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Abstract 

Alaska Native people are under-represented in genetic research, but have unique gene 

variation that may critically impact their response to pharmacotherapy. Full resequencing of 

CYP2C9 in a cross-section of this population identified CYP2C9M1L (M1L), a novel, relatively 

common single nucleotide polymorphism hypothesized to confer CYP2C9 poor metabolizer 

phenotype by disrupting the start codon. M1L is present at a minor allele frequency of 6.3% in 

Yup’ik Alaska Native people and, thus, can contribute to the risk of an adverse drug response 

from narrow therapeutic index CYP2C9 substrates, such as (S)-warfarin. This study’s objective 

was to characterize the catalytic efficiency of the Leu1 variant enzyme in vivo by evaluating the 

pharmacokinetic behavior of naproxen, a probe substrate for CYP2C9 activity, in genotyped 

Yup’ik participants. We first confirmed the selectivity of (S)-naproxen O-demethylation by 

CYP2C9 using activity phenotyped human liver microsomes and selective CYP inhibitors, then 

developed and validated a novel LC/MS method for simultaneous quantification of (S)-naproxen, 

(S)-O-desmethyl naproxen, and naproxen acyl glucuronide in human urine. The average ratio of 

(S)-O-desmethyl naproxen to unchanged (S)-naproxen in urine was 18.0 ± 8.0 (n = 11) for the 

homozygous CYP2C9 Met1 reference group and 10.3 ± 6.6 (n = 11) for the Leu1 variant carrier 

group (P = 0.011). The effect of M1L variation on CYP2C9 function and its potential to alter the 

pharmacokinetics of drugs metabolized by the enzyme has clinical implications and should be 

included in a variant screening panel when pharmacogenetic testing in the Alaska Native 

population is warranted.  
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Significance Statement 

Our group recently identified the novel CYP2C9 Met1Leu variant in Alaska Native people. Here, 

we validated (S)-naproxen as a CYP2C9 probe substrate to characterize the in vivo functional 

activity of the CYP2C9 Leu1 variant. The results of our pharmacogenetic-pharmacokinetic study 

suggest that the CYP2C9 Leu1 variant exhibits loss of enzyme activity. This finding may be 

important to consider when administering narrow therapeutic index medications metabolized by 

CYP2C9 and also compels further investigation to characterize novel genetic variation in 

understudied populations.   

 

 

Introduction 

 The cytochrome P450 family 2 subfamily C member 9 (CYP2C9) enzyme is responsible 

for the elimination of approximately 15% of all medications cleared through a P450-mediated 

biotransformation pathway (Zanger et al., 2008; Van Booven et al., 2010). CYP2C9 has a broad 

range of clinical substrates, including anticoagulants, anticonvulsants, angiotensin II blockers, 

hypoglycemic agents, and nonsteroidal anti-inflammatory drugs. The CYP2C9 gene is highly 

polymorphic, with coding-region variation (CYP2C9*2 and *3) that confers poor metabolizer 

phenotype, dramatically influencing the pharmacokinetics and drug response of commonly used 

narrow therapeutic index medications (e.g., (S)-warfarin, phenytoin) (Caudle et al., 2014; Flora 

et al., 2017; Johnson et al., 2017). 

Recently, our group identified the novel CYP2C9 Met1Leu (M1L) variant in the Alaska 

Native (AN) population (Fohner et al., 2015). The substitution of leucine for methionine at the 

first amino acid position is predicted to markedly slow or stop RNA translation. Indeed, in vitro 
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studies with M1L gene transfected HepG2 cells demonstrated that the CYP2C9 Leu1 variant 

protein does not accumulate in this liver-derived cell line (McDonald et al., 2020). In the Yup’ik 

AN population, the M1L variant is found at a higher minor allele frequency (6.3%) than the well-

characterized CYP2C9*2 (0.3%) and CYP2C9*3 (2.1%) alleles (Fohner et al., 2015). The 

historical home of the Yup’ik people is southwestern Alaska, along the Bering Sea, including the 

relatively remote Yukon-Kuskokwim (YK) Delta. There are 58 communities in the YK Delta 

(total population ~23,000), a 75,000 square mile area, and all are accessed by air, water or other 

non-road system travel. Communities have health clinics staffed by community health aids and 

primary care is offered through five sub-regional health clinics or the regional hub hospital in 

Bethel, Alaska. This geographic isolation of communities away from primary care providers 

creates challenges to medical service that may not be experienced in urban areas. For example, 

pharmacotherapy with narrow therapeutic index drugs can be more difficult to manage because 

of geographical barriers to monitoring drug responses. With specific regard to CYP2C9 

substrates, such as warfarin, phenytoin, and tolbutamide, variation in the CYP2C9 gene 

contributes to inter-individual differences in dose requirement (Becker et al., 2008; Caudle et al., 

2014; Flora et al., 2017; Johnson et al., 2017). Genetic testing, as a form of precision medicine, 

has been adopted by many urban medical centers and may have enhanced clinical utility for 

managing these and other drug therapies in geographically isolated populations. To advance the 

goals of precision medicine for AN people, it is necessary to fully understand the frequency and 

function of variation in important pharmacogenes such as CYP2C9. Moreover, it is critical to 

investigate previously unknown variants, such as M1L and N218I, that are common in the AN 

population (Fohner et al., 2015) and are expected to impair CYP2C9 activity.  
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Characterization of enzyme function in vivo is commonly accomplished with a 

pharmacokinetic study that involves administration of a probe drug selectively metabolized by 

the enzyme of interest. Established CYP2C9 probes include the narrow therapeutic index drugs 

warfarin, phenytoin and tolbutamide, as well as the non-steroidal anti-inflammatory drugs 

celecoxib and flurbiprofen. However, for a study in the Yup’ik population, selection of a 

commonly used drug known to be safe and recognizable to potential participants (over the 

counter) was considered just as important as selectivity for CYP2C9 activity. Thus, we elected to 

validate and use (S)-naproxen as the in vivo enzyme probe. (S)-naproxen undergoes O-

dealkylation primarily by CYP2C9, with minor involvement from other P450 enzymes (Miners 

et al., 1996; Tracy et al., 1997). It is well absorbed (Runkel et al., 1972; Davies and Anderson, 

1997), highly bound to albumin (Davies and Anderson, 1997), and almost completely eliminated 

in the urine as naproxen glucuronide (60% of the dose), unchanged naproxen (1%), and 

secondary glucuronide and sulfate metabolites of (S)-O-desmethyl naproxen (20%) (Sugawara et 

al., 1978; Kiang et al., 1989; Vree et al., 1993; Davies and Anderson, 1997). Although not the 

major pathway of (S)-naproxen elimination, a low total urinary (S)-O-desmethyl naproxen/(S)-

naproxen concentration ratio is indicative of a low CYP2C9 intrinsic formation clearance. This 

study’s objective was to verify the selectivity of the (S)-naproxen O-dealkylation reaction for 

CYP2C9 and then determine the catalytic efficiency of the novel M1L variant in vivo to inform 

on its potential to affect the drug disposition and pharmacological response of medications 

metabolized by CYP2C9. 

 

 

Materials and Methods 
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Setting 

Study recruitment was conducted in 10 communities found in the YK Delta of Alaska. 

Approximately two-thirds of the AN population in Alaska live in rural communities with 

populations of 50 – 1000 people, many only accessible by air or water (Norris et al., 2012). Dr. 

Bert Boyer and Ms. Scarlett Hopkins, formerly at the University of Alaska Fairbanks and now 

based at Oregon Health & Science University (OHSU), have ongoing genetic research 

partnerships with 11 of the 58 rural communities in the YK-Delta. 

Study Participants 

Study participants were selected from a cross-sectional population of Yup’ik men and 

women over 18 years old, for whom CYP2C9 M1L genotype was previously determined, and 

who consented to be contacted for future research investigations. Participants were in good 

health and not taking non-steroidal anti-inflammatory agents or other drugs known or suspected 

of altering CYP2C9 function. 

Study Design 

The University of Alaska Fairbanks and OHSU Institutional Review Boards (IRB) and 

the Yukon-Kuskokwim Health Corporation (YKHC) Human Studies Committee and Executive 

Board approved this study. The University of Washington (UW) IRB approved the overall 

research project, as UW was the academic home of the grant funding this research (NIH P01 

GM116691) and its principal investigators. The study is registered at ClinicalTrials.gov 

(NCT04449471). 
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Following written informed consent, participants were asked to fast for 12 hours prior to 

the start of the pharmacokinetic study, and then provided a baseline urine sample. A single 220 

mg naproxen sodium caplet (200 mg (S)-naproxen), was administered with a glass of water. 

Urine was collected for the next 24 hours after the naproxen dose. Due to the instability of 

naproxen acyl glucuronides in alkaline media, urine pH was stabilized by adding 13.6 g 

monobasic potassium phosphate to each urine collection container before use. At the end of the 

collection interval, study participants returned the urine collection container to the study site, 

where the urine volume was measured and recorded. The urine was well mixed and two 5 mL 

aliquots were taken from the collection container and stored initially at -15°C in a portable 

freezer, and then at -80°C, until analysis. 

Genotyping 

 To identify Met1/Leu1 heterozygotes and Leu1/Leu1 homozygotes from the Yup’ik 

population, the Fluidigm platform was used to perform genotype analysis of DNA extracted from 

white blood cells, targeting the CYP2C9 exome, as previously described (Fohner et al., 2015). 

Based on prior gene sequencing work, the following CYP2C9 variants (cDNA position and base 

change indicated for variants without rs number) were tested: Met1Leu (1A>T), Asn218Ile 

(653A>T), *2 (rs1799853), *3 (rs1057910), *8 (rs7900194), *11 (rs28371685), *13 

(rs72558187), *14 (rs72558189), and *29 (rs182132442). A total of 1112 individuals from the 

Yup’ik population were genotyped. 

Validation of (S)-Naproxen as a Selective CYP2C9 Probe Substrate 
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Comprehensive in vitro studies were performed to validate the selectivity and sensitivity 

of naproxen as a probe for CYP2C9 activity. Unlabeled (S)-naproxen and racemic O-desmethyl 

naproxen-d3 were purchased from Toronto Research Chemicals (Ontario, Canada). Unlabeled O-

desmethyl naproxen, furafylline, sulfaphenazole, and NADPH were purchased from Sigma 

Aldrich (St. Louis, MO). Pooled HLMs were purchased from XenoTech (Kansas City, KS). 

Individual HLMs were isolated from the University of Washington School of Pharmacy Human 

Liver bank, as previously reported (Shirasaka et al., 2016).  Individual recombinantly-expressed 

cytochrome P450 Supersome™ preparations were obtained from Corning Life Sciences 

(Woburn, MA). All other chemicals were analytical grade or better and obtained from various 

commercial vendors. 

(S)-naproxen was incubated with pooled HLMs (0.5 mg/mL final concentration) in the 

presence of NADPH (1 mM final concentration) in a buffer consisting of 50 mM KH2PO4 with 

1.27 mM EDTA, pH 7.4, at a total volume of 200 l. In experiments using selective CYP 

isoform inhibitors, sulfaphenazole (prepared in methanol, with final concentration below 0.2%) 

and furafylline (prepared in DMSO, with final concentration below 0.1%), the final inhibitor 

concentration was 10 µM. Microsomal incubations with furafylline underwent a 20 minute 

preincubation with the CYP1A2 inhibitor prior to (S)-naproxen reaction initiation. Reactions ran 

for 20 minutes at 37°C, and were conducted over a (S)-naproxen concentration range of 5 – 1800 

M. The microsomal reaction was quenched with the addition of 1 mL ice cold methanol 

containing 2% formic acid. To the quenched samples, 80 ng of O-desmethyl naproxen-d3, 

internal standard, were added. The samples were then centrifuged at 3000 g for 10 minutes, 

decanted into glass culture tubes, and dried with nitrogen gas, and resuspended in 50 l mobile 

phase. A volume of 20 l was injected onto the LC/MS.  
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A CYP Supersome™ screen was performed by evaluating CYP1A1, CYP1A2, CYP2A6, 

CYP2B6, CYP2C8, CYP2C9*1, CYP2C9*2, CYP2C9*3, CYP2C19, CYP2D6, CYP2E1, 

CYP3A4, CYP3A5, and CYP3A7 metabolic activity towards (S)-naproxen. For this experiment, 

(S)-naproxen was incubated with 10 pmol of each Supersome™ preparation in 50 mM KH2PO4 

with 1.27 mM EDTA buffer (except CYP2A6, for which 50 mM Tris buffer was used) in a total 

volume of 200 l. Reactions were initiated with the addition of NADPH (1 mM final 

concentration) and incubated for 20 minutes at 37°C at the (S)-naproxen concentrations of 25 

M (below Km) and 1000 M (saturating concentration). The incubation reaction was quenched 

with 1 mL ice cold methanol containing 2% formic acid and 200 ng of O-desmethyl naproxen-d3, 

internal standard, was added. The samples were centrifuged at 3000 g for 10 minutes, decanted 

into glass culture tubes, and dried with N2 gas, and resuspended in 50 l mobile phase. A 

volume of 5 l was injected onto the LC/MS. For CYP enzymes that catalyzed (S)-O-desmethyl 

naproxen formation, additional reactions were carried out for 20 minutes at 37°C, over the (S)-

naproxen concentration range of 5 – 1800 M, to determine Michaelis-Menten kinetic 

parameters. The data was normalized for the absolute amount of recombinant P450 added to the 

incubations (i.e., pmol P450). 

To evaluate the effect of varying CYP1A2 content on naproxen metabolism, single donor 

HLMs from the UW Human Liver Bank were selected based on CYP1A2 protein content 

(determined by LC-MS/MS analysis). Five high CYP1A2 expressors and five low CYP1A2 

expressors, all with comparable CYP2C9 protein expression, were incubated with 20 M (S)-

naproxen, NADPH (1 mM final concentration), in the presence or absence of 10 M 

sulfaphenazole and furafylline, in 50 mM KH2PO4 with 1.27 mM EDTA, pH 7.4, and in a total 

volume of 200 l. Reactions were carried out as described above with pooled HLM experiments. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 25, 2021 as DOI: 10.1124/dmd.120.000301

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 11 

Calibration curves for (S)-naproxen metabolites were prepared by spiking variable 

amounts of unlabeled (S)-O-desmethyl naproxen, into 200 l of potassium phosphate buffer in 

order to generate standard mixtures with final concentrations of 0.2 – 10 M for HLM 

incubations, 0.1 – 5 M for HLM inhibition experiments, 0.1 – 30 M for Supersome™ 

experiments. Standard solutions, prepared in duplicate for each concentration, were immediately 

worked-up and analyzed in an identical fashion to that described for the incubation samples 

above. GraphPad Prism version 8.4.3 (GraphPad Software, San Diego, CA) was used to estimate 

Km and Vmax parameters. 

Urine Sample Preparation 

For (S)-naproxen detection, urine samples (50 μl) were prepared by adding 100 μl of 

HPLC grade water and 100 μl of 1 nmol racemic naproxen-d3 (internal standard for (S)-

naproxen). For naproxen acyl glucuronide detection, urine samples were diluted 1:20 in blank 

urine then 50 μl of the diluted sample was combined with 100 μl of HPLC grade water and 100 

μl of 1 nmol racemic flurbiprofen acyl glucuronide (internal standard for naproxen acyl 

glucuronide). For total (S)-O-desmethyl naproxen detection, urine was diluted 1:4 in blank urine, 

then the diluted urine sample (50 μl) was combined with 80 μl HPLC grade water, 20 μl 6M 

HCL, 100 μl of internal standard (1 nmol racemic O-desmethyl naproxen-d3) followed by 

vortexing and incubating at 90°C for 60 minutes to facilitate glucuronide and sulfate cleavage via 

acid hydrolysis. This heated acid hydrolysis approach was adapted from a published protocol for 

a similarly structured acyl-glucuronide (Zgheib et al., 2007), since O-desmethyl naproxen 

glucuronide can hydrolyze back to O-desmethyl naproxen or isomerize to glucuronidase-resistant 

isoglucuronides, under alkaline conditions (Davies and Anderson, 1997). All samples were 
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vortexed, centrifuged at 14,000 g for 5 minutes, and then 50 μl of sample supernatant was 

transferred to autosampler vials and 2 μl were injected onto the LC/MS.  

Urine Sample Analysis 

To evaluate the effect of M1L variation on CYP2C9 function, the urinary (S)-O-

desmethyl naproxen to unchanged naproxen metabolite to parent ratio was determined from the 

24-hour urine collection. Naproxen and metabolite concentrations were accessed by LC/MS 

using an Agilent 1956B single quadrupole mass spectrometer coupled with an Agilent 1200 

series (Santa Clara, CA) liquid chromatography system. Chromatographic separation was 

achieved on a Luna C18 (2 mm x 50 mm x 5µm) column (Torrence, CA) with a mobile phase 

flow rate of 0.3 mL/min. The mobile phase consisted of 10 mM ammonium formate (A, pH 3.5) 

and methanol (B), and linear gradients were applied with B% increasing from 40% to 80% 

between 3 and 8 minutes and decreasing to 40% at nine minutes. Quantitation was achieved by 

selected ion monitoring centered on m/z values of 248.1 for (S)-naproxen, 251.1 for racemic 

naproxen-d3, 234.1 for (S)-O-desmethyl naproxen, 237.1 for racemic O-desmethyl naproxen-d3, 

424.1 for naproxen acyl glucuronide, and 438.1 for racemic flurbiprofen acyl glucuronide. Data 

acquisition and analysis were performed using the Agilent MassHunter software. Calibration 

curves were constructed by plotting the peak area ratio of each compound to the respective 

internal standard against a range of targeted analyte concentrations. We measured the urinary 

concentration of the major naproxen metabolite, naproxen acyl glucuronide, in order to ensure 

comparable dose recovery and urine collection compliance. The intra-day variation for 

quantitation of each analyte did not exceed 2% for the low concentration quality control (QC) for 

(S)-O-desmethyl naproxen and did not exceed 6% for the high concentration QC. The relative 
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errors of the two QC concentrations tested in three independent experiments were within 5% and 

8% for the low and high concentration QCs, respectively.    

Statistical Analysis 

 We proposed a regression analysis for the statistical analysis plan to test for an additive-

gene dose effect (0, 1, or 2 functional alleles) of Leu1.  From our power calculations, a sample 

size of 30, with 10 participants per genotype group, resulted in a power of 0.8 at a 0.05 

significance level. Considering possible difficulties in recruiting 10 Leu1/Leu1 homozygotes, we 

also proposed a priori an alternative statistical analysis plan where the homozygous variant 

Leu1/Leu1 group would be combined with the heterozygous variant Met1/Leu1 group. Under this 

plan, a sample consisting of 15 reference homozygotes and 15 Leu1 carriers and homozygotes 

would achieve the same power at the same level of significance. Recruitment was halted by 

travel restrictions instituted by OHSU and the YKHC due to the COVID-19 pandemic, and our 

final sample size was 22, with 11 Met1 homozygotes and 11 Leu1 carriers and homozygotes.   

Travel is still restricted, as of time of submission of this manuscript. The regression analysis for 

the comparison between the Met1/Met1 reference and combined Met1/Leu1 heterozygotes and 

Leu1/Leu1 homozygotes allowed for heteroscedasticity, and was completed using RStudio 

version 1.2.1335 (RStudio, Inc., Boston, MA). With regard to the analysis of the in vitro data, 

comparisons between recombinant enzymes and single donor HLMs were assessed using two-

tailed unpaired t-tests, allowing for heteroscedasticity. 

 

 

Results 
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Study Enrollment Based on M1L Genotype 

A total of 1112 Yup’ik adults were genotyped for CYP2C9 variants. After removing 

duplicate records from repeat visits (n=193) and genotypes with no calls (n=6), a total of 913 

genomes were considered for the pharmacokinetic study (Figure 1). Individuals with one or more 

copies of CYP2C9*2, *3, *8, *11, *13, *14, *29, or N218I alleles were excluded due to their 

confounding effects on CYP2C9 activity. A total of 8 Leu1/Leu1 homozygotes were identified 

from 5 different communities, with an average age of 36 years. These individuals were all 

unrelated at the parent-child and sibling level. A total of 85 Met1/Leu1 heterozygotes, with an 

average age of 37 years, and 629 in the Met1/Met1 reference (wildtype), with an average age of 

36 years, were also identified.  

 

Selectivity and Sensitivity of (S)-Naproxen as a Probe for CYP2C9 Enzyme Activity 

Comprehensive in vitro studies determined that CYP2C9 is the predominant enzyme 

metabolizing (S)-naproxen to (S)-O-desmethyl naproxen. A representative Michaelis-Menten 

plot of (S)-O-desmethyl naproxen formation in pooled human liver microsomes (HLMs) is 

shown in Figure 2, with a mean Km of 420 ± 2 M and Vmax of 0.92 ± 0.06 nmol/min/mg 

microsomal protein from three repeated experiments. The CYP Supersome™ screen showed that 

(S)-O-desmethyl naproxen was formed in incubations containing 25 M naproxen by only three 

P450 enzymes – CYP2C9, CYP2C8, CYP1A2 (Figure 3). The activity of CYP2C9 was much 

higher than that of CYP1A2 and CYP2C8. Twenty-five M is a more clinically relevant 

concentration, considering that (S)-naproxen exhibits extensive protein binding (>99%) and its 

Cmax is ~250 M following a single 440 mg dose under fasting conditions (NDA, 2005). The 

dominant role of CYP2C9 is less apparent at higher (S)-naproxen concentrations, as 
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demonstrated in the incubation with 1000 M of (S)-naproxen, where the contribution of 

CYP1A2 increased by over 30-fold and small amounts of product were detected in incubations 

with several other P450 Supersomes™ (Figure 3). In a separate experiment, we evaluated the 

activity of a vector control Supersome™ preparation, compared to CYP2C9. There was no (S)-

O-desmethyl naproxen product detected in incubations with the vector control, at both the 25 M 

and 1000 M substrate concentrations, compared to a robust product formation rate produced by 

CYP2C9.  

Full kinetic experiments were conducted to assess the (S)-O-desmethyl naproxen intrinsic 

formation clearances of CYP2C9, CYP1A2, and CYP2C8 Supersomes™ (Figure 4). The mean 

Vmax values for CYP2C9 and CYP1A2 were 31.7 and 41.7 pmol/min/pmol P450, respectively, 

while their Km values were markedly different, 280 M for CYP2C9 and 1000 M for CYP1A2 

(P = 0.005) (Table 1). The intrinsic clearance by CYP2C9 was significantly greater than for 

CYP1A2 (P = 0.008). Given liver abundances of 73, 52, and 24 pmol P450/mg protein 

(Rowland-Yeo et al., 2004) for CYP2C9, CYP1A2, and CYP2C8, respectively, the average 

contribution from each of these enzymes to (S)-O-desmethyl naproxen formation was predicted 

to be 78% for CYP2C9, 20% for CYP1A2, and 2% for CYP2C8. 

 We also estimated the fraction of (S)-naproxen metabolized to (S)-O-desmethyl 

naproxen in HLMs by CYP2C9 and CYP1A2 from selective enzyme inhibitor experiments 

conducted with 20 M (S)-naproxen, a substrate concentration 5-fold below the Km determined 

in pooled HLMs. (S)-O-desmethyl naproxen formation was reduced by 76.9 ± 1.5% with 10 M 

sulfaphenazole, a selective CYP2C9 inhibitor, by 21.5 ± 1.6% with 10 M furafylline, a 

selective CYP1A2 inhibitor, and by 95.8 ± 2.1% with both sulfaphenazole and furafylline 
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(Figure 5). The solvents for the inhibitors had negligible effects on the percent inhibition (Figure 

5).  

The effect of CYP2C9 and CYP1A2 inhibition on (S)-O-desmethyl naproxen formation 

by HLMs was also assessed in two groups of single donor HLMs, high CYP1A2 expressors (n = 

5) with an average CYP1A2 content of 31.2 ± 10.8 pmol/mg microsomal protein, and low 

CYP1A2 expressors (n = 5) with an average of 2.8 ± 2.3 pmol/mg microsomal protein. CYP2C9 

content was 53.2 ± 13.3 and 36.6 ± 6.3 pmol/mg microsomal protein in the high and low 

CYP1A2 groups, respectively. As predicted, the percent inhibited by 10 M furafylline was 

greater in the high CYP1A2 group (39.7 ± 7.0% pmol/mg microsomal protein), compared to the 

low CYP1A2 group (23.6 ± 7.6% pmol/mg microsomal protein) (P = 0.008), while the percent 

inhibited by 10 M sulfaphenazole was greater in the low CYP1A2 group (85.2 ± 11.8% 

pmol/mg microsomal protein), compared to the high CYP1A2 group (65.5  ± 4.1% pmol/mg 

microsomal protein) (P = 0.017) (Table 2). Although the CYP1A2 content was 11-fold greater in 

the high CYP1A2 group, compared to the low CYP1A2 group, the percent inhibited by 

furafylline was only 1.7-fold greater. Thus, CYP1A2 contribution to (S)-O-desmethyl naproxen 

formation in HLMs was always minor, in comparison to the CYP2C9 contribution. 

 

Impact of M1L on Urinary Metabolite to Parent Ratio 

The mean ratio of (S)-O-desmethyl naproxen to (S)-naproxen was greater for the 

homozygous reference group (18.0 ± 8.0, n = 11), compared to the M1L variant group (10.3 ± 

6.6, n =11), which includes 8 Met1/Leu1 heterozygotes and 3 Leu1/Leu1 homozygotes (Figure 

6). Pairwise comparison (allowing for heteroscedasticity) was significant (P = 0.011), indicating 

reduced activity for the Leu1 variant. The mean metabolite to parent ratios for heterozygotes and 
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Leu1/Leu1 homozygotes were 9.7 ± 5.6 and 12.1 ± 10.1, respectively (Figure S1). One of the 

three Leu1/Leu1 homozygote participants reported using tobacco products, which may have 

induced their CYP1A2 activity and skewed that result and mean for a small sample size. There 

was no evidence of significant metabolic shifting towards the parent glucuronide elimination 

pathway in Leu1 carriers, as the mean urinary metabolite to parent ratio for the conjugate in 

carriers of the Leu1 allele (32.3 ± 12.9) was similar to that of the reference group (34.5 ± 9.4).  

 

 

Discussion 

Alaska Native people are under-represented in genetic research, but have unique 

pharmacogene variation that may critically impact their response to drug therapy. This is the first 

study to characterize prospectively the in vivo functional effect of the novel, relatively common, 

CYP2C9 M1L single nucleotide polymorphism identified in Yup’ik and other AN people. The 

results suggest that a change in the start codon conferred complete loss of function, with no 

protein synthesis. Given the mean contributions of CYP2C9 (80%) and CYP1A2 (20%) to (S)-O-

desmethyl naproxen formation in HLMs, it was predicted that a Leu1 variant group (comprised 

of three Leu1/Leu1 homozygotes and eight heterozygotes) would have a 51% reduction in 

urinary ratio of (S)-O-desmethyl naproxen to unchanged naproxen, compared to the reference 

group. The observed 43% reduction in the Leu1 variant group is in good agreement with this 

prediction. A loss of enzyme activity with the Leu1 variant has clinical implications, particularly 

for low narrow therapeutic index drugs such as warfarin, phenytoin and tolbutamide, where 

carriers of the variant would be more likely to experience an exaggerated drug response. In 
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addition, failure to include this variant in a pharmacogenetic test panel, if implemented to guide 

drug dose selection, could results in phenotypic misclassification in the Yup’ik population. 

 While the M1L variant is a novel CYP2C9 impaired function variant found in the Yup’ik 

population (and at a lower frequency in other AN groups) (Fohner et al., 2015), it is not the only 

example of loss of the translation start codon conferring poor metabolizer status in the P450 2C 

subfamily. CYP2C19*4 (rs28399504) is a loss-of-function allele, resulting from a substitution of 

methionine to valine at the first amino acid position (Ferguson et al., 1998). However, based on 

1000 genomes data, the CYP2C19*4 variant is only found at low frequencies across world 

populations: 0.8% in a Mexican population (California, USA), 0.5% in a Han Chinese population 

(Beijing, China), and the allele was not detected in Europeans (Utah residents with Northern and 

Western European ancestry) or in African Americans (Southwestern USA) (Consortium et al., 

2015). By contrast, M1L is present at a relatively high minor allele frequency of 6.3% in the 

Yup’ik population and, thus, can contribute to variability in the clearance of CYP2C9 substrates 

and the associated pharmacological responses. 

 In order to characterize the catalytic efficiency of the M1L variant, this study first had to 

establish the use of (S)-naproxen as an over the counter probe substrate to assess CYP2C9 

enzyme activity. Earlier studies characterizing the in vitro metabolism of (S)-naproxen 

downplayed its utility as a probe substrate due to involvement of CYP1A2 (Miners et al., 1996; 

Rodrigues, 2005), and because an in vivo study in a Korean population did not observe a 

difference in the mean plasma concentration-time profile of (S)-naproxen in CYP2C9*1/*3, 

compared to CYP2C9 reference individuals (Bae et al., 2009). However, lack of change in (S)-

naproxen concentration alone, does not provide evidence for the absence of a pharmacogenetic-

pharmacokinetic relationship between CYP2C9 genotype and naproxen metabolism because (S)-
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naproxen is eliminated primarily by direct glucuronidation (60% of the dose) (Vree et al., 1993). 

Only 20% of the dose is eliminated as (S)-O-desmethyl naproxen and its secondary glucuronide 

and sulfate metabolites (Sugawara et al., 1978; Kiang et al., 1989; Vree et al., 1993; Davies and 

Anderson, 1997). Therefore, to detect the effect of CYP2C9 variation on (S)-naproxen, it is 

necessary to consider both the unchanged (S)-naproxen as well as its metabolites that are cleared 

through a CYP2C9-mediated pathway, as was done in the current study. Furthermore, the in 

vitro experiments conducted here demonstrate that at physiologically relevant concentrations, 

CYP2C9 is the major enzyme responsible for naproxen O-dealkylation and that CYP1A2 only 

plays a minor role. Moreover, the results of inhibitor experiments conducted in single donor 

HLMs demonstrate that the overall contribution of CYP1A2 to (S)-O-desmethyl naproxen 

formation does not increase substantially with increasing CYP1A2 protein abundance (Table 2). 

Thus, elevated CYP1A2 expression and activity, due to genotype (Thorn et al., 2012) or 

xenobiotic exposure (Zevin and Benowitz, 1999; Dobrinas et al., 2011), is not expected to 

significantly impact CYP2C9’s predominant role in the O-demethylation of (S)-naproxen in vivo. 

While flurbiprofen could be considered a more CYP2C-selective in vivo probe than (S)-

naproxen, it was not deemed superior for this study, because of concerns with using a drug 

available only by prescription in communities without local physician oversight and a 

recommendation by our community advisors that we use a probe drug familiar to the population 

(available over-the-counter) in order to enhance recruitment. 

The identification of a novel CYP2C9 variant that impairs enzyme function, and is unique 

to a population under-represented in biomedical, and especially genetic research (Popejoy and 

Fullerton, 2016), illustrates the importance of population-specific pharmacogenetic studies to 

guide medication therapy. A pharmacogenetic algorithm that is based on polymorphisms from a 
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specific subset of the global population may not be as clinically beneficial for populations in 

which the frequency of variant alleles is markedly different or if enzyme activity is determined 

by uncharacterized genetic variation. This was demonstrated by the conflicting results published 

by two randomized clinical trials, the European Pharmacogenetics of Anticoagulant Therapy 

(EU-PACT) (Pirmohamed et al., 2013), and the Clarification of Optimal Anticoagulation through 

Genetics (COAG) (Kimmel et al., 2013) trials. The EU-PACT trial showed a benefit for 

genotype-guided warfarin dosing over standard clinical care, but the COAG trial did not find a 

significant difference between the two groups (Kimmel et al., 2013; Pirmohamed et al., 2013). 

Variation in the ethnicities and genetics of the sample populations likely contributed to the 

different results (Scott and Lubitz, 2014). While the EU-PACT participants were primarily 

European, the COAG study population included 27% African-Americans, who have lower 

frequencies of CYP2C9*2 and *3 (the only CYP2C9 variant alleles considered in the 

pharmacogenetic algorithm), but higher frequencies of other reduced function CYP2C9 variants 

(e.g., *5, *6, *8, and *11) (Limdi et al., 2015). Similarly, current pharmacogenetic warfarin dose 

algorithms would likely not optimize warfarin dosing for the Yup’ik population, where the 

CYP2C9*2 and *3 frequencies are low and novel reduced or loss of function variants such as 

M1L are present. While the loss of CYP2C9 enzyme activity predicted for the M1L variant may 

be greater than with CYP2C9*3 (80% decrease in enzymatic activity (Takanashi et al., 2000), 

dosing recommendations for the CYP2C9*3 variant can provide some clinical guidance. The 

Gage pharmacogenetic algorithm recommends a warfarin dose reduction of 33% per CYP2C9*3 

allele (Gage et al., 2008). The most conservative guidance would be to switch M1L homozygotes 

to alternative direct oral anticoagulant therapy. Future work should aim to establish the effect of 

the M1L variant on warfarin dose requirement, for example through a prospective study to 
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inform pharmacogenetically-guided warfarin dosing algorithms, controlling for other genetic 

determinants, notably VKORC1 (vitamin K epoxide oxidase reductase complex subunit 1) 

genotype (Rieder et al., 2005). The Yup’ik population may benefit from the consideration and 

inclusion of population-specific genetic variation in clinical decisions surrounding personalized 

medication therapy. Clearly, an understanding of genetic variation in under-represented minority 

populations is essential if pharmacogenetic testing is to reach its optimal clinical utility in 

patients of all ethnicities.   
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Figure Legends 

Figure 1. Study inclusion based on CYP2C9 M1L screening results.   

 

Figure 2. Representative Michaelis-Menten plot of (S)-O-desmethyl naproxen formation in 

pooled HLMs. 

Data are means ± S.D.s. Individual data points represent means of technical triplicates at a given 

(S)-naproxen concentration from the same experimental replicate and the solid line reflects the fit 

of a single-enzyme Michaelis-Menten model to the data.  

 

Figure 3. CYP Supersome™ screen at a sub-Km (S)-naproxen concentration (25 M, closed 

bars) and a saturating concentration (1000 M, open bars).  

Data are mean values across two repeated experiments, each with technical triplicates. 

 

Figure 4. Michaelis-Menten plot of (S)-O-desmethyl naproxen formation by CYP2C9, 

CYP1A2, and CYP2C8 Supersomes™.  

The displayed results are from a representative experiment. Individual data points represent the 

means of technical duplicates at a given (S)-naproxen concentration and the solid lines reflect the 

fit of a single-enzyme Michaelis Menten model to the data. 

 

Figure 5. Effects of selective CYP2C9 and CYP1A2 inhibitors on (S)-O-desmethyl 

naproxen formation in pooled HLMs.  

Sulfaphenazole (SLF) was dissolved in methanol (MeOH) <0.2% final concentration, and 

furafylline (FF) was dissolved in DMSO, <0.1% final concentration. (S)-naproxen substrate 
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concentration was 20 M. Percent inhibition was calculated relative to the control containing no 

inhibitor. Data are means ± S.D.s across three repeated experiments, with technical triplicates.  

 

Figure 6. Urinary metabolite to parent ratio of (S)-O-desmethyl naproxen to unchanged 

(S)-naproxen by M1L genotype. 

The regression analysis for the comparison between the CYP2C9 Met1/Met1 reference group (n 

= 11) and Leu1 variant carrier group (combined Met1/Leu1 heterozygotes and Leu1/Leu1 

homozygotes) (n = 11) allowed for heteroscedasticity; *P < 0.05. 
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Tables 

Table 1. Kinetic parameters for O-desmethyl (S)-naproxen formation by CYP2C9, 

CYP1A2, and CYP2C8 Supersomes™.  

Reported parameters are the means ± S.D.s across three repeated experiments for CYP2C9 and 

CYP1A2 Supersomes™, (duplicate experiments for CYP2C8), each with technical duplicates. 

Comparisons between CYP2C9 and CYP1A2 were assessed using two-tailed unpaired t-tests 

allowing for heteroscedasticity. The asterisks denote statistical significance when compared with 

the same kinetic parameter in CYP2C9 Supersomes™; *P < 0.01. 

P450 Km ± S.D.  

(M) 

Vmax ± S.D.  

(pmol/min/pmol P450) 

CLint ± S.D.  

(µL/min/pmol P450) 

CYP2C9 280 ± 8.9
 

31.7 ± 2.5 0.11 ± 0.10 

CYP1A2 1000 ± 97* 41.7 ± 2.4* 0.04 ± 0.003* 

CYP2C8 90 0.90 0.01 
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Table 2. Inhibition of (S)-O-desmethyl naproxen formation in single donor HLMs by 

sulfaphenazole and furafylline.  

Data are means ± S.D.s across three repeated experiments. Comparisons between low (n = 5) 

and high (n = 5) CYP1A2 expressors were assessed using two-tailed unpaired t-tests allowing 

for heteroscedasticity. The asterisks denote statistical significance when compared with percent 

inhibition in low CYP1A2 expressors; *P < 0.05 and **P < 0.01. 

CYP1A2 

Expression 

Average CYP1A2 ± 

S.D.  

(pmol/mg 

microsomal protein) 

Average CYP2C9 ± 

S.D.  

(pmol/mg 

microsomal protein) 

Inhibition 

by 

Furafylline 

± S.D.  

(%) 

Inhibition by 

Sulfaphenazole 

± S.D.  

(%) 

Low  2.8 ± 2.3 36.6 ± 6.3 23.6 ± 7.6
 

85.2 ± 11.8
 

High  31.2 ± 10.8 53.2 ± 13.3 39.7 ± 7.0**
 

65.5 ± 4.1*
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Number of study visits resulting in 
consent to genotype Yup’ik participants,

n = 1112

Removed duplicate records, n = 193
and genotypes with no call, n = 6

Number of Yup’ik participants enrolled in 
study, n = 913

Removed individuals with 
CYP2C9*2, *3, *8, *11, *13, *14, 
N218I, or P279T variation, n = 191

Number of Yup’ik participants by 
genotype group:

Met1/Met1 reference (wildtype),  n = 629
Met1/Leu1 heterozygous,  n = 85
Leu1/Leu1 homozygous,  n = 8

Figure 1.
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