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Abstract 

Accurately predicting the pharmacokinetics of compounds that are transporter substrates 

has been notoriously challenging using traditional in vitro systems and physiologically based 

pharmacokinetic (PBPK) modeling.  The objective of this study was to use PBPK modeling to 

understand the translational accuracy of data generated with human embryonic kidney (HEK)293 

cells overexpressing the hepatic uptake transporters OATP1B1/3 with and without plasma, while 

accounting for transporter expression.  Models of four OATP substrates, two with low protein 

binding (pravastatin and rosuvastatin) and two with high protein binding (repaglinide and 

pitavastatin) were explored, and the OATP in vitro data generated in plasma incubations were 

utilized for a plasma model, and in buffer incubations for a buffer model.  The pharmacokinetic 

parameters and concentration-time profiles of pravastatin and rosuvastatin were similar and well-

predicted (within two-fold of observed values) using the plasma and buffer models without 

needing an empirical scaling factor, while the dispositions of the highly protein bound 

repaglinide and pitavastatin were more accurately simulated with the plasma models than the 

buffer models.  This work suggests that data from HEK293 overexpressing transporter cells 

corrected for transporter expression represents a valid approach to improve bottom-up PBPK 

modeling for highly protein bound OATP substrates with plasma incubations and low protein 

binding OATP substrates with or without plasma incubations. 

 

Significance Statement:  This work demonstrates the bottom-up approach of using in vitro data 

directly without employing empirical scaling factors to predict the IV PK profiles reasonably 

well for four OATP substrates.  Based on these results, using HEK293 overexpressing cells, 

examining the impact of plasma for highly bound compounds, and incorporating transporter 
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quantitation for the lot in which the in vitro data were generated represents a valid approach to 

achieve more accurate prospective PK predictions for OATP substrates.   
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Introduction 

Investigating the role of transporters during drug discovery and development is crucial as 

they can impact not only a drug’s pharmacokinetic (PK) profile, but also its target tissue 

exposure and pharmacological/toxicological effect (Giacomini et al., 2010).  Two commonly 

examined transporters, organic anion transporting polypeptide (OATP)1B1 and OATP1B3, are 

hepatic basolateral uptake transporters whose clinical importance has been demonstrated in both 

genetic studies (Niemi et al., 2005; Zhang et al., 2006; Pasanen et al, 2007) and drug-drug 

interaction (DDI) studies (Backman et al., 2002; Kyrklund et al., 2003; Simonson et al., 2004).  

As these interactions can lead to dose adjustments, and even drug withdrawals due to safety, 

regulatory agencies recommend evaluating drug candidates for their potential to be OATP1B1/3 

inhibitors and substrates (if eliminated by the liver). 

An increasingly used approach to mechanistically predict PK and transporter-mediated 

drug disposition is physiologically based pharmacokinetic (PBPK) modeling (Rostami-

Hodjegan, 2012).  In contrast to static methods where an in vitro parameter is used to predict a 

specific PK parameter, PBPK modeling is dynamic and can be used to predict the plasma 

concentration-time curve as well as time-varying changes in transporter uptake and inhibition 

(Sager et al., 2015).  However, there have been challenges with the in vitro to in vivo 

extrapolation (IVIVE) of transporter kinetics to describe observed PK or DDI data, leading to the 

inclusion of compound-dependent empirical scaling factors in PBPK models beyond 

physiological scaling (Jones et al., 2012; Li et al., 2014).  For instance, reported PBPK models of 

well-known OATP substrates pravastatin, rosuvastatin, repaglinide, and pitavastatin needed to 

use empirical scaling factors when inputting in vitro hepatocyte data in order to capture the 

observed PK (Varma et al., 2012; Jones et al., 2012; Varma et al., 2013; Duan et al., 2017). 
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 To improve transporter IVIVE, recommendations have included finding in vitro systems 

that are more relevant to in vivo, and accounting for transporter differences between in vitro 

systems and in vivo (Grimstein et al., 2019; Taskar et al., 2019).  To more accurately capture in 

vivo kinetics, the addition of plasma to in vitro incubations has been explored, and a previous 

study using uptake data from plateable human hepatocytes in human plasma demonstrated that 

the concentration-times profiles of pravastatin could successfully be captured with PBPK 

modeling without an empirical scaling factor (Mao et al., 2018).  A recent publication also found 

that including serum in human and monkey hepatocyte incubations decreased the empirical 

scaling factor values needed to capture in vivo uptake clearance (Liang et al., 2020).  To bridge 

the difference in transporter expression levels between different in vitro systems (such as human 

embryonic kidney (HEK)293 cells and hepatocytes) and/or between in vitro and in vivo (such as 

hepatocytes and liver tissue), the use of a relative expression factor (REF) has been proposed 

with transporter abundance differences measured with LC-MS/MS (Bosgra et al., 2014, Chan et 

al., 2019).  Using this approach, Ishida et al. (2018) found that the uptake clearance of 

rosuvastatin in rats could be accurately predicted using Oatp-overexpressing cells and REF, 

while using sandwich cultured rat hepatocytes led to underprediction. 

The objective of the current work is to understand the translational accuracy of using data 

generated in HEK293 cells overexpressing OATP1B1/3 with and without plasma, and using in-

house transporter quantitation data for REF, as inputs for the PBPK models of pravastatin, 

rosuvastatin, repaglinide, and pitavastatin.  The uptake clearance measured with this in vitro data 

is compared to the previously fitted uptake clearance values from PBPK models, and predictions 

of pharmacokinetic parameters and concentration-time profiles are examined.  While many have 

used hepatocytes for transporter IVIVE (Izumi et al., 2017), using transporter overexpressing 
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cells may be preferable due to information about specific transporter contributions, lack of lot 

variability, and cost (Kumar et al., 2020).  Finding an appropriate in vitro system and incubation 

conditions is crucial for more accurate prospective PK predictions, and may avoid the previously 

needed compound-specific empirical scaling factors. 

 

Methods 

Uptake in OATP1B1- and OATB1B3-Overexpressing Cells 

 Details on the in vitro data generation can be found in Bowman et al. (2020).  Briefly, 

Corning TransportoCells
TM

 Cryopreserved SLC Transporter Cells (human OATP1B1*1a 

OATP1B3 (lot 5278015), and control cells (lot 6075312) were used to measure the uptake of 

four OATP substrates (pravastatin, rosuvastatin, repaglinide, and pitavastatin) at various 

concentrations using protein-free buffer or 100% human plasma.  Plasma protein binding of the 

compounds was measured with a Rapid Equilibrium Dialysis Plate (Thermo Fisher Scientific, 

Waltham, MA).  The resulting unbound Km, Jmax, and passive diffusion (CLPD) values can be 

found in Table 1.  The CLPD values were later converted from the original units of μL/min/mg 

protein to mL/min/10
6
 HEK293 cells for the simulator required input of mL/min/10

6
 

hepatocytes.  The surface area, membrane composition etc. of HEK293 cells and hepatocytes 

were assumed to be similar to allow for the passive diffusion in HEK293 cells to be input here as 

a hepatocyte value. 

 

Transporter Quantification in Overexpressing Cell Lines and Human Hepatocytes 

ProteoExtract® native membrane protein extraction kit (Millipore) was used to isolate 

membrane proteins from the Corning TransportoCells
TM

 Cryopreserved SLC Transporter Cells 
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mentioned above and suspended human hepatocytes (BioIVT Corp, Westbury, NY, 10-donor 

pooled) according to the protocol provided by the manufacturer. 20 μL of the extracted 

membrane fraction were mixed with 80 μL 5% DOC (deoxycholate) in 25mM Ammonium 

Bicarbonate. DOC was then removed by desalting spin column after DTT (Dithiothreitol) 

reduction and IAA (iodoacetamide) alkylation. Trypsin was then added to each well in an 

enzyme to protein ratio of 1:20. Samples were digested at 37̊°C overnight. Heavy labeled 

peptides were spiked into the digestion mixture and the reaction was quenched with 0.5% of 

formic acid for LC-MS analysis. The surrogate peptides measured were ITPTDSR, 

NVTGFFQSFK, YVEQQYGQPSSK, and SSSGNK for OATP1B1 and NQTANLTNQGK, 

NVTGFFQSLK, and IYNSVFFGR for OATP1B3. The LC-MS analysis was carried out on a 

Shimadzu Nexera (Columbia, MD) coupled to a Sciex QTRAP® 6500 mass spectrometer 

(Foster City, CA). A Waters XBridge BEH C18 column (100 × 2.1 mm, 3.5 μm) (Milford, MA) 

was used with H2O (A) and MeOH (B) both with 0.1% formic acid. Gradient elution profile at 

300 μL/min and 40°C is as follows: 5% B increased to 50% B by 45.0 min, then to 90% B by 50 

min, and returning to 5% B at 51 min with run time of 60 min. The calibration curve range was 

0.12-30 ng/mL for each peptide. 

 

Relative Expression Factor Scaling 

The transporter quantitation results were used to account for abundance differences 

between the overexpressing HEK293 cells and hepatocytes in the form of REF.  REF is 

traditionally a unitless scalar, for instance correcting for pmol/10
6
 cells in vivo vs. in vitro; 

however here for the correction of abundance in HEK293 cells vs. hepatocytes, the quantitation 

of HEK293 cells was measured as pmol/mg protein, leading to REF with units of mg/10
6
 cells.  
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Since the mg protein/10
6
 cells is not necessarily the same for HEK293 cells and hepatocytes, this 

has been normalized in the REF equation (Equation 1).  The amount of protein was determined 

using the Pierce
TM 

BCA
®

 Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA).  The 

scaled uptake CLint,T is shown is Equation 2. 

 

 

𝑅𝐸𝐹 (𝑚𝑔/106 𝑐𝑒𝑙𝑙𝑠) =  
ℎ𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒 𝑂𝐴𝑇𝑃𝑥 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙/106 𝑐𝑒𝑙𝑙𝑠)

𝐻𝐸𝐾293 𝑂𝐴𝑇𝑃𝑥 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙/𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)
∗  

𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/106 𝑐𝑒𝑙𝑙𝑠 (ℎ𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠) 

𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/106 𝑐𝑒𝑙𝑙𝑠 (𝐻𝐸𝐾293) 
   (1) 

 

 

HEK293 CLint,T (uL/min/10
6
 cells) =  (Jmax (pmol/min/mg)/ Km,u (uM)) * REF (mg/10

6
 cells)  (2) 

 

 

PBPK Models of Four OATP Substrates 

 The Simcyp


 simulator (Version 19 release 1, Sheffield, UK) was utilized for this 

investigation along with the models of pravastatin, rosuvastatin, and repaglinide in the Simcyp 

compound library and the model of pitavastatin from Duan et al. (2017).  These models are 

considered the base models.  While further development can be done as recently described for 

rosuvastatin (Bowman et al., 2020), the purpose of this exercise was to compare the simulation 

results when using the currently investigated HEK293 cell data with in house REF (and 

unchanged remaining model inputs) to the simulation results of the base models.   

 The models of pravastatin, rosuvastatin, and pitavastatin used the Advanced Dissolution, 

Absorption, and Metabolism (ADAM) model (Jamei et al., 2009) to describe intestinal 

absorption while repaglinide used the first-order absorption model.  For distribution, all four 

compounds used a full PBPK model and the volume of distribution (Vss) was predicted using the 

Rodgers and Rowland (2007) method.  Permeability-limited models were used in the intestine 

for pravastatin and rosuvastatin; in the liver for all four compounds, and in the kidney for 

pravastatin.  Details about the model inputs for these four compounds in the base models, 
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HEK293 plasma models, and HEK293 buffer models are summarized in Table 2 and briefly 

described below. 

 

Pravastatin 

Base model (Simcyp simulator version 19 library file):  Pravastatin is a low protein binding 

statin (fraction unbound in plasma (fup)=0.485)) that is minimally metabolized and undergoes 

biliary and renal clearance (Singhvi et al., 1990).  To assign hepatic uptake contributions in the 

model of pravastatin, a global hepatic uptake intrinsic clearance (CLint,T) was back-calculated by 

fitting clinical IV data (Singhvi et al., 1990).  The percentage of OATP1B1 and OATP1B3 

contribution was then assigned based on data from HEK293-OATP1B1 and OATP1B3 cells 

along with relative expression data (Simcyp, 2020).  The passive diffusion was measured in 

sandwich cultured human hepatocytes (SCHH) (Jones et al., 2012).  The hepatic efflux 

transporter multidrug resistance-associated protein (MRP)2 was assigned using a measured 

CLint,T from sandwich culture human hepatocytes (Jones et al., 2012) and a REF was included to 

account for abundance differences (Neuhoff et al., 2013). 

HEK293 plasma model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

HEK293 buffer model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

 

Rosuvastatin 
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Base model (Simcyp simulator version 19 library file):  Rosuvastatin is a relatively low protein 

binding statin (fup=0.107) that is minimally metabolized and predominately undergoes biliary 

and renal excretion unchanged (Martin et al., 2003b; Bergman et al., 2006).  Since inputting 

experimental transporter data in the rosuvastatin model could not capture the observed profile 

(Jamei et al., 2014), a global intrinsic clearance for active hepatic uptake was back-calculated 

using an IV clinical study (Martin et al., 2003a) and in vitro data was used to assign a percentage 

contribution to each hepatic uptake transporter included (OATP1B1, OATP1B3, OATP2B1, 

NTCP) based on a meta-analysis of data (Harwood et al., manuscript in preparation).  The 

passive diffusion input was based on a meta-analysis of 5 SCHH studies.  For the hepatic efflux 

transporter breast cancer resistance protein (BCRP), sandwich culture human hepatocyte data 

was input with activity corrections for absolute abundance (Li et al., 2009, Burt et al., 2016).  

Multidrug resistance-associated protein (MRP)4 was assigned using a relationship between 

rosuvastatin’s hepatocyte basolateral efflux and biliary clearance (Pfeifer et al., 2013) and 

correcting transporter expression differences (Harwood et a., manuscript in preparation). 

HEK293 plasma model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

HEK293 buffer model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

 

Repaglinide 
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Base model (Simcyp simulator version 19 library file):  Repaglinide, a high protein binding anti-

diabetic drug (fup=0.0188), is extensively metabolized by cytochrome P450 (CYP) 2C8 and 

CYP3A4 in the liver and gastrointestinal tract (Bidstrup et al., 2003).  In the repaglinide model, 

hepatic uptake clearance was assigned to OATP1B1 after fitting clinical oral data (Kajosaari et 

al., 2005).  The passive diffusion was measured in SCHH (Jones et al., 2012). 

HEK293 plasma model: The hepatic OATP1B1 inputs (Jmax, Km, REF) and CLPD inputs were 

updated with the in vitro results of Table 1.  The remaining parameters were kept the same as the 

base model. 

HEK293 buffer model: The hepatic OATP1B1 inputs (Jmax, Km, REF) and CLPD inputs were 

updated with the in vitro results of Table 1.  The remaining parameters were kept the same as the 

base model. 

 

Pitavastatin 

Base model (Duan et al. (2017)):  Pitavastatin is a highly protein bound statin (fup=0.005) that 

undergoes minimal metabolism and is eliminated unchanged in the bile (Hirano et al., 2005).  

The model developed by Duan et al. (2017) was utilized as a base model here, and for hepatic 

uptake, OATP1B1 and OATP1B3 CLint,T values generated in hepatocytes were input (Hirano et 

al., 2006).  However, this led to underprediction of the systemic clearance, so empirical scaling 

factors of 18 for both transporters were then included based on optimization with IV and oral 

clinical data (FDA).  A passive diffusion value was input from the same source based on 

hepatocyte data (Hirano et al., 2006). 
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HEK293 plasma model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

HEK293 buffer model: The hepatic OATP1B1 inputs (Jmax, Km, REF), OATP1B3 inputs (Jmax, 

Km, REF), and CLPD inputs were updated with the in vitro results of Table 1.  The remaining 

parameters were kept the same as the base model. 

 

 

PBPK Model Simulations 

 For each compound, an intravenous (IV) and oral (PO) PK simulation was conducted 

using the Simcyp simulator version 19 with the Sim-Healthy Volunteer population and compared 

to the observed clinical data.  The OATP1B1/3 abundance in liver tissue was left as the simulator 

default values which are from a meta-analysis (Burt et al., 2016).  Details of the clinical studies 

and the exact simulations run (number of subjects, age range, and proportion of females) can be 

found in Table 3.  Ten trials were run for each simulation.  The PO dosages for each compound 

were selected based on which had most clinical data available.  For pravastatin, a 9.4 mg IV 

bolus dose and a 40 mg PO dose were examined; for rosuvastatin an 8 mg IV infusion and 80 mg 

PO dose were examined; for repaglinide a 2 mg IV infusion and 2 mg PO dose were examined; 

and for pitavastatin a 2 mg IV infusion and 2 mg PO dose were examined.  Simulations were 

conducted for the base model, HEK293 buffer model, and HEK293 plasma model (Table 2).   

 

Results 

Uptake in OATP1B1- and OATB1B3-Overexpressing Cells 
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 Details about the in vitro results and interpretation can be found in Bowman et al. (2020), 

and the data is presented here in Table 1.  Briefly, differences for each parameter (Km,u, Jmax, and 

CLPD) were found between the buffer and plasma incubations for both cells, with the largest 

differences noted for the highly protein bound repaglinide and pitavastatin.  The Km,u values 

decreased in the plasma incubations as protein binding increased (with fold changes ranging 

from 1.91-619), while Jmax values also decreased in the plasma as protein binding increased, but 

to a lesser extent than Km,u (the Jmax fold changes ranged from 1.22-97.4).  In addition, the CLPD 

was higher in the human plasma incubations with the largest difference for pitavastatin (23.4 fold 

change) compared to the other three compounds (1.73-3.90 fold changes). 

 

Transporter Quantitation 

The full results of the transporter quantitation are presented in Supplementary Table 1.  

Ultimately the results from the ITPTDSR and NQTANLTNQGK peptides for OATP1B1 and 

OATP1B3 respectively were used for the calculation following Equation 1, leading to REF 

values of 5.63 for OATP1B1 and 1.87 for OATP1B3 as shown in Table 4. 

 

PBPK Model Simulations  

 The simulated PK results can be found in Table 5 and Figures 1 and 2. 

For pravastatin, the simulated PK parameters (the area under the concentration-time 

curve (AUC), the maximal concentration (Cmax) and the time to the maximal concentration (tmax)) 

fell within two-fold of the observed data for both the IV and oral doses using HEK293 data with 

REF in both plasma and buffer incubations (Table 5).  The terminal phase of the IV profile was 

not fully captured with the HEK293 data, however given that it was not captured in the base 
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model, this is expected (Figure 1).  The profiles of the oral dose were well-predicted (using both 

plasma and buffer incubation data) with the Cmax and AUC predictions falling within the range of 

observed data.  The sum of the OATP1B1 and OATP1B3 uptake CLint,T was relatively similar 

between the plasma (37.8 L/min/10
6
 cells), buffer (24.0 L/min/10

6
 cells), and base model 

(15.4 L/min/10
6
 cells).  The use of a passive diffusion value from the HEK293 incubations vs. 

the SCHH of the base model was explored, and the simulation results were not affected 

(Supplementary Table 3).  This was expected given the percentage of pravastatin entering the 

liver by passive diffusion was 1% or lower with all pravastatin data.  

For rosuvastatin, the simulated PK parameters were also within two-fold of the observed 

data for both the IV and PO doses using the HEK293 data from both incubations (Table 5).  The 

triphasic decline of the concentration-time profile of the IV dose appears to be better captured by 

the HEK293 plasma and buffer models (more of the observed data points fell within the 5
th

/95
th

 

percentile) than the base model (Figure 1).  For the oral profile, the simulated Cmax fell within the 

range of the observed, and the simulated AUC was slightly higher than the observed range using 

the HEK293 plasma and buffer models.  In comparison, both the Cmax and AUC were slightly 

underpredicted using the base model.  These differences in simulations using the HEK293 

models vs. the base model could be attributed to the difference in uptake CLint,T for OATP1B1 

and OATP1B3—the sum of the uptake CLint,T for the two transporters in the HEK293 plasma 

incubations was 99.0 L/min/10
6
 cells, and for the HEK293 buffer incubations was 49.7 

L/min/10
6
 cells; while it was much higher at 718 L/min/10

6
 cells for the base model.  The 

percentage of rosuvastatin entering the liver by passive diffusion was less than 1% in all cases 

and using a passive diffusion value from the HEK293 cells vs. the SCHH of the base model 

yielded similar results (Supplementary Table 3). 
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With repaglinide, while the simulated PK parameters were within two-fold of the 

observed data for both the IV and oral doses using the HEK293 plasma and buffer models, there 

were differences in the predictions depending on the incubation data used.  For the IV dose, the 

predicted AUC using the plasma model was 1.01-fold higher than the observed, while it was 

1.85-fold higher with the buffer model.  In addition, the concentration-time profile of the IV dose 

appeared to be better captured with the plasma model.  Differences were also observed with the 

oral simulations.  Using the plasma model the AUC, Cmax, and concentration-time profile were 

slightly underpredicted, while using the buffer model, the AUC was predicted to be on the higher 

end of the observed values and the concentration-time profile was slightly overpredicted.  In 

comparison to the base model with an OATP1B1 CLint,T of 838.1 L/min/10
6
 cells, the plasma 

model had a higher uptake of 1115 L/min/10
6
 cells, while the buffer model had a lower uptake 

of 225.7 L/min/10
6
 cells.  The contribution of passive diffusion also varied and was higher than 

for the statins—the uptake percentage attributed to passive diffusion was 13.9% in the base 

model, was 2.8% with the plasma model, and was 7.4% with the buffer model.  The lower 

contribution from the HEK293 cells provided more accurate predictions than the value from the 

SCHH of the base model (Supplementary Table 3). 

Pitavastatin, the highest protein bound compound, had the largest difference between the 

in vitro kinetic parameters determined in HEK293 plasma vs. buffer incubations, and this held 

true for the PBPK simulation results as well.  For the IV dose, the plasma model provided more 

accurate simulation results.  The predicted AUC was within two-fold of the observed using the 

plasma model (1.4-fold underpredicted), and the shape of the concentration-time profile was 

closer to the observed (Table 5, Figure 1).  The AUC was overpredicted using the buffer model 

by 4.4-fold and the concentration-time profile was not accurately captured.  With the oral data, 
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the plasma model also provided more accurate simulations.  The AUC and Cmax were both 

underpredicted by 3-fold using the plasma model and this was closer to the observed data than 

using the buffer model.  The AUC and Cmax were overpredicted using the buffer model by 6.6-

fold and 3.3-fold, respectively.  In comparison, the base model (Duan et al. (2017)) used in vitro 

hepatocyte data and a scaling factor of 18 was required to achieve accurate predictions.  More 

specifically, the optimized OATP1B1/3 CLint,T of Duan et al. (2017) was 1143 L/min/10
6
 cells, 

while the CLint,T of the plasma data was 3933 L/min/10
6
 cells without an empirical scaling 

factor and the CLint,T of the buffer data was 150.4 without an empirical scaling factor.  The 

percentage of uptake by passive diffusion was less than 2% in all cases and similar results were 

seen using either the HEK293 cell or hepatocyte data (Supplementary Table 3). 

 

 

Discussion 

 Generating transporter kinetic data from appropriate in vitro systems is crucial for 

accurate IVIVE and prediction of human PK profiles using PBPK modeling.  While using 

hepatocytes has been explored, quantitatively using overexpressing cells and accounting for 

transporter expression is a more recent idea.  This study explored the translational capability of 

data generated in transfected HEK293 cells with and without plasma and corrected for 

transporter expression, for human PK prediction using PBPK.  To our knowledge, this is the first 

publication to demonstrate the bottom-up approach using in vitro OATP data directly without 

employing empirical scaling factors to predict the IV PK profiles reasonably well for multiple 

OATP substrates. 

To understand the translation of OATP1B1/3 in vitro data, more emphasis was placed on 

capturing IV PK although both IV and PO simulations were conducted.  Since alternative 
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transporters may contribute to the absorption of oral doses, accurately accounting for them is 

critical and any uncertainty would be independent of the OATP1B1/3 inputs explored here. 

The expression levels of OATP1B1 and OATP1B3 in HEK293 overexpressing cells and 

human hepatocytes were determined using LC-MS/MS quantitation.  The ITPTDSR and 

NQTANLTNQGK peptides for OATP1B1 and OATP1B3 respectively were selected due to the 

low interfering signal compared to control cells. In addition, they demonstrated good linearity for 

relative quantitation purposes during method qualification.  Due to the complex nature of cellular 

extracts, all unique peptides detectable by LC-MS were quantitated.  For IVIVE, choosing a 

peptide with the best intra-system selectivity and quantitative linearity is critical to accurate 

extrapolation.   

Using theses REF values along with the previously reported Jmax / Km.values allowed 

exploration of bottom-up PBPK modeling of OATP contribution to compound PK.  By 

investigating Jmax / Km values compared to the CLint values of base models, potential saturation 

could also be taken into account.  After scaling the in vitro data with REF, OATP1B1 had a 

larger contribution to the uptake than OATP1B3 for pravastatin, rosuvastatin, and pitavastatin.  

This highlights the value of using overexpressing cell lines to understand specific transporter 

contributions, and the larger contribution of OATP1B1 for these compounds aligns with previous 

in vitro (Kunze et al., 2014; Izumi et al., 2018) and in vivo pharmacogenomic (Yoshida et al., 

2013) studies. 

For the two compounds with lower protein binding, pravastatin and rosuvastatin, 

comparable transporter kinetics were generated in plasma and buffer incubations.. For 

pravastatin, the sum of the OATP1B1/3 uptake CLint,T was relatively similar between the plasma, 

buffer, and base models.  For rosuvastatin, the OATP1B1/3 uptake CLint,T in the plasma and 
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buffer models were lower than the fitted OATP1B1/3 uptake CLint of the base model, which 

agrees with the recent work of Kumar et al. (2020) who found that in vitro systems 

underpredicted rosuvastatin’s uptake clearance, and suggested endogenous factors were missing.  

Despite this, the observed systemic clearance of rosuvastatin was still captured here and hepatic 

uptake may not be the rate-determining step (Billington et al., 2019).  For the two highly protein 

bound compounds, repaglinide and pitavastatin, where the kinetic data were substantially 

different between the incubations, the OATP uptake CLint,T from the plasma incubations were 

more aligned with the fitted/optimized uptake CLint,T of the base models.   

For the PBPK simulations of pravastatin and rosuvastatin, the pharmacokinetic 

parameters and concentration-time profiles of the IV doses were similar and overall well-

predicted with the HEK293 plasma and buffer models.  Larger differences in the repaglinide and 

pitavastatin simulations were noted, and the pharmacokinetic parameters and IV profiles were 

more accurately captured by the plasma models than the buffer models for both.  While 

pitavastatin’s concentration-time profile was not fully captured, this may be because the current 

base model does not include enterohepatic recirculation and/or because the volume is 

underpredicted (Kojima et al., 2001; Catapano, 2012). 

It should be noted that the half-lives of pravastatin and pitavastatin were not accurately 

reflected in the base models (Supplementary Table 4).  This manuscript shows promise for 

prospective predictions of clearance, which contribute to successful half-life predictions.  On the 

other side, it is important to mention the gap that current volume predictions do not incorporate 

the impact of transporters, which may lead to higher observed values (Grover and Benet, 2009).  

Since the Rodgers and Rowland (2007) prediction method used does not account for transporters, 

it was not surprising to see half-life prediction error given the dependency on both clearance and 
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volume.  As an exercise, the Vss was retrospectively raised to the observed range by increasing 

the Kp scalar, which improved half-life predictions, did not largely impact CL predictions 

(Supplementary Table 4) and slightly improved PK profile predictions (Supplementary Figure 1).  

While it was beyond the scope of this work to improve the bottom-up approach for volume 

predictions, using allometry or tissue concentration data from rats (Chan et al., 2019) could be 

explored. 

The results presented here align with previous work examining the hypothesis of protein-

facilitated uptake (Baik and Huang, 2015; Fukuchi et al., 2017; Bowman et al., 2019; Bteich et 

al., 2019; Kim et al., 2019; Bi et al., 2020; Francis et al., 2020; Liang et al., 2020; Li et al., 

2021).  According to this idea, interactions between the drug-protein complex and the hepatocyte 

cell surface or transporters may lead to greater uptake and clearance for highly protein bound 

drugs (primarily acidic drugs examined to date) than would be predicted using traditional in vitro 

methods with protein-free buffer.  The PBPK modeling results for repaglinide and pitavastatin 

emphasize that there is a difference when using in vitro data generated with and without plasma, 

and suggest that plasma data may reflect the physiologically relevant condition, as the 

simulations for the highly bound OATP substrates captured the observed PK more closely than 

those using protein-free buffer data.  Alternative explanations could be that plasma reduces the 

non-specific incubation binding and/or improves the solubility of compounds, and more work is 

needed to mechanistically understand the differences seen between plasma vs. protein-free 

buffer. 

Ultimately the in vitro underprediction of clearance is likely multifactorial (Bowman and 

Benet, 2016; Wood et al., 2017), however, the inclusion of REF and the kinetic parameters 

presented here bring hope for the traditionally difficult bottom-up modeling of OATP substrates.  
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The base models of the four compounds either used fitted clinical data to obtain a global CLint,T 

(and assigned fractions transported from in vitro data) (Jamei et al., 2014; Simcyp 2019; Simcyp 

2020), or used SCHH data and required an 18-fold empirical scaling factor (Duan et al., 2017).  

Supplementary Table 5 describes the OATP1B1/3 inputs from additional models developed in 

the Simcyp simulator beyond those used here.  For pravastatin, Varma et al. (2012) found that 

SCHH data overpredicted the IV concentration-time profile, leading to a scaling factor of 31; 

while Mao et al. (2018) found that plateable human hepatocytes in plasma could accurately 

capture pravastatin’s disposition.  For rosuvastatin, Emami Riedmaier et al. (2016) and Wang et 

al. (2017) input a fitted global uptake CLint,T from clinical data, and assigned transporter 

contributions from in vitro data.  For repaglinide, Varma et al. (2012) used SCHH data and 

needed a 17-fold empirical scaling factor.  Additionally, Jones et al. (2012) input SCHH data for 

PBPK modeling using Berkeley Madonna and determined scaling factors of 21 for pravastatin, 

12 for rosuvastatin, and 44 for repaglinide were needed to capture the active uptake in their 

models. 

Based on the results presented here, selecting a physiologically relevant in vitro system 

such as HEK293 overexpressing cells (with or without plasma for low protein binding OATP 

substrates, and with plasma for high protein binding OATP substrates) and incorporating 

transporter quantitation may help achieve more accurate prospective PK predictions.  This work 

demonstrates that the approach may avoid the compound-specific empirical scaling factors 

previously needed.  For pravastatin and rosuvastatin, predictions may have been more accurate 

than previous work if there were functional activity differences with the transporters in the 

HEK293 cells and the previously used hepatocytes.  Having accurate REF values may have also 

improved predictability:  the transporter abundances were measured using the same experimental 
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procedures for HEK293 cells and hepatocytes in-house; the same HEK293 lots used for kinetic 

data were used for abundance measurements; and a 10-donor mixed gender pooled hepatocyte 

lot was used to avoid interindividual variability.  For repaglinide and pitavastatin, predictions 

may have been more accurate for the same reasons in addition to the use of plasma incubations.  

Although passive diffusion was a relatively small percentage of the uptake of these compounds, 

differences between plasma vs. buffer incubations should be further explored and could impact 

predictions of compounds with larger passive contributions.  Differences in passive diffusion 

between incubations have been noted with hepatocytes as well (Bowman et al., 2019; Liang et 

al., 2020), and possible explanations have been methodological or physiological (Liang et al., 

2020). 

In conclusion, using HEK293 overexpressing transporter cells in plasma incubations and 

accounting for transporter expression demonstrates a promising approach for bottom-up PBPK 

modeling of OATP substrates.  As additional hypotheses for the in vitro to in vivo discrepancy of 

transporter substrates are examined, such as differences with endogenous factors in vitro/in vivo, 

they could be built into this in vitro system and modeling approach.   
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Figure Legends 

 

Figure 1:  Simulated IV and PO concentration-time profiles of pravastatin, rosuvastatin, 

repaglinide, and pitavastatin using base models, HEK293 buffer models, and HEK293 plasma 

models.  The simulated results are shown as a green line with the 5
th

 and 95
th

 percentiles shown 

as grey lines.  The observed clinical data (references can be found in Table 3) are plotted as 

points. 

 

Figure 2:  Comparison of the AUC observed vs. AUC predicted for the IV doses of pravastatin, 

rosuvastatin, repaglinide, and pitavastatin using the HEK293 plasma and HEK293 buffer models. 

The x-axis shows the observed AUC reported in the references of Table 3, and the y-axis shows 

the predicted AUC from the plasma and buffer models. 
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Table 1:  The Jmax, Km,u, and CLPD values previously generated for pravastatin, rosuvastatin, 

repaglinide, and pitavastatin in OATP1B1 and OATP1B3 overexpressing cells in human plasma 

and buffer (Bowman et al., 2020). 

 

 

 
OATP1B1 

Jmax / Km,u 

(pmol/min/mg / M) 

OATP1B3 

Jmax / Km,u 

(pmol/min/mg / M) 

CLPD 

(uL/min/mg protein) 

Pravastatin 
Plasma 224 / 44.5 145 / 28.5 0.614 

Buffer 274 / 84.9 179 / 57.5 0.159 

Rosuvastatin 
Plasma 50.0 / 3.25 37.1 / 5.61 2.64 

Buffer 132 / 22.2 156 / 18.0 0.677 

Repaglinide 
Plasma 1.98 / 0.0100 - 84.2 

Buffer 42.9 / 1.07 - 48.6 

Pitavastatin 
Plasma 5.69 / 0.00855 1.56 / 0.0157 148 

Buffer 111 / 5.29 152 / 8.80 6.33 
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Table 2:  Summary of the key input parameters of pravastatin, rosuvastatin, repaglinide, and 

pitavastatin used in the base model, HEK293 plasma model and HEK293 buffer model. 

 
 

 Pravastatin Rosuvastatin Repaglinide Pitavastatin 

 Physicochemical 

Properties 
    

 MW 424.53 481.54 452.6 421.46 

 LogP 2.2 2.4 5.18 2.91 

 Compound Type Monoprotic Acid Monoprotic Acid Ampholyte Monoprotic Acid 

 pKa 4.55 4.27 4.18, 6.02 5.31 

 Fraction Unbound 0.485 0.107 0.0188 0.005 

 Blood/Plasma Ratio 0.556 0.625 0.566 0.55 

 Absorption     

 
Model ADAM ADAM 

First-Order 

Absorption  
ADAM 

 Distribution     

 Model Full PBPK Full PBPK Full PBPK Full PBPK 

 Elimination     

 

Metabolism HLM CLint HLM CLint 
CYP3A4, 

CYP2C8 

CYP2C8, 

CYP2C9, UGT, 

HLM CLint 

 
CLR (L/hr) 

Permeability-

limited model 
In vivo data In vivo data In vivo data 

      

 Transport     

 Liver     

Base Model 

CLPD (ml/min/106 

cells) 
0.000109 0.00136 0.089 0.011 

OATP1B1 CLint,T 

(uL/min/106 cells) 
14.057 597 838.11 58.4 

RAF/REF 1 1  18 

OATP1B3 CLint,T 

(uL/min/106 cells) 
1.343 121  5.1 

RAF/REF 1 1  18 

HEK293 

Plasma Model 

CLPD (ml/min/106 

cells) 
0.000147 0.000632 0.0201 0.0354 

OATP1B1 Jmax / Km,u 

(pmol/min/mg / M) 
224 / 44.5 50.0 / 3.25 1.98 / 0.0100 5.69 / 0.00855 

REF (mg/106 cells) 5.63 5.63 5.63 5.63 

OATP1B3 Jmax / Km,u 

(pmol/min/mg / M) 
145 / 28.5 37.1 / 5.61 - 1.56 / 0.0157 

REF (mg/106 cells) 1.87 1.87 - 1.87 

HEK293 

Buffer Model 

CLPD (ml/min/106 

cells) 
0.0000380 0.000162 0.0116 0.00151 

OATP1B1 Jmax / Km,u 

(pmol/min/mg / M) 
274 / 84.9 132 / 22.2 42.9 / 1.07 111 / 5.29 
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REF (mg/106 cells) 5.63 5.63 5.63 5.63 

OATP1B3 Jmax / Km,u 

(pmol/min/mg / M) 
179 / 57.5 156 / 18.0 - 152 / 8.80 

REF (mg/106 cells) 1.87 1.87 - 1.87 

 

Additional 

Transporters 

MRP2 (intestine, 

liver), OAT3 

(kidney), MATE 

(kidney) 

OATP2B1 

(intestine, liver), 

NTCP (liver), 

BCRP (liver), 

MRP4 (liver) 

  

 

HEK293 CLint,T (uL/min/10
6
 cells) =  (Jmax (pmol/min/mg)/ Km,u (uM)) * REF (mg/10

6
 cells) 
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Table 3:  Pharmacokinetic studies of pravastatin, rosuvastatin, repaglinide, and pitavastatin 

examined for this analysis and the simulations run using the Simcyp simulator. 

 

 
Number of 

Subjects 
Age (years) 

Proportion of 

Females 
Reference 

Pravastatin IV (9.4 mg, bolus) 

 
8 21-39 N.R. Singhvi et al. (1990) 

Simcyp 

Simulation 
8 21-39 0.50 

 

Pravastatin PO (40 mg) 

 
10 19-23 0.30 Neuvonen et al. (1998) 

 12 19-26 0.75 Kantola et al. (2000) 

 14 N.R. 0.50 Aberg et al. (2006) 

Simcyp 

Simulation 
36 19-26 0.53  

Rosuvastatin IV (8 mg, infusion) 

 
10 21-51 0 Martin et al. (2003a) 

Simcyp 

Simulation 
10 21-51 0 

 

Rosuvastatin PO (80 mg) 

 14 25-56 0 Cooper et al. (2003a) 

 11 22-44 0 Cooper et al. (2003b) 

 14 29-51 0 Cooper et al. (2002) 

 18 31-60 0 Martin et al. (2003b) 

 20 35-47 0.15 Schneck et al. (2004) 

Simcyp 

Simulation 
77 22-60 0.039  

Repaglinide IV (2 mg, infusion) 

 12 18 – 45 0.0 Hatorp et al. (1998) 

Simcyp 

Simulation 
12 18 – 45 0.0  

Repaglinide PO (2 mg) 
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 24 18 – 49 0.0 Hatorp et al. (1998) 

 12 18 – 40 0.5 Hatorp et al. (1999) 

 8 18 – 45 0.0 Hatorp et al. (2003) 

 16 18 – 45 0.375 Hatorp et al. (2003)  

 11 18 – 45 1.0 Hatorp et al. (2003) 

 12 18 – 45 0.0 Hatorp et al. (2003) 

Simcyp 

Simulation 
83 18 – 49 0.277  

Pitavastatin IV (2 mg, infusion) 

 

18 N.R. 0.0 FDA 

    

Simcyp 

Simulation 
18 21-51 0.0 

 

Pitavastatin PO (2 mg) 

 
18 N.R. 0.0 FDA 

Simcyp 

Simulation 
18 21-51 0.0 

 

 

*N.R.= not reported 
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Table 4:  Calculation of REF values used for OATP1B1 and OATP1B3. 

 
 HEK293 

Overexpressing 

Cells (pmol/mg 

protein) 

Hepatocytes 

(pmol/10
6
 

cells) 

HEK293 

Overexpressing 

Cells (mg 

protein/10
6
 

cells) 

Hepatocytes 

(mg 

protein/10
6
 

cells) 

REF 

OATP1B1 1.51 6.91 0.239 0.294 5.63 

OATP1B3 0.672 1.02 0.238 0.294 1.87 
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Table 5:  The geometric mean (AUC, Cmax) and median (tmax) of the observed and simulated PK 

parameters for pravastatin, rosuvastatin, repaglinide, and pitavastatin.  The ratio 

(observed/predicted) is in parentheses. 

 
Compound Data IV PO 

  AUC (ng *hr/mL) AUC (ng*hr/mL) Cmax (ng/mL) tmax (hr) 

Pravastatin 

Observed 171.2 86.5 – 111 27.9 – 49.5 1.2 – 1.7 

Base Model 176.1 (0.97) 199 (0.43 – 0.56) 67.9 (0.41 – 0.73) 0.97 

HEK293 

plasma 
147.1 (1.16) 95.9 (0.90 – 1.16) 33.4 (0.84 – 1.48) 0.93 

HEK293 

buffer 
157.8 (1.08) 133 (0.65 – 0.83) 46.1 (0.61 – 1.07) 0.94 

Rosuvastatin 

Observed 164 253 – 410 30.1 – 53.5 3.0 – 5.0 

Base Model 157.5 (1.04) 197 (1.28 – 2.08) 17.4 (1.73 – 3.07) 3.10 

HEK293 

plasma 
197.8 (0.83) 412 (0.61 – 1.00) 36.3 (0.83 – 1.47) 3.23 

HEK293 

buffer 
205.7 (0.80) 454 (0.56 – 0.90) 40.0 (0.75 - 1.34) 3.26 

Repaglinide 

Observed 61.4 27.2 – 69.0 20.2 – 47.9 0.50 – 0.90 

Base Model 86.2 (0.71) 36.9 (0.74 – 1.87) 26.5 (0.76 – 1.81) 0.57 

HEK293 

plasma 
61.7 (1.00) 16.3 (1.67 – 4.23) 14.2 (1.42 – 3.37) 0.48 

HEK293 

buffer 
113.6 (0.54) 61.7 (0.44 – 1.12) 38.4 (0.53 – 1.25) 0.60 

Pitavastatin 

Observed 76.1 33.6 18.6 0.75 

Base Model 87.6 (0.87) 33.8 (0.99) 18.3 (1.02) 0.79 

HEK293 

plasma 
55.4 (1.37) 10.4 (3.23) 6.54 (2.84) 0.69 

HEK293 

buffer 
334 (0.23) 221 (0.15) 62.0 (0.30) 1.09 
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