES: adriamycin-resistant ovarian cancer cell
NF-κB: Nuclear factor-κB
P_{app} (AP-BL): the apparent permeability coefficient of apical to basolateral
P_{app} (BL-AP): the apparent permeability coefficient of basolateral to apical
P-gp: P-Glycoprotein
PI3K/AKT: phosphatidylinositol 3-kinase/protein kinase B
PTX: paclitaxel
Rh123: rhodamine 123
RT-PCR: reverse transcription-polymerase chain reaction
TCM: traditional Chinese medicine
TMD: transmembrane domain
VCR: vincristine
ABSTRACT

As a member of an ATP-dependent membrane transport proteins, P-Glycoprotein (P-gp) is known to pump substrates out of cells in the ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the efficacy of extensive antitumor drugs and leads to multidrug resistance (MDR) clinically. The combination of anti-cancer drugs with P-gp inhibitor has been an attractive and promising strategy to reverse MDR in cancer treatment. However, non-specific or non-selective distribution of P-gp inhibitors to non-target organs is one of the most fatal shortcomings in clinical application. Thus, there is an urgent need for effective and non-toxic MDR reversal agents, particularly in P-gp-mediated MDR. Traditional Chinese medicine (TCM) natural products may provide less toxic for use in P-gp inhibition to promote MDR reversal. P-gp modulatory effects have been previously demonstrated using selected TCM, including the flavonoids, alkaloids, terpenoids, coumarins, and quinonoids compounds, and some Chinese medicine extracts. Moreover, the approaches for screening active components from TCM are necessary and facing more challenges. At present, the approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo and in silico methods. This review will provide an overview and update on the role of TCM in overcoming P-gp mediated MDR and the approaches to study the interaction between TCM and P-gp.
Significance statement: This review summarized some traditional Chinese medicine identified to have a modulatory effect towards P-gp, including flavonoids, alkaloids, terpenoids, coumarins, quinonoids compounds and some Chinese medicine extracts, and introduced the possible mechanisms. The approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo, and in silico methods.
Introduction

Molecular Structure of Human P-glycoprotein (P-gp). P-gp is the 170-kD protein product of the human gene \textit{MDRI} (Gottesman MM and Pastan I, 1993; Schinkel AH, 1997). P-gp is an ATP-binding cassette (ABC) transporter, using the energy from ATP hydrolysis to pump substrates across the membrane. It consists of two transmembrane domains (TMDs) and two cytoplasmic nucleotide-binding domains (NBDs). P-gp is comprised of 1280 amino acids divided into two symmetrical halves with 43% sequence homology between the two halves (Chen et al., 1986). Each half contains six TMD that are separated by a sequence of 75 amino acids that connects the C-terminal TMD with the N-terminal ATP binding domain (Shustik C et al., 1995) (Fig.1).

Physiological Function of P-gp. P-gp is located in many physiological barriers, such as Blood-Cerebrospinal Fluid (B-CSF), Blood-Brain Barrier (BBB), and Blood-Testis Barrier (BTB). P-gp plays a vital role in regulating the absorption and the efflux of various exogenous substances. P-gp is also present in multiple tissues and organs, including gut, kidney, liver, and placenta. Therefore, its activity is highly significant to the metabolism of numerous drugs (Hussaarts K et al., 2019), and the behavior of drug absorption will be influenced significantly through co-administered with P-gp inhibitor or inducer. Specifically, P-gp inhibitor may increase the bioavailability of drugs, while the inducer may reduce the drug absorption.

Models of P-gp-mediated Substrates Efflux. Drug resistance mediated by P-gp depends on ATP hydrolysis, and the ATPase activity of P-gp is stimulated by the
transported drugs (Mollazadeh S et al., 2018). P-gp inhibitors or substrates can enter the cell from extracellular compartment to cytosol via filtration, simple diffusion, or specialized transport. The first step of substrates efflux is the combination of P-gp and the substrates promoted by ATP binding and hydrolysis. Vanadate trapping and photo-cleavage experiments showed that P-gp contains two active ATPase sites, but only one ATP is hydrolyzed at a time (Hrycyna CA et al., 1998). The hydrophobic ‘vacuum cleaner’ model and the flippase model have been proposed to describe P-gp-mediated drug translocation (Binkhathlan Z and Lavasanifar A, 2013). In the hydrophobic ‘vacuum cleaner’ model, P-gp pulls its substrates from the lipid bilayer and pumps them out of the cell. The flippase model hypothesizes that P-gp ‘scans’ the inner leaflet of the lipid bilayer and binds specific lipids and hydrophobic drugs before their extrusion by ‘flipping’ the phospholipids from the inner to outer leaflets of the lipid bilayer. The flippase model and the hydrophobic ‘vacuum cleaner’ model are not mutually exclusive (O’Brien FE et al., 2012), and the combination of the two models is illustrated (Fig. 2).

Multidrug Resistance (MDR) and the Mechanisms Mediated by P-gp. MDR is common due to the overexpression of transporters on the tumor cell membranes. Several transporters belonging to the ABC pump family, such as P-gp and BRCP, are overexpressed in resistant tumor cells compared with normal cells (Robey RW et al., 2018). This induced membrane state determines the efflux of chemotherapeutic agents through the process where they are captured into the bilayer by the transporter and then effluxed out of the cells. Consequently, the efficacy of antitumor therapy is
lowered due to the insufficient drug concentration inside the tumor cells.

Role of P-gp in Cancer MDR. P-gp was first identified in the plasma membrane of mammalian cells that had been selected for resistance to drugs (Gottesman MM and Ling V, 2006; Sharom FJ, 2011). P-gp can intercept drugs before they reach their specific target in the cell by facilitating drug efflux and promote MDR. Hence, it is always selected as the target for MDR reversal agents. The past three decades has witnessed the rapid development of strategies to reverse P-gp-mediated MDR. Many small molecular compounds were identified as P-gp inhibitors and can reverse P-gp-mediated MDR (Dong et al., 2020; Leopoldo M et al., 2019). Many anticancer agents are P-gp substrates, such as vinca alkaloids (Gherbovet O et al., 2016), anthracyclines, and taxanes (Nguyen PH et al., 2020; Li et al., 2019; Xie et al., 2020). The P-gp transport of anticancer agents can be inhibited with a competitive or non-competitive mechanism of some small-molecule reversal agents. These reversal agents are co-administered with an anticancer drug to reduce its efflux, thus increasing its efficiency. Some compounds have shown promising experimental results in vitro. However, at present, there is no compound being approved for clinical use as reversal agents (Kumar A and Jaitak V, 2019). Studies of certain reversal agents were terminated as a result of unacceptable toxicities in clinical trials or insufficient efficacy (Varma MV et al., 2003). Consequently, there remains a great challenge in searching for effective and less toxic agents to reverse tumor MDR.

Development of P-gp inhibitors in MDR modulation

To date, plenty of P-gp inhibitors have been found to modulate MDR activity in
clinical trials. Based on their affinity with P-gp and different side effects, these inhibitors could be classified into first, second, and third-generation modulators. The first-generation modulators had unacceptable toxicities in clinical trials (Varma MV et al., 2003). The second-generation modulators are inhibitors with higher affinity, efficacy, lower toxicity, and absence of intrinsic pharmacological activity, belonging to the analogs of the first generation. Most of them can be metabolized by cytochrome P450 (CYP450) enzymes family and interact with chemotherapeutic drugs. When used together with anticancer drugs, their metabolism or interaction with the drugs lead to their unacceptable toxicity and the treatment failure in turn (Kathawala RJ et al., 2015). The third generation is more specific and effective in reducing pharmacokinetic interactions compared to the second generation (Mistry P et al., 2001); some have been reported to increase the sensitivity of anticancer drugs in preclinical trials. However, most of these inhibitors are still underperformed in clinical trials because of diverse reasons such as high toxicity. Examples of first, second, and third-generation P-gp inhibitors are shown in Table 1.

Although progress has been made in the field of MDR, a suitable P-gp inhibitor with significant MDR reversal and acceptable toxicity has yet to be identified. The main reasons are summarized as follows: firstly, P-gp is a complex protein owing to its plastic conformational (Ma et al., 2018) and the existing inhibitors are non-specific for P-gp. Besides, some inhibitors may interact with chemotherapeutic drugs when co-administrated and may influence the integrity and functions of the brain. Furthermore, there lacks enough preclinical data and appropriate animal models to
evaluate the efficiency of P-gp inhibitors.

Traditional Chinese Medicine (TCM) Modulation of P-gp

At present, researchers have performed intensive efforts in the area of identifying MDR modulators from TCM. Various naturally originated compounds and plant extracts were reported for their modulation effect of MDR (Li et al., 2014; Abdallah et al., 2015). This review focuses on major classes of TCM including flavonoids, alkaloids, coumarins, terpenoids, and quinonoids, and other TCM extracts. In this section, TCM that have an MDR modulation effect would be discussed. These compounds could inhibit or decrease the activity of P-gp (Table 2).

Flavonoids. Flavonoids are ubiquitously existed in many vegetables and herbs and are closely related to a series of human life benefits. Current research has demonstrated that flavonoids have various pharmacological properties, including antioxidant, anti-inflammatory, anticancer, antifungal, and antiviral activity (Karabin M et al., 2015). Flavonoids have also been reported to inhibit ABC transporters that contribute to the development of MDR.

A few flavonoids, including naringin(Zhu et al., 2018) and taxifolin (Chen et al., 2018) have been identified as substrates of P-gp. The cellular uptake of 40 flavonoids were measured in parental human mouth epidermal carcinoma (KB) cells and KB/MDR cells with or without elacridar. Molecular docking was also performed to investigate the structure affinity relationship between P-gp and the flavonoids. The results indicated that 3-OH, 5-OH, 3′-OCH3, and 4′-OCH3 are crucial for the interplay between flavonoids and P-gp (Fang et al., 2019). Epigallocatechin-3-gallate...
(EGCG) could downregulate the expression level of P-gp and BCRP but could not affect the expression of MDR associate Protein 1 (MRP1) in adriamycin (ADR)-resistant human leukemia (CEM/ADR) cell (Li et al., 2018). 7-O-geranylquercetin (GQ), a derivative of quercetin, could reverse drug resistance of ADR-resistant human breast adenocarcinoma (MCF-7/ADR) cells. GQ inhibited the efflux of ADR by down-regulating the expression of P-gp protein and its encoding MDRI gene in MCF-7/ADR cells (Zhang et al., 2019). Silychristin A modulate MDR by the direct inhibition of P-gp, while anhydrosilychristin and isosilychristin modulate MDR by downregulating the expression of P-gp (Viktorova J et al., 2019). Chen et al. (2018) evaluated the effects of some natural flavonoids on P-gp activity, including taxifolin, luteolin, (-)-gallocatechin, and (-)-catechin. They found taxifolin could significantly resensitize MDR cancer cells in combination with chemotherapeutic agents and enhance the efficacy. This result suggested that taxifolin could be considered as a potential P-gp modulator for the synergistic treatment of MDR cancers. Saeed M et al. found apigenin could not only inhibit the activity of P-gp but also inhibit the activity of BCRP by increasing cellular uptake of ADR and synergistic inhibition of cell viability in combination with ADR in MDR cells (Saeed M et al. 2015). The molecular docking experiment indicated that apigenin could bind to the NDBs of P-gp, which suggested that apigenin may compete with ATP on NDBs and lead to energy depletion to fuel the transport of P-gp substrates. Curcumin has been described to inhibit both the function of P-gp and the expression of P-gp (Lopes-Rodrigues V et al., 2016). Glabridin can increase the accumulation of ADR in
drug-induced resistant human breast cancer (MDA-MB-231/MDR1) cells by suppressing the expression of P-gp and competitively inhibiting the P-gp efflux pump and enhance the apoptosis of MDA-MB-231/MDR1 cells induced by ADR, and thus realize reversal effects on MDR. Therefore, the combination therapy of anticancer drugs and glabridin is a promising strategy to overcome P-gp-mediated MDR (Qian et al., 2019).

Some flavonoids have been reported to possess significant P-gp inhibitory activity via diverse mechanisms. Mohana S et al. (2018) studied the interplay between flavonoids (theaflavin, quercetin, rutin, epicatechin 3 gallate, and tamarixetin) and Glycogen synthase kinase 3β (GSK 3β) by performing molecular docking. Curcumin could enhance anti-cancer efficacy through the ablation of Nuclear factor-κB (NF-κB), Wnt/b-catenin pathways, as well as mammalian target of rapamycin (mTOR) signaling (Mohana et al., 2018). Dihydromyricetin, a dihydroflavonol compound with anti-inflammatory, anti-oxidant, anti-bacterial and anti-tumor actions, could reverses MDR in MCF-7/ADR and K562/ADR cell lines. It enhanced the cytotoxicity of ADR by downregulating MDRI mRNA and P-gp expression through MAPK/ERK pathway and inhibiting the function of P-gp significantly (Sun et al., 2018).

Alkaloids. Alkaloids are a group of naturally originated chemicals containing one or more basic nitrogen atoms and are classified into different groups based on the amino acid they are derived from. Many reports have revealed the ability of alkaloids to inhibit P-gp. The structural analysis of alkaloids suggested the P-gp inhibitory function is due to the presence of (A) a basic nitrogen atom and (B) two planar
aromatic rings. Alkaloids have been reported to inhibit the function of P-gp via diverse mechanisms.

Amongst various alkaloids investigated in in vitro experiments as P-gp inhibitors or MDR reversal agents, a natural alkaloid called CBT-01® (tetrandrine) has already been tested on clinical trials. Tetrandrine can antagonize MDR in both drug-induced and MDRI gene-transfected cancer cells by downregulating the expression of P-gp, followed by increasing the intracellular concentration of chemotherapeutic agents. The combinational therapy using tetrandrine and other anticancer drugs could promote the treatment efficiency of drugs that are substrates of P-gp (Liao et al., 2019). Tetrandrine and fangchinoline, isolated from Stephania tetrandra, could significantly reduce the expression level of P-gp expression in a concentration-dependent manner. Tetrandrine and fangchinoline showed a significant synergistic cytotoxic effect in MDR human colon cancer cells (Caco-2) and CEM/ADR cancer cells in combination with ADR (Sun and Wink M, 2014).

Besides, there exists large number of natural alkaloids possessing potent inhibition of the P-gp responsible for the development of resistance (Joshi P et al., 2017). Chelidonine, isolated from Chelidonium majus, could also inhibit the function of P-gp and consequently upregulate the xenobiotic metabolism genes CYPIA1 and MDRI (Herrmann R et al., 2018). Matrine, isolated from Sophora flavescens, is another quinolizidine alkaloid that has inhibition effect of P-gp. Zhou et al. (2018) reported that matrine could inhibit MCF-7/ADR cell growth, induce cell apoptosis, and reverse MDR for breast cancer cells through the mediation of downstream
apoptosis factors of phosphatidylinositol 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway by decreasing the cell phosphorylation level of AKT.

Terpenoids. Terpenoid is one of the most extensively studied and structurally diverse classes of TCM. Based on the number of isoprene units in the parent structure, terpenoids can be classified as monoterpenoids, sesquiterpenoids, diterpenoids, sesterterpenoids, triterpenoids, tetraterpenes, and polyterpenes. Terpenoids show promising inhibitory effects on primary ABC transporters. The rosemary-originated terpenoid ursolic acid (Zong et al., 2019) were found to inhibit P-gp and increase the cellular accumulation of ADR and rhodamine 123 (Rh123). The chemosensitization effect of ursolic acid was tested, the result indicated that these compounds could significantly reduce the growth of cells in the presence of ADR.

Terpenoids have been reported to possess significant P-gp inhibitory activity via several mechanisms. Parthenolide inhibited P-gp up-regulation and promoted the intracellular accumulation of ADR in ADR-resistant human non-small cell lung cancer (A549/ADR) cells. Parthenolide inhibited the development of the resistance toward ADR, which exhibited an inhibitory effect on the overexpression of Nrf2 and P-gp (Carlisi et al., 2017). Costunolide dramatically enhanced ADR-induced antiproliferative activity against ADR-resistant human erythroleukemia cell (K562/ADR) cells through inhibition of the PI3K/Akt pathway and downregulation of P-gp expression (Cai et al., 2019). Hu et al. (2014) found that cryptotanshinone and dihydrotanshinone could increase the intracellular accumulation of anticancer drugs by down-regulating P-gp mRNA and protein levels and inhibiting P-gp ATPase.
activity. Tenulin and isotenulin significantly inhibited P-gp efflux by stimulating P-gp ATPase activity. The combinations of tenulin and isotenulin with chemotherapeutic drugs significantly resensitized MDR cancer cells (Chang et al., 2019).

Coumarins. Coumarins belonging to the benzopyrone family of TCM are mostly found in plants rich in oils. They can be classified as simple coumarins, furanocoumarins, pyranocoumarins, and pyrone-substituted coumarins based on the position of the substituents. The P-gp inhibitory activity of galbanic acid was evaluated using Rh123 efflux assay in Multidrug-Resistant Leukaemia HL60 Cells. It was found to be more potent than verapamil in terms of P-gp inhibition (Maruszewska and Tarasiuk, 2019). Decursinol inhibited ADR-resistant ovarian cancer cell proliferation and induced apoptosis via P-gp expression inhibition (Choi HS et al., 2016).

Coumarins have been reported to inhibit P-gp through multiple mechanisms. Osthole decreased the expression of P-gp at both mRNA and protein levels. Further experiments demonstrated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway, which is possibly the main mechanism accounting for the reversal potential of osthole in K562/ADR cell (Wang et al., 2016).

Quinonoids. Quinone compounds are a class of chemical components with the quinoid structure in TCM, mainly divided into four types: benzoquinone, naphthoquinone, phenanthrenequinone, and anthraquinone. Miltirone, an abietane-type diterpene quinone isolated from Salvia miltiorrhiza, demonstrate anticancer activities in P-gp-overexpressing human cancer cells. Current studies have
suggested that the miltirone can inhibit the activity of P-gp and apoptotic induction in human hepatoma (HepG2) cell line and its P-gp-overexpressing HepG2/ADR cell line (Zhou et al., 2015). The inhibition activities of six anthraquinones (alizarin, purpurin, chrysophanol, emodin, aloe-emodin, and 1,3,8-trihydroxyanthraquinone) toward P-gp were estimated using docking analysis. The results indicated that all the investigated anthraquinones were potential inhibitors of P-gp under physiological conditions, indicating their roles as potential protectors against patient resistance toward various anticancer drugs (Jeremić et al., 2018). Emodin reversed ADR resistance in K562/ADR cells by decreasing the expression of P-gp. It can increase the accumulation of Rh123 in both K562/ADR and Caco-2 cells and hence inhibit P-gp efflux (Min et al., 2017). Shikonin/paclitaxel (PTX) co-treatment led to synergistically enhanced cytotoxicity and apoptosis in PTX-resistant ovarian cancer cells, reflecting the reverse of MDR. Further studies indicated that the MDR reversal effect of shikonin was independent of inhibiting the activity of P-gp (Wang et al., 2019). Moreover, the shikonin derivatives (acetylshikonin and acetoxyisovalerylshikonin) showed inhibition of P-gp and increased uptake and reduced efflux of anticancer drugs in the malignant cancer cells, suggesting that chemotherapy in combination with shikonin compounds may be beneficial to cancer cells (Wang et al., 2019).

Traditional Chinese Medicine extracts. B. garizans (Asiatic toad), a popular Chinese herb, showed a reversal effect on P-gp-mediated MDR in colorectal cancer cells (CRC). More studies showed the representative ingredient, cinobufagin, significantly enhanced the sensitivity of P-gp-overexpressing cells to ADR without
affecting the corresponding parental cells. Studies further revealed that the mechanism of action involved noncompetitive inhibition of P-gp (Yuan et al., 2017).

Salvia miltiorrhiza is a Chinese herb with significant antifungal, antioxidant, anti-inflammatory, and anticancer activities. The diterpenoid tanshinone co-existed in the Salvia extract could significantly enhance the absorption of cryptotanshinone. Danxiongfang is a useful preparation composed of the Salvia extract, which mainly includes lipophilic diterpenoid tanshinones, water-soluble salvianolic acids, and ferulic acid. It could be used to treat coronary heart diseases and cerebrovascular disease. Danxiongfang could influence the absorption of cryptotanshinone. It has been proposed that the oral bioutilization of cryptotanshinone can be enhanced by reducing the efflux and transport of P-gp in combination with diterpenoid tanshinones and danxiongfang (Dai et al., 2012). S. chinensis, known as Wu Wei Zi in Chinese, could inhibit the efflux of P-gp. Its active components include schizandrol A, γ-schisandrin, schizandrin B, and schizandrin C. Some experiments showed that schizandrin B increased the intracellular accumulation of ADR through inhibiting expression and activity of P-gp (Wang et al., 2017). The MDR reverse effect of Schizandrol A was demonstrated with P-gp overexpressed drug-resistant K562 cells (Arken, 2019).

Coptidis Rhizoma (CR), the rhizome of Coptis chinensis, is a well-known Chinese herb. CR contains abundant isoquinoline alkaloids such as berberine, coptisine, and palmatine. Cell studies have shown that CR decoction, berberine, coptisine, and palmatine can activate the efflux of P-gp (Yu et al., 2018). Wutou-Gancao herb-pair is extensively used to attenuate the toxicity and enhance the efficacy of aconite. The
active components of liquorice (Gancao) could inhibit the efflux of P-gp through Caco-2 cell. Since aconitine from Aconitum (Wutou) has been shown to be a P-gp substrate, the synergic effect is attributed to the inhibition of P-gp by liquorice. The results showed the potential synergic mechanism of Wutou-Gancao herb-pair, which could help to elucidate the compatibility principle of the two herbs by inhibiting P-gp function and enhancing the systemic circulation exposure of aconitine and further anti-inflammatory effects (He et al., 2020).

Approaches for studying the interaction of P-gp and TCM

In vitro Approaches for TCM Interactions with P-gp. Several *in vitro* screening assays can be utilized to characterize the interplay between test compounds and P-gp to identify drugs as P-gp substrates or inhibitors (Polli JW et al., 2001). The basic principle of the classification method is determining the effect on P-gp function and expression. Functional assays used to screen P-gp inhibitors include the detection of the changes in P-gp content and the expression level of the *MDRI* gene, the evaluation of the P-gp efflux by colorimetric chemosensitivity assay, and bidirectional transcellular transport assays. Colorimetric chemosensitivity assay was used to determine the effect of reversal agent on P-gp via the calculation of IC50 and the degree of drug resistance. Concentration changes in P-gp content and the levels of *MDRI genes* were typically measured in cells by reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting, and/or flow cytometry (Xia et al., 2017). Li et al. (2018) used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine the cytotoxicity of doxorubicin, polyphenols, and digitonin,
and the cytotoxicity of their combinations. Rhodamine 123 and Calcein-AM were further used to detect the effects of polyphenols on the activity of P-gp. It has been validated that the combination of non-toxic concentrations of each polyphenol with ADR could synergistically improve the drug efficacy towards Caco-2 and CEM/ADR cells. Polyphenols could modulate the activity of P-gp and may be used as chemosensitisers.

Bidirectional transcellular transport assay is the gold standard for identifying P-gp substrates \textit{in vitro} and represents the most accurate predictive model for the identification of P-gp inhibitors \textit{in vivo} (Feng et al., 2008). Drug-resistant cell lines with overexpression of P-gp are widely used to investigate the effect of test compounds as potential inhibitors of P-gp in this method. There are many cell lines suitable for use in bidirectional transcellular transport assays, including the naturally P-gp-expressing Caco-2 cells and polarized \textit{MDR1}-transfected MDCK-MDR1, with distinct apical and basolateral membrane domains. $P_{app\text{BL-AP}}/P_{app\text{AP-BL}}$ was used to judge whether the intestinal absorption of a drug would be affected by P-gp. It was considered that the transport of a drug was directional when $P_{app\text{BL-AP}}/P_{app\text{AP-BL}}$ was more than 1.5 (Liang et al., 2012). When the efflux rate of a probe substrate decreased, it was considered that the agent may inhibit the activity of P-gp; the schematic diagram of the method is shown in Fig.3A. The effect of different tanshinones on the P-gp efflux function was first investigated by using a digoxin bi-directional transport assay. According to the results, among the five tanshinones tested, only cryptotanshinone and dihydrotanshinone could decrease the efflux ratio of
digoxin bidirectional transport across Caco-2 cell monolayer, indicating their inhibition on P-gp function (Hu et al., 2014). Meanwhile, these *in vitro* methods have their limitations and should be fully considered in practice. Different studies have used the same assay for the same compound but reported contrasting results. In addition to the discordance in the results obtained from different *in vitro* studies, there have also been some disagreements between *in vitro* and *in vivo* findings regarding the P-gp substrates or inhibitors (Lund M et al., 2017).

In vivo Approaches for TCM Interactions with P-gp. The generation of MDR1-knockout mice has boosted the study of the pharmacological influence on the function of P-gp (Li et al., 2020). By comparing brain/plasma ratios between these P-gp-deficient mice to those of the wild-type controls, it has been possible to screen drugs as potential P-gp substrates *in vivo* (Mittapalli RK et al., 2012). Alternatively, P-gp inhibitors can be evaluated by investigating the influence of P-gp inhibition on drug pharmacokinetics in wild-type animals. Co-administration of digoxin with verapamil or emodin can increase the AUC (area under the curve) of digoxin by 55% and 51%, respectively. Emodin demonstrated inhibition of P-gp to specific extents *in vivo* (Li et al., 2014).

Tumor-bearing mice were also conducted for *in vivo* studies. The chemosensitization effects of TCM have been investigated through changes in tumor growth or survival rate of tumor-bearing mice (Fig.3B) (Tiwari AK et al., 2013). If a TCM has MDR reversing activity, tumor growth should be inhibited and the survival period of tumor-bearing rats should be prolonged. *In vivo* antitumor study showed that
co-encapsulated PTX and baicalein in nanoemulsions demonstrated higher antitumor efficacy than other PTX formulations. The antitumor effect of various PTX formulations in vivo was evaluated in mice bearing MCF-7/Tax xenograft tumors models (Meng et al., 2016). Combining PTX with vitamin D3 and curcumin could potentially synergize their ability to decrease drug resistance by decreasing P-gp. In vivo, the triple therapy group (PTX + curcumin +D3) resulted in the smallest tumor size, indicating the addition of curcumin and D3 could enhance the therapeutic effect on the tumor (Attia et al., 2020).

In Silico Prediction method. With the rapid development of machine learning and artificial intelligence, in silico methods have acquired an increasing interest in P-gp inhibitor discovery. Compared with the classical methods, these in silico methods have an enormous potential to speed up the preclinical development processes at minimal costs. Using in silico virtual screening to detect novel P-gp inhibitors is an important application of molecular simulations.

At present, no human crystallized P-gp has been published. Since the sequence identity between the human protein and the murine protein is 87%, the available structures of the murine protein are important for molecular docking from different perspectives (Pajeva IK et al., 2009; Jabeen I et al., 2011). Shityakov et al. ran molecular docking in the crystallized murine structure with polynomial empirical scores using a P-gp inhibitor library of 1,300 molecules (Shityakov S and Forster C, 2014). To understand the interaction of ADR and miltirone with P-gp, molecular docking analysis was conducted. The results indicated the most energetically optimal
binding modes of ADR and miltirone at the drug binding cavities of mouse P-gp (PDB ID: 3G61), which is shown in Fig. 3C (Zhou et al., 2015). However, the human P-gp homology model showed more limitations to predict the experimental data. In addition, no human crystallized P-gp has been made available and extrapolation of the results from animals to humans is not always satisfactory (Montanari F and Ecker GF, 2015).

Conclusions and Outlooks

Despite the promising preclinical results of P-gp inhibitors, no compound has yet been approved for clinical use as MDR reversal agents. Studies were terminated due to unexpected toxicities in clinical trials or insufficient efficacy in vivo. Consequently, how to identify MDR reversal agents with high efficacy and limited toxicity remains a big challenge. Due to the characteristic of low toxicity, an increasing number of TCM including flavonoids, alkaloids, terpenoids, coumarins, quinonoids, and other TCM extracts have been investigated for their potential as MDR reversal agents and have shown a good efficacy of reversing MDR in experimental model systems. TCM has been reported to reverse P-gp mediated MDR with diverse mechanisms, such as inhibiting P-gp mediated drug efflux (Abdallah HM et al., 2015), hindering the activity of P-gp ATPase, and reducing P-gp levels by downregulating the expression of the MDR1 gene.

Currently, studies on identifying TCM as P-gp reversal agents have mainly been conducted in vitro, using cell models, rat models, and in silico method. However, the in vitro approaches for screening are labor-intensive and time-consuming at present.
The molecular docking results from the human P-gp homology model is not always satisfactory. Technologies like proteoliposome, which can predict the interaction of the active compound with the target protein, should be explored in order to establish a new high-throughput screening method.

On the other hand, the influence of P-gp inhibition on tissue pharmacokinetics and intra-tumoral distribution of anticancer drugs are very important when co-administrated with P-gp inhibitor. More efforts should be made to explore the effects of TCM on the pharmacokinetic processes of anticancer drugs in vivo to choose the optimal therapeutic protocol for cancer treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used to determine the drug concentration in homogenized tissues, while it’s not accurate for tumors due to heterogeneous characteristics. Since the heterogeneous tissue and the tumor microenvironment markedly affect drug penetration, it is necessary to detect not only the level of exposure but also the spatial distribution of the drug within the tumor tissue. Thus, the use of LC-MS/MS analysis only is insufficient for clarifying the behavior of anti-tumor drugs. Mass spectrometry imaging (MSI), which could offer spatial information for the drug in the tumor tissue, has been recently utilized as an innovative tool for detecting the molecular distribution of pharmacological agents in heterogeneous targets. Compared with LC-MS/MS, MSI does not require homogenization of tumor tissue, so it can provide information on the spatial distribution of the detected drugs in the tissue. This technique would certainly help understand the heterogeneous and irregular tumor drug distribution.
In summary, TCMs play a crucial role in the development of effective MDR modulators in the future. The *in vitro* techniques such as bidirectional transcellular transport assays and *in silico* prediction method will greatly influence the drug development. These approaches can help predict the effect of TCM on P-gp and provide an impetus to the discovery of more MDR reversal agent candidates for clinical trials. However, precise techniques such as MSI discussed in this review were needed for *in vivo* validation. In brief, the challenge is on the shoulders to identify suitable P-gp inhibitors with significant MDR reversal and acceptable toxicity from TCM and thus improve the treatment effect of chemotherapy drugs in clinical cancer therapy.
Authorship Contributions

Participated in research design: Cao, Hong, Chai

Conducted experiments: Cao, Hong, Shi, Cai

Contributed new reagents or analytic tools: Cao, Shi, Cai

Performed data analysis: Cao, Hong, Chai

Wrote or contributed to the writing of the manuscript: Cao, Shi, Hong
References

and Tesoriere G (2017) Parthenolide prevents resistance of MDA-MB231 cells to

C-C (2019) Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug

duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene

Taxifolin Resensitizes Multidrug Resistance Cancer Cells via Uncompetitive Inhibition of

Angelica gigas Nakai (AGN) Enhances ADR Chemosensitivity in NCI/ADR-RES Ovarian
Cancer Cells via Inhibition of P-glycoprotein Expression. Phytotherapy research: PTR
30:2020-2026.

enhance intestinal absorption of cryptotanshinone via inhibition of the intestinal P-gp.
Phytomedicine 19:1256-1262.

Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Jr., Chen ZS, Cheng XD, and Qin JJ
resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy
49:100681.

cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the

Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by
cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. *Phytomedicine: international
calendar of phytotherapy and phytopharmacology* **21**:1264-1272.

derivatives reverse P-glycoprotein-mediated multidrug resistance in HepG2/ADR cells.
Journal of natural products **71**:1049-1051.

Hussaarts K, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, and van Leeuwen
Therapeutic advances in medical oncology **11**:1758835918818347.

stereoselectivity of P-glycoprotein-synthesis, biological activity and ligand docking studies of
a set of enantiopure benzopyrano[3,4-b][1,4]oxazines. *Chemical communications* **47**:2586-2588.

Jeremic S, Amic A, Stanojevic-Pirkovic M, and Markovic Z (2018) Selected anthraquinones as
potential free radical scavengers and P-glycoprotein inhibitors. *Organic & biomolecular
chemistry* **16**:1890-1902.

Joshi P, Vishwakarma RA, and Bharate SB (2017) Natural alkaloids as P-gp inhibitors for

32

Footnotes.

This work was financially supported by the National Natural Science Foundation of China (NO. 81673386, NO. 81872829).

All authors were supported by their own institutions during the preparation of this manuscript and had no conflict of interest.
Legends for Figures

Fig.1. Secondary structure models of P-gp.

Fig.2. Model of P-gp substrate transport. (A) substrate-binding conformation, the molecule travels through one of two portals, to enter the substrate-binding pocket (SNP) of P-gp. Substrate–P-gp interactions lead to the binding of two ATP molecules to the NBD. The binding of ATP to the NBDs causes dimerization of the NBDs. (B) This leads to a conformational change, resulting in an outward facing configuration presenting the substrate and drug-binding site(s) to the outer leaflet/extracellular space. Above broken line = outer leaflet of phospholipid bilayer. Below broken line = inner (cytoplasmic) leaflet of phospholipid bilayer.

Fig.3. Approaches to study TCM Interactions with P-gp. (A) *in vitro* using bidirectional transcellular transport assay; (B) *in vivo* conducted on tumor bearing rats and (C) *in silico* prediction by molecular docking (Zhou et al., 2015)
TABLE 1

Examples of P-gp multidrug resistance reversal agents.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Representative agent</th>
<th>Mechanisms of action</th>
<th>Clinical response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Verapamil; Reserpine</td>
<td>Altering ATP hydrolysis pathway (Tariquidar; Quinine; Tamoxifen); Verapamil; Cyclosporine A; Toremifene; Quinine; Tamoxifen); Alteration in P-gp expression (Verapamil; Cyclosporine A; Valspodar)</td>
<td>Toxicities; nephrotoxicity, myelosuppression, and neurotoxicity</td>
<td>Varma MV et al., 2003</td>
</tr>
<tr>
<td>2nd</td>
<td>Dexverapamil; Valspodar; Biricodar</td>
<td>Competition for Binding Sites (Verapamil; Reserpine; Quinine; Elacridar; Cyclosporine A); More affinity, efficacy; low toxicity and interaction with cytochrome P450 enzymes</td>
<td></td>
<td>Kathawala RJ et al., 2015</td>
</tr>
<tr>
<td>3rd</td>
<td>Elacridar; Laniquidar; Zosuquidar; Dofequidar; Mitotane; Annamycin; Tariquidar</td>
<td>Alteration in P-gp expression (Verapamil; Cyclosporine A; Valspodar)</td>
<td>More specific and potent with diminutive pharmacokinetic interactions</td>
<td>Pusztai L et al., 2005</td>
</tr>
</tbody>
</table>
TABLE 2

Inhibition of P-gp function and/or expression by TCM.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Test Model</th>
<th>Pharmacological results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGCG</td>
<td>CEM/ADR</td>
<td>Down-regulation of P-gp</td>
<td>Li et al., 2018</td>
</tr>
<tr>
<td>GQ</td>
<td>MCF-7/ADR</td>
<td>Down-regulation of P-gp and MDRI gene</td>
<td>Zhang et al., 2019</td>
</tr>
<tr>
<td>Silymarin A</td>
<td>A2780/ADR</td>
<td>Inhibition of P-gp efflux; Down-regulation of P-gp</td>
<td>Viktorova J et al., 2019</td>
</tr>
<tr>
<td>Dihydromyricetin</td>
<td>MCF7/ADR; K562/ADR</td>
<td>Inhibition of P-gp efflux; Down-regulation of P-gp</td>
<td>Sun et al., 2018</td>
</tr>
<tr>
<td>Curcumin</td>
<td>KB-C2</td>
<td>Inhibition of P-gp</td>
<td>Lopes-Rodrigues V et al., 2016</td>
</tr>
<tr>
<td>Apigenin</td>
<td>CEM/ADR</td>
<td>Inhibition of P-gp</td>
<td>Saeed M et al., 2015</td>
</tr>
<tr>
<td>Taxifolin</td>
<td>HeLaS3; KB/VCR</td>
<td>Inhibition of P-gp</td>
<td>Chen et al., 2018</td>
</tr>
<tr>
<td>Alkaloids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelidonine</td>
<td>Caco-2; CEM/ADR</td>
<td>Inhibition of P-gp</td>
<td>Herrmann R et al., 2018</td>
</tr>
<tr>
<td>Tetrandrine</td>
<td>MCF-7/ADR</td>
<td>Down-regulation of P-gp</td>
<td>Liao et al., 2019</td>
</tr>
<tr>
<td>Matrine</td>
<td>MCF-7/ADR</td>
<td>Inhibition of P-gp</td>
<td>Zhou et al., 2018</td>
</tr>
<tr>
<td>Terpenoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursoli acid</td>
<td>MCF-7/ADR;</td>
<td>Inhibition of P-gp</td>
<td>Zong et al., 2019</td>
</tr>
<tr>
<td>Compound</td>
<td>Cell Line</td>
<td>Effect</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Parthenolide</td>
<td>A549/ADR</td>
<td>Down-regulation of P-gp</td>
<td>Carlisi et al., 2017</td>
</tr>
<tr>
<td>Costunolide</td>
<td>K562/ADR</td>
<td>Down-regulation of P-gp</td>
<td>Cai et al., 2019</td>
</tr>
<tr>
<td>Cryptotanshinone</td>
<td>CEM/ADR</td>
<td>Down-regulation of P-gp and MDRI gene</td>
<td>Hu et al. 2014</td>
</tr>
<tr>
<td>Dihydrotanshinone</td>
<td>CEM/ADR</td>
<td>Down-regulation of P-gp</td>
<td></td>
</tr>
<tr>
<td>Coumarins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galbanic acid</td>
<td>HL60</td>
<td>Inhibition of P-gp</td>
<td>Maruszewska and Tarasiuk, 2019</td>
</tr>
<tr>
<td>Decursinol</td>
<td>NCI/ADR-RES</td>
<td>Inhibition of P-gp</td>
<td>Choi HS et al., 2016</td>
</tr>
<tr>
<td>Osthole</td>
<td>K562/ADR</td>
<td>Down-regulation of MDRI gene</td>
<td>Wang et al., 2016</td>
</tr>
<tr>
<td>Qinonoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miltirone</td>
<td>HepG2</td>
<td>Inhibition of P-gp</td>
<td>Zhou et al., 2015</td>
</tr>
<tr>
<td>Emodin</td>
<td>K562/ADR; Caco-2 cells</td>
<td>Down-regulation of P-gp</td>
<td>Min et al., 2017</td>
</tr>
<tr>
<td>Shikonin</td>
<td>A2780/PTX</td>
<td>Inhibition of P-gp</td>
<td>Wang et al., 2019</td>
</tr>
<tr>
<td>TCM extracts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asiatic toad</td>
<td>CRC</td>
<td>Inhibition of P-gp</td>
<td>Yuan et al., 2017</td>
</tr>
<tr>
<td>Salvia miltiorrhiza</td>
<td>Everted rat gut sacs</td>
<td>Inhibition of P-gp</td>
<td>Dai et al., 2012</td>
</tr>
<tr>
<td>S.chinensis</td>
<td>K562/A02</td>
<td>Down-regulation of P-gp; Inhibition of P-gp</td>
<td>Wang et al., 2017</td>
</tr>
<tr>
<td>CR</td>
<td>LS180</td>
<td>Activation of P-gp transportion</td>
<td>Yu et al., 2018</td>
</tr>
<tr>
<td>Liquorice</td>
<td>Caco-2 cell</td>
<td>Inhibition of P-gp</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Abbreviations: EGCG, Epigallocatechin-3-gallate; CEM/ADR, Adriamycin-resistant human leukemia cell line; MCF-7/ADR, Adriamycin-resistant human breast adenocarcinoma cell line; GQ, 7-O-geranylquercetin; A2780/ADR, Adriamycin-resistant ovarian cancer cell line; A549/ADR, Adriamycin-resistant human non-small cell lung cancer cell; K562/ADR, Adriamycin-resistant human erythroleukemia cell; MCF-7/ADR, Adriamycin-resistant human breast adenocarcinoma cell line; KB-C2, Multidrug-resistant human tongue carcinoma cell; Caco-2, Human colon carcinoma cell; LS180, Human colon carcinoma cell; NCI/ADR-RES, Adriamycin-resistant ovarian cancer cells.</td>
<td>He et al., 2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURES:

Fig.1

Fig.2

Fig.3.
In vitro model

In vivo model

In silico prediction