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Abbreviation list 

5-OH-PA, 5-hydroxy-pyrazinoic acid; 5-OH-PZA, 5-hydroxy-pyrazinamide; AO, aldehyde 

oxidase; BNPP, bis-p-nitrophenyl phosphate; FXR, farnesoid X receptor; IFN, interferon; INH, 

isoniazid; PA, pyrazinoic acid; PXR, pregnane X receptor; PZA, pyrazinamide; RIF, rifampicin; 

ROS, reactive oxygen species; TB, tuberculosis; XDH, xanthine dehydrogenase; XO, xanthine 

oxidase  
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Abstract 

Pyrazinamide (PZA) is an important component of a standard combination therapy against 

tuberculosis. However, PZA is hepatotoxic and the underlying mechanisms are poorly 

understood. Biotransformation of PZA in the liver was primarily suggested behind its 

hepatoxicity. This review summarizes the knowledge of the key enzymes involved in PZA 

metabolism and discusses their contributions to PZA hepatotoxicity.  

 

Significance statement 

This review outlines the current understanding of PZA metabolism and hepatotoxicity.  This 

work also highlights the gaps in this field, which can be used to guide the future studies on PZA-

induced liver injury.  
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1. Introduction 

Tuberculosis (TB), mostly caused by Mycobacterium tuberculosis, is a leading infectious 

disease killing around 4000 people worldwide daily (WHO, 2020). Pyrazinamide (PZA), first 

synthesized in 1936 as a structural analog of nicotinamide, made its way into clinical use against 

TB since 1952. PZA has still been in use till today as an essential element of a standard anti-TB 

combination therapy together with isoniazid (INH), rifampicin (RIF), ethambutol or 

streptomycin (Stout, 2004; WHO, 2020).  In the recommended 6-month anti-TB regimen by 

WHO, PZA is used in the intensive phase of 2 months (Table 1).  Same as INH and RIF, PZA is 

on the WHO's list of essential medicines for TB treatment. 

 

Despite the important contribution of PZA to anti-TB success for past seven decades, it 

can cause liver injury and even liver failure (LiverTox, 2020). In comparison with other potential 

hepatotoxic anti-TB drugs such as INH and RIF, PZA was initially reported safe (Girling, 1982). 

However, according to recent studies, PZA turns out to be more hepatotoxic than previously 

considered and could be more hepatotoxic than either INH or RIF (Schaberg et al., 1996; Yee et 

al., 2003; Chang et al., 2007; Tostmann et al., 2008). Unfortunately, very little is known about 

the mechanisms of PZA hepatotoxicity. One reason behind this is that PZA is often used together 

with other anti-TB drugs which are also hepatotoxic making it difficult to distinguish its 

individual contribution to liver damage (Table 1).  Evidence from animal studies and clinical 

trials suggests that metabolites derived from PZA biotransformation are related to its 

hepatoxicity (Kudo et al., 2008; Shih et al., 2013; Rawat et al., 2018). In this review, we 

summarize the major enzymes involved in PZA metabolism and discuss the current 

understanding of PZA hepatotoxicity. 
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2. Metabolism and disposition of PZA 

The oral dosage of PZA for adults is 20–30 mg/kg/day (NCBI, 2021).  It is well absorbed 

from the gastrointestinal tract and widely distributed in the body including the liver.  PZA is 

mainly metabolized in the liver by amidase, which converts PZA to pyrazinoic acid (PA) (Aoki 

et al., 1957).  PA can be further oxidized by xanthine oxidase (XO) to form 5-hydroxy-

pyrazinoic acid (5-OH-PA).  Alternatively, PZA can first be oxidized to 5-hydroxy-pyrazinamide 

(5-OH-PZA) by XO followed by amidase-mediated hydrolysis to form 5-OH-PA (Figure 1). 

Furthermore, PA can be conjugated with glycine to form trace amounts of pyrazinuric acid 

(Lacroix et al., 1989).  PZA and its metabolites are predominantly excreted by the kidney.  

Within 36 hours, ~70% of an oral dose of PZA is excreted in urine, and the relative abundances 

are as follows: PA (36%), 5-OH-PZA (15.4%), 5-OH-PA (l3.8%), and PZA (3.8%) (Lacroix et 

al., 1988). 

 

In subjects with normal renal and hepatic functions, the plasma half-life of PZA is 9.6 h 

(Lacroix et al., 1989). The half-life of PZA is significantly prolonged in patients with pre-

existing liver or kidney diseases.  In subjects with insufficient hepatic functions, a marked 

reduction of PZA clearance was observed and the half-life of PZA was increased to 15.07 h.  In 

addition, the clearance rate of PA, a major and active metabolite of PZA, was also significantly 

decreased in patients with hepatic insufficiency (Lacroix et al., 1990).  In chronic uremic 

patients, bioavailability of PZA was slightly increased, but bioavailability of PA was markedly 
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increased (Stamatakis et al., 1988).  These data suggest that a reduction of PZA dosage is needed 

in patients with hepatic or renal insufficiency. 

 

2.1. Amidase and its role in PZA metabolism 

Amidase, classified as EC 3.5.1.4, has several aliases such as acylamide amidohydrolase 

(systematic name), acylamidase, fatty acylamidase, acylase (though misleading) as well as some 

ambiguous names including amidohydrolase, deaminase, and N-acetylaminohydrolase (IUBMB 

Enzyme Nomenclature). Enzymes of this group not only hydrolyze amide compounds but can 

also hydrolyze carboxyl esters in several cases and share a similar catalytic mechanism with 

esterases (Wang, 1994; Wang et al., 2016b). Amidases exhibit broad substrate specificity and 

have diverse biological roles in mammals including control of pain and neuromodulation by fatty 

acid amide hydrolase as well as regulation of inflammation by N-acylethanolamine-hydrolyzing 

acid amidase (Cravatt et al., 1996; Tsuboi et al., 2005). 

 

A hepatic amidase has been proposed to metabolize PZA to produce PA and ammonia 

(Aoki et al., 1957). Later, the activity of PZA amidase was found in various tissues of mice, rats, 

guinea pigs, and rabbits (Toida, 1973). The activity of PZA amidase was the highest in the liver 

of all tested tissues, and the rabbit liver showed an outstandingly high activity of PZA amidase 

among these tested species. In addition, the PZA amidase was mostly localized in the 

microsomal fraction of the liver (Toida, 1973). Despite significant importance of hepatic 

microsomal amidase in PZA metabolism, the genetic identity of this enzyme is still unknown. 

Nicotinamidase/pyrazinamidase (EC 3.5.1.19, PNC1, I6XD65) is responsible for bacterial PZA 
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metabolism (French et al., 2010). NCBI blast search with the amino acid sequence of 

mycobacterial pyrazinamidase showed 40% homology to yeast nicotinamidase and 27% 

homology to A. Thaliana nicotinamidase, while no homology was found to any major 

mammalian proteins. Thus, discovering the mammalian amidase responsible for PZA 

metabolism remains a great challenge for the researchers in this field.  

 

2.2. XO and its role in PZA metabolism 

XO (EC 1.17.3.2) is expressed in almost all tissues with high levels in the intestine and 

the liver (Harrison, 2004). XO oxidizes hypoxanthine/xanthine to uric acid (Wang et al., 2016a). 

In addition, XO hydroxylates heterocyclic compounds including PZA and PA to produce 5-OH-

PZA and 5-OH-PA, respectively (Figure 1). In mammals, XO predominantly exists as xanthine 

dehydrogenase (XDH, EC 1.17.1.4) which essentially acts on same substrates of XO but can use 

either NAD
+
 or O2 as an electron acceptor while XO can only use O2 as an electron acceptor 

resulting in reactive oxygen species (ROS) formation. The conversion from XDH to XO 

proceeds either reversibly by the oxidation of its certain cysteine thiols to form cystine disulfide 

bonds or irreversibly by specific proteolysis. Despite these differences between the two forms of 

this enzyme, the term XO was often used as a general name for the both throughout the 

literatures (Harrison, 2004).  

 

Differences in XO activity among individuals and various ethnicities as evaluated by 

caffeine metabolic rate suggest interesting polymorphic behavior of this enzyme.  A low activity 

of liver XO was observed in 20% Caucasian as well as in 11% Japanese (Kudo et al., 2008). In 
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addition, males showed higher XO activities than females. Classical xanthinuria type 1 is a rare 

autosomal recessive disorder, caused by Arg149Cys substitution resulting in loss of activity of 

XO leading to chronic renal failure (Kudo et al., 2008). On the contrary, two different point 

mutations, Ile703Val or His1221Arg, were reported to increase XO activity by around two-fold 

in a study conducted in Japanese population (Kudo et al., 2008).  However, limited information 

is available for the associations of XO polymorphisms with PZA metabolism.  Furthermore, 

enhanced XO expression and activity were found in mouse liver and other tissues treated with 

interferon (IFN) and IFN-inducers (Ghezzi et al., 1984). Human XO gene was also reported to 

contain IFN-gamma response elements (Xu et al., 1996).  Therefore, further studies are needed to 

determine the potential impact of XO polymorphisms and/or induction on PZA metabolism. 

 

It is here worthwhile to mention that rabbits do not express XO and thereby do not 

respond to allopurinol, a XO inhibitor, which explained the unique pharmacokinetics and high 

exposure of PA in rabbits when compared to mice and other mammals (Via et al., 2014). This 

fact is consistent with previous studies in human volunteers who showed increased levels of PA 

and decreased levels of 5-OH-PZA as well as 5-OH-PA when co-treated with PZA and 

allopurinol (Lacroix et al., 1988; Naftalin et al., 2017). Allopurinol is commonly used to treat 

hyperuricemia or gout but is not suggested to treat PZA-induced hyperuricemia, a common side 

effect of PZA, which occurs due to inhibition of renal excretion of uric acid by PA and thus 

counterbalancing the effect of allopurinol (Lacroix et al., 1988). 
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The ability of xanthinuria patients caused by XO deficiency to oxidize PZA raised the 

possibility of the existence of an alternative enzyme other than classical XO in PZA metabolism. 

Moriwaki et al showed that aldehyde oxidase (AO, EC 1.2.3.1) could potentially convert PZA to 

5-OH-PZA but not PA to 5-OH-PA (Figure 1). In addition, the Km value of XO for PZA was 

about 10 times higher than that of AO (Moriwaki et al., 1993). These results indicate that AO is 

catalytically distinct from XO. However, the relative contribution of AO to PZA metabolism in 

mammals was not investigated so far. 

 

3. Mechanisms of PZA-induced hepatotoxicity 

The contribution of PZA to liver damage during anti-TB therapy is not fully clear 

because PZA is used only in combination with other anti-TB drugs that are hepatotoxic, such as 

INH and RIF. However, mounting evidence supports that PZA is hepatotoxic.  For example, the 

use of combination therapy with RIF and PZA for latent TB was abandoned because of the 

frequency of severe liver injury (LiverTox, 2020).  The pattern of PZA hepatotoxicity is typically 

acute hepatitis with hepatocellular necrosis, inflammation, and variable degrees of cholestasis, 

which negatively impacts the outcomes of anti-TB therapy (LiverTox, 2020). Unfortunately, no 

approach is currently available to predict and prevent PZA hepatotoxicity because its 

mechanisms are poorly understood, especially when compared to that of INH and RIF. 

 

PZA hepatotoxicity is dose-dependent especially at daily doses above 40 mg/kg, and the 

extent of PZA hepatotoxicity is correlated with its hepatic metabolism, suggesting a direct toxic 

effect, but not a hypersensitive or immune-mediated effect (Tostmann et al., 2008; Shih et al., 
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2013). Recent in vitro and in vivo reports suggest that amidase-mediated production of PA from 

PZA was responsible for PZA hepatotoxicity (Figure 1). Experiments with Wistar rats treated 

with PZA or PA showed hepatotoxicity as observed in elevated serum levels of alanine 

aminotransferase, aspartate transaminase, and galactose single point (Shih et al., 2013). Amidase 

inhibitor, bis-p-nitrophenyl phosphate (BNPP), decreased PZA-induced, but not PA-induced, 

hepatotoxicity, suggesting amidase as the initiator of PZA hepatotoxicity (Shih et al., 2013). 

Consistently, PA levels in the urine were highly correlated with PZA hepatotoxicity in TB 

patients (Shih et al., 2013).  However, because the genetic identity of PZA amidase remains 

unknown, it is difficult to investigate the role of PZA amidase in PZA hepatotoxicity using 

genetic approaches. 

 

PA can be further metabolized by XO to produce 5-OH-PA that was suggested to be 

more hepatotoxic than PA (Figure 1) (Shih et al., 2013; Rawat et al., 2018). Shih et al treated 

HepG2 cells with PZA and its metabolites and found 5-OH-PA being the most toxic metabolite 

of PZA (Shih et al., 2013). A recent study in rats showed that 5-OH-PA caused liver damage 

accompanied with aberrant metabolic shifts (Rawat et al., 2018). In addition, the patients with 

severe hepatotoxicity showed much higher ratio of 5-OH-PA to PZA in the urine than other 

patients with mild or no hepatotoxicity (Shih et al., 2013; Rawat et al., 2018).  These data 

indicate that XO may play an important role in PZA hepatotoxicity by producing 5-OH-PA.  

However, inhibition of XO by allopurinol increased PZA toxicity in HepG2 cells, suggesting that 

the hydroxy metabolites of PZA and/or PA, products of XO, were not responsible for PZA 

hepatotoxicity (Tostmann et al., 2010). With these controversial data, further studies are needed 

to determine the role of XO in PZA hepatotoxicity. 
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Physiological significances of XO-catalyzed reactions are to increase hydrophilicity of 

purine catabolic end products by forming uric acid to be excreted through urine. XO-null mice 

developed renal interstitial fibrosis through aberrant lipid and purine accumulation in renal 

tubules resulting in premature death (Ohtsubo et al., 2009). In a recent study, hepatocyte-specific 

ablation of XO in mice was found to correct obesity-induced systemic hyperuricemia despite 

other metabolic abnormalities being unchanged (Harmon et al., 2019). In addition, ROS 

produced as a by-product of XO, especially in immune cells, are used to kill microbes as a part 

of innate immunity of the host. However, due to be responsible for ROS formation, XO is also 

implicated to several pathophysiological processes such as oxidative stress, hypertension, and 

ischemia reperfusion injury (Wang et al., 2016a). Therefore, it is worthwhile to investigate the 

contributions of XO-mediated production of ROS as well as 5-OH-PA to PZA hepatotoxicity.  In 

addition, further studies are also suggested to explore whether PZA and/or PA disrupt XO-

dependent metabolism of endobiotics in the liver and result in liver dysfunction. 

 

Genetic studies have been conducted to explore the impact of PZA on the liver.  In rats 

treated with PZA for 28 days, it was found that PZA upregulates cytochrome P450 2b1, epoxide 

hydrolase 1, and heme oxygenase, and down-regulates two peroxisome proliferator activated 

receptor (PPAR)-dependent genes including carnitine palmitoyltransferase 1b and fatty acid 

binding protein 7 (Zhang et al., 2013). In a follow-up study using the same model, PPARα 

expression was shown to be inversely correlated with PZA-induced liver injury (Zhang et al., 

2016). However, in a very recent study conducted in TB patients with or without liver injury 

taking standard anti-TB drug regimen, no association was found between various single 
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nucleotide polymorphisms in PPARα gene and liver injury (Zhang et al., 2020). Interestingly, 

two polymorphic variants in pregnane X receptor (PXR), a nuclear transcription factor known to 

regulate the expression of various drug metabolizing enzymes, were associated with the 

decreased risk of anti-TB drug-induced hepatotoxicity, suggesting that drug-metabolizing 

enzymes regulated by PXR are involved in the hepatotoxicity of the standard anti-TB drug 

regimen (Wang et al., 2019).  

 

Since some case reports of PZA-induced hepatotoxicity showed evidence of cholestasis, a 

recent study investigated its mechanisms in rats (Guo et al., 2016).  When rats were orally treated 

with PZA (2g/kg/day) for 1-week, total bile acids increased 10-fold in the serum while ALT and 

AST increased 2-fold.  The farnesoid X receptor (FXR), a bile acid-responsive transcription 

factor, which plays a key role in the regulation of bile acid synthesis, excretion and transport, 

was found to be downregulated. Interestingly, treatment with the FXR agonist obeticholic acid 

attenuated PZA hepatotoxicity, suggesting that PZA-induced cholestatic liver injury was related 

to FXR suppression (Guo et al., 2016).  

 

4. Conclusion 

Metabolism of PZA, a first-line anti-TB drug, is worth interesting in clinical context 

because increased PZA metabolites such as PA and 5-OH-PA were found to be highly correlated 

to the extent of hepatotoxicity. Out of two major enzymes metabolizing PZA, amidase catalyzed 

the production of PA, but the molecular identity of amidase is unknown. In addition, XO is 

suggested to play an important role in PZA hepatotoxicity by producing 5-OH-PA. However, the 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 1, 2021 as DOI: 10.1124/dmd.121.000389

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


14 
 

preclinical data of 5-OH-PA- and/or PA-mediated hepatotoxicity are not conclusive.  Thus, more 

research is needed to elucidate the metabolic pathways of PZA and determine their contributions 

to PZA hepatotoxicity.  
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Figure legends 

 

Figure 1. Metabolic map of PZA and proposed mechanisms for hepatotoxicity.  Amidase is 

the primarily enzyme in PZA metabolism that produces PA. PA can be further metabolized by 

XO to produce 5-OH-PA. 5-OH-PA can also be produced from PZA through XO and AO-

mediated oxidation followed by amidase-mediated hydrolysis.  PA and 5-OH-PA are proposed 

as the causes of PZA hepatotoxicity. 
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Table 1. The preferred regimen for TB treatment in adults and the risk of drug-induced 

liver injury (DILI) from each anti-TB drug. 

 mg/kg/day Treatment period DILI score* 

Rifampin (RIF) 8–12 6 months A 

Isoniazid (INH) 4–6 6 months A 

Pyrazinamide (PZA) 20–30 first 2 months  A 

Ethambutol (EMB) 15–25 first 2 months  C 

*DILI scores were adapted from LiverTox (LiverTox - NCBI Bookshelf (nih.gov)). A, well 

established cause of clinically apparent liver injury; C, probable cause of clinically apparent liver 

injury.  
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