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Abstract 

Cytochrome P450 (CYP) enzymes are responsible for the metabolism of >75% of 

marketed drugs, making it essential to identify the contributions of individual CYPs to the total 

clearance of a new candidate drug. Overreliance on one CYP for clearance levies a high risk of 

drug-drug interactions; and considering that several human CYP enzymes are polymorphic, it 

can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to 

understand the likelihood of new chemical entities to interact with the major CYP enzymes at an 

early stage in the drug discovery process. Typical screening assays using human liver 

microsomes do not provide sufficient information to distinguish the specific CYPs responsible 

for clearance. In this regard, we experimentally assessed the metabolic stability of ~5,000 

compounds for the three most prominent xenobiotic metabolizing human CYPs, i.e., CYP2C9, 

CYP2D6 and CYP3A4, and used the datasets to develop quantitative structure-activity 

relationship models for the prediction of high clearance substrates for these enzymes. Screening 

library included the NCATS Pharmaceutical Collection, comprised of clinically approved low 

molecular weight compounds, and an annotated library consisting of drug-like compounds. To 

identify inhibitors, the library was screened against a luminescence-based CYP inhibition assay; 

and through cross-referencing hits from the two assays, we were able to distinguish substrates 

and inhibitors of these enzymes. The best substrate and inhibitor models (Balanced accuracies 

~0.7), as well as the data used to develop these models, have been made publicly available 

(https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups.  
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Significance Statement: 

In drug discovery and development, a drug candidate with an indiscriminate CYP metabolic 

profile is considered advantageous, since they provide less risk of potential issues with CYP 

polymorphisms and drug-drug interactions. In this study, we have developed robust substrate and 

inhibitor QSAR models for the three major xenobiotic metabolizing CYPs, i.e. CYP2C9, 

CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project 

teams to strategize or pivot when necessary, thereby accelerating drug discovery research.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 28, 2021 as DOI: 10.1124/dmd.120.000320

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD-AR-2020-000320R2 

5 
 

Introduction 

Hepatic biotransformation of small molecule therapeutics by cytochrome P450 (CYP) 

enzymes continues to be the predominant route of metabolic clearance, highly impacting their 

bioavailability and systemic exposure. An in-depth analysis of clearance mechanisms is 

important because it will help predict human pharmacokinetics, indicate the probability of drug-

drug interactions (DDI), and identify the potential for pharmacokinetic variability due to race, 

sex, age, and genetic polymorphisms(Roden and George (2002); (Sansone-Parsons et al., 2007). 

In this regard, it is necessary to determine the contributions of individual CYPs to the total 

clearance of a compound. When compounds have a high fraction metabolized (Fm) by one 

enzyme, e.g. S-warfarin and CYP2C9(Kaminsky & Zhang, 1997), variability in enzyme activity 

or expression can result in unanticipated low clearance, or conversely undergo ultrarapid 

metabolism, a known issue for CYP2D6 gene variants(Ingelman-Sundberg, 2005). Inhibitors of 

an enzyme can lead to elevated circulatory concentrations, and toxicity depending on the 

therapeutic index of the compound, with ensuing black box warnings on the drug label or 

withdrawal from the market(Di, 2017; Layton et al., 2003). Conversely, enzyme induction can 

diminish the efficacy of a compound when the increased expression and activity leads to rapid 

clearance. To address these concerns, compounds are sought that possess a well-distributed 

metabolism profile across multiple enzymes and clearance mechanisms(Zientek & Youdim, 

2015). 

The current standard for preliminary estimation of the human metabolic stability of a 

compound at the discovery stage is the in vitro clearance assay using human liver microsomes 

(HLM), which are enriched with various xenobiotic metabolizing CYPs, including 1A2, 2C9, 

2C19, 2D6, and 3A4, among others. However, a simple HLM clearance assay, which monitors 
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the depletion of a compound over time, does not identify the CYP(s) responsible for the 

metabolism. Alternatively, assessing the clearance with individual enzymes for each new 

chemical entity (NCE) would be an inefficient and costly approach, as medicinal chemists 

generate a multitude of compounds in their exploration of chemical space to develop novel 

therapies. 

One focus at the National Center for Advancing Translational Sciences (NCATS) is to 

create and disseminate in silico tools that facilitate and accelerate translational research. To this 

end, NCATS, with support from the International Consortium for Innovation and Quality in 

Pharmaceutical Development (IQC), has endeavored to develop quantitative structure-activity 

relationship (QSAR) models capable of predicting the specific CYP enzyme(s) responsible for 

clearance of new, unexplored compounds. Although predictive QSAR models for individual 

enzymes are commercially available, those highly regarded can be costly, thereby limiting this 

resource to the broader scientific community that includes small companies, academic research 

institutes, and non-profit patient focused organizations. Furthermore, commercial models are 

often developed using small training datasets, and data is typically sourced from literature, which 

can introduce error through variability in methods from different laboratories with inconsistent 

expertise and foci. Alternatively, the robust quantitative high-throughput screening technologies 

at NCATS have enabled production of sizeable databases from standardized protocols(Shah et 

al., 2016; Veith et al., 2009), which is the foundation for developing predictive QSAR models 

with improved accuracy.  

Here we report the in vitro activities of ~5000 low molecular weight compounds with 

three major CYP enzymes, i.e. CYP2C9, CYP2D6, and CYP3A4, which can be attributed with 

~75% of total CYP-mediated metabolism of clinical drugs(F. Peter Guengerich, 2015). We 
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focused on two primary CYP endpoints used in the discovery stage, i.e. clearance and inhibition. 

The clearance assay typically used to assess the metabolic stability of a compound is dependent 

on complete enzymatic turnover, a process consisting of nine steps in the canonical CYP 

oxidation reaction(F. P. Guengerich, 2018). While informative, the knowledge garnered from 

this assay is limited to substrates, therefore obliging further studies to identify inhibitors. 

Notably, competitive inhibition assays that rely on probe conversion, such as P450-Glo™, are 

alone unable to distinguish between substrates and inhibitors, given that both types of ligands 

can generate similar readouts through various CYP enzyme binding mechanisms (Figure 1B). By 

cross-referencing the compounds that exhibit probe inhibition with those that were metabolized, 

we identified the most probable inhibitors from our datasets.  

The successful application of machine learning approaches to develop predictive QSAR 

models for absorption, distribution, metabolism, elimination and toxicity (ADMET) properties is 

well recognized(Kearnes et al., 2016; Wenzel et al., 2019), and is the impetus for the work 

reported herein. Using in-house generated datasets, we developed conventional QSAR models, 

as well as multi-task models, to predict CYP-substrates and inhibitors. Most importantly, the 

training datasets, and models with the greatest balanced accuracy, have been published 

(https://opendata.ncats.nih.gov/adme) to benefit and accelerate drug discovery across all research 

groups.
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Material and Methods 

P450-Glo™ assay kits were purchased from Promega Corporation (Madison, WI) for 

CYP3A4 (V9910), CYP2C9 (V9790) and CYP2D6 (V9890). NADPH Regenerating Solution A 

(Catalog #: 451220) and B (Catalog #: 451200), Human CYP3A4 (456202), CYP2C9 (456258) 

and CYP2D6 (456217) Supersomes™ were purchased from Corning Life Sciences (Corning, 

NY). Ketoconazole, furafylline, sulfaphenazole, quinidine, and albendazole were purchased from 

Sigma-Aldrich (St. Louis, MO). 

Compound Library: 

The ~5000 compound library used for this publication encompasses the NCATS 

Pharmaceutical Collection (NPC)(R. Huang et al., 2011) and an annotated NCATS library. The 

NPC library contains ~2800 compounds that have been approved for clinical use by US, 

Canadian, Japanese, and European health regulatory authorities. The NCATS annotated library is 

comprised of ~2200 diverse drug-like molecules. This annotated library consists of mostly 

investigational compounds that represent diverse target classes and disease areas. This combined 

library (~5000 compounds) will henceforth be referred to as the NCATS-ADME library.  

High-throughput metabolic stability (clearance) assays: 

The substrate depletion assay was employed to determine metabolic stability, using an 

established mid-density (384-well format) protocol(Shah et al., 2016). The workflow included a 

robotic system for incubation and sample clean-up, coupled with an automated ultra-high 

performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) 

method for sample analysis. Briefly, each 110 µL reaction mixture consisted of 1 µM test article, 

supersomes, and an NADPH regenerating system in 100 mM phosphate buffer at pH 7.4. The 
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specific protein and enzyme concentrations, as well as the control compounds utilized are listed 

in Table 1. Incubations were conducted at 37°C, with mixing, and reaction aliquots were 

quenched at 0, 5, 10, 15, 30, and 60 min by addition of cold acetonitrile (ACN) with internal 

standard (IS), i.e. albendazole. Centrifugation at 3000 g, 4 °C for 20 min, was used to clear 

samples of precipitated protein and debris. Sample analysis in an UHPLC-HRMS instrument, 

data extraction, and half-life (t1/2) determinations were performed as previously described(Shah 

et al., 2016). 

The compounds were binned into clearance categories based on the observed t1/2 criteria 

outlined in Table 2. Data with below limit of quantitation (BLQ), inconclusive (INC), and not 

found (N/F) designations were excluded from further analysis. The complete dataset, annotated 

with substrate class, is provided in Supplemental File 2. 

 

P450-Glo qHTS: 

 The P450-Glo inhibition assay is a luminescent technique used to detect CYP activity, 

through the liberation of luciferin from CYP probe substrates. P450-Glo assays were performed 

using a previously described method with minor modifications(Veith et al., 2009). All assays 

were optimized by incubating positive control compounds at both RT and 37°C conditions. Since 

no difference in compound activities were found at RT and 37°C for CYP2D6 and CYP3A4, 

assays for these two enzymes were run at RT. Briefly, 2 µL of CYP-substrate mix was dispensed 

into medium-binding white/solid 1,536-well plates using a Flying Reagent Dispenser (FRD, 

Aurora Discovery, Carlsbad, CA) with the exception of adding Bovine Serum Albumin (BSA) to 

the mixture for CYP2C9. The initial optimization assays for CYP2C9 yielded lower signal to 
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background ratios and higher well to well variation. To improve signal and prevent adhesion of 

protein to tubes of the plate dispenser, 0.4% BSA was added to the CYP2C9 enzyme assays. 23 

nL of each positive control (columns 1-4) and test compound (columns 5-48) dissolved in 

DMSO was transferred to the assay plates using a Wako Pintool station (Wako Automation, San 

Diego, CA). The positive controls used in these experiments are listed in Table 3. After the 

control/test compounds were transferred, the assay plates were incubated at room temperature 

(RT) for 10 min before the addition of 2 µL NADPH regeneration solution using an FRD. The 

reaction incubation continued at either RT or 37 °C for 60 min, and then quenched by FRD 

addition of 4 µL of the detection reagent. After a 20 min incubation at room temperature, the 

luminescence intensity was measured and quantified using a ViewLux plate reader (PerkinElmer, 

Shelton, CT). Data was expressed as relative luminescence units. 

The concentration-response activity data for each compound, relative to control, was fit 

with the four parameter Hill equation to obtain percent activity and potency values. The 

complete P450-Glo qHTS datasets have been deposited to PubChem, with the following assay 

IDs (AIDs): 1645841(CYP3A4), 1645840 (CYP2D6), and 1645842 (CYP2C9). Compounds 

were classified as a “hit” in the P450-Glo screens when the inhibition efficacy was > 65% and 

the potency <10 µM. 

Training set (TR) and test set (TS) preparation for QSAR: 

The NCATS-ADME library was pre-processed to eliminate entries containing duplicates, 

inorganic compounds, non-covalent complexes and mixtures. Furthermore, salts and compounds 

containing organometals were removed. The chemical structures were then standardized using 

Francis Atkinson Standardizer tool. To estimate the statistical performance in a robust way, we 

used a 5-fold cross-validation routine. The final dataset (Table 4) was then split 5-folds while 
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retaining the initial ratio of active/inactive (stratified sampling). For each fold, 4/5th of the dataset 

was used as the training set and remaining 1/5th as the test set, sliding over folds.  

Parsing of substrates and inhibitors by process of elimination: 

The “hits” in the P450-Glo datasets were cross-referenced with the substrate 

classifications from the clearance assay. The compounds were binned into 4 different categories 

using the classification criteria outlined in Table 5. 

Molecular descriptor calculation: 

The following sets of descriptors were calculated for each of the datasets: 

1. The combination of fingerprints with five physicochemical properties, i.e. molecular weight 

(MW), atom-based calculated partition coefficient (SlogP)(Wildman & Crippen, 1999), 

topological polar surface area (TPSA), number of H-bond donor and number of H-bond 

acceptor, was reported to provide superior performance for prediction of P450-mediated 

properties(A. Zakharov et al., 2019). Hence, we used Avalon fingerprints (1024 bits) and 

Morgan fingerprints (calculated using RDKit(Landrum)) in combination with the 

abovementioned five physicochemical properties.  

2. Dragon Descriptors- The Dragon package provided us with 3840 descriptors(Inc; Solutions). 

Constant value descriptors (0 throughout) and descriptors with low variance (<0.4) were 

removed. For the final modeling exercise, we used 1164 descriptors.  

Machine learning- Stratified bagging Random Forest and multi-task deep neural networks: 

Random Forest (with default parameters) was used as a base-classifier(Breiman, 2001). 

The number of trees was arbitrarily set to 100 (default), since it has been shown that the optimal 
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number of trees usually falls between 64-128, and increasing the number of trees does not 

necessarily improve model performance(Oshiro et al., 2012). The problem of data imbalance was 

overcome using under-sampling stratified bagging (SB)(He & Garcia, 2009; Kotsiantis, 2008; 

Tetko et al., 2013), which has been proven to be one of the best performing methods for dealing 

with imbalanced datasets(Jain et al., 2018; Tetko et al., 2013). SB is a machine learning 

technique that is based on an ensemble of models developed using multiple training datasets 

sampled from the original training set. This technique uses minority class samples to create the 

training set of positive samples using the traditional bagging approach (resampling with 

replacement), and then randomly selects the same number of samples from majority class. Thus, 

the total bagging training set size was double the minority class. Several models are then 

calculated and averaged to produce a final ensemble model(Tetko et al., 2013). Because of 

random sampling, about 37% of the compounds are left out in each run, creating “out-of-the-

bag” sets which are used for testing the performance of the final model(Tetko et al., 2013). 

Although a small set of samples are selected each time, majority of compounds contribute to the 

overall bagging procedure, given that datasets were generated randomly. Further, an earlier study 

by Tetko et al.(Tetko et al., 2013) showed that larger numbers of models per ensemble (e.g. 128, 

256, 512 and 1024) did not significantly increase the balanced accuracy of models. Thus, in this 

study we built a total of 64 models per ensemble. All models using RF in combination with 

stratified bagging were developed and deployed by using the data analytics platform 

KNIME(Berthold et al., 2008). 

The performance of multi-task deep neural network (DNN) method on our datasets was 

also evaluated. DNN has gained prestige and has been widely applied across different domains 

of science and technology(Korotcov et al., 2017; A. V. Zakharov et al., 2019). DNN is a 
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variation of an artificial neural network (ANN) that consists of several sequential hidden layers. 

Each layer is represented by a linear vector transformation, Wx+b (where W is a matrix of 

tunable weights and b is a bias vector), followed by a nonlinear transformation function, i.e., 

sigmoid. In this study, multi-task DNN models (MT-DNN v1) were developed using the multi-

layer feedforward neural networks implemented in Keras using the Tensorflow backend. The 

loss function was minimized using the Adam algorithm. All models developed in this study were 

evaluated by 5-fold cross-validation(Tropsha, 2010).  

Model performance assessment: 

The performance of each classification model was assessed based on sensitivity (Eq. 1), 

specificity (Eq. 2), accuracy (Eq. 3), balanced accuracy (BACC, Eq. 4), and the Matthews 

correlation coefficient (MCC, Eq. 5). Accuracy may be misleading for a highly imbalanced 

dataset, which makes BACC and MCC more appropriate performance measures to compare 

different classifiers, given their ability to handle skewed datasets. 

 

TP: true positives; TN: true negatives; FP: false positives; FN: false negatives. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃(𝑇𝑃+𝐹𝑁)    (1) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁(𝑇𝑁+𝐹𝑃)    (2) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁)(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)    (3) 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 12 (𝑇𝑃)(𝑇𝑃+𝐹𝑁) + (𝑇𝑁)(𝑇𝑁+𝐹𝑃)   (4) 

 𝑀𝐶𝐶 = {(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)}{(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)}1 2  (5) 
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Results 

Data curation for the clearance assays: 

The compound library was annotated with structural information using the simplified 

molecular-input line-entry system (SMILES) and LyChI (NCATS) notation formats. During 

compound batch review, a small percentage (~3 %) were found to have inconsistent structural 

annotations, which created missing data amongst the three CYP enzyme datasets when pivoted 

by either SMILES or LyChI. The majority of mis-annotations were introduced through the 

vendor supplied information, which is difficult to detect at purchase, or receipt, considering that 

the bulk of compounds included in the study were procured within large commercial compound 

libraries. Structural information was verified with the vendor and the library annotations were 

updated accordingly. 

Of the ~5000 compounds screened in the clearance assay, 80% were assigned a usable t1/2 

within each CYP dataset, following exclusion of the compounds with BLQ, INC, and N/F 

designations. The unreliable data generated in this study is typical of high-throughput MS-based 

assays, which are afflicted by erratic pipetting errors common to liquid handlers performing 

incubations 384-well format, and weak mass spec signal, due to inefficient ionization or 

unmonitored adduct formation.  

CYP substrates identified in high throughput clearance assays: 
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As expected, the highest number of substrates (t1/2 <30 mins) were identified in the 

CYP3A4 screen (45%), followed by CYP2D6 (33%) and CYP2C9 (27%) (Table 6). Overall, 

only an 11% substrate overlap was observed between all three enzymes.  

 

Physicochemical distribution of high and low-clearance compounds:  

Molecular properties of compounds, such as SlogP, TPSA, and MW, were calculated 

using an in-house compound dataset annotation tool, known as NCATS Find(NCATS). For all 

three enzymes, a large proportion of substrates (t1/2 <30 mins) fell within the 250-550 MW range, 

had SlogP values between 2-6, TPSA values less than 100, 0-2 hydrogen bond donors (data not 

shown) and 1-8 hydrogen bond acceptors (data not shown). No major difference was observed in 

the physicochemical property distributions between substrates of the enzymes except for 

CYP2D6 substrates which displayed lower molecular weight and lower TPSA compared to 

CYP2C9 and CYP3A4 (Figure 2). Furthermore, a direct correlation between the calculated t1/2 

values and the above-mentioned molecular descriptors was not apparent. Additionally, we did 

not find the established charged preferences of CYP2C9 (Acids) and CYP2D6 (basic 

amines)(Kerns & Di, 2008) to be distinguishing physicochemical features in our dataset (Data 

not shown).  

CYPs inhibitors and activators identified in qHTS assays: 

The highest percentage of P450-Glo “hits” were obtained in the CYP3A4 screen (29%), 

followed by CYP2C9 (23%) and CYP2D6 (19%) (Table 7). In contrast to the clearance assay, 

only 5% overlap was found amongst the three enzymes. It should be noted that both inhibitors 

and substrates decrease the luminescent signal in this assay by occluding the probe from the 

substrate pocket, and therefore a P450-Glo “hit” may not be a CYP inhibitor in the true sense.  
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The P450-Glo “hits” used in this study for the development of predictive QSAR models 

exclude compounds that increase CYP metabolism of the probe substrate, observed through an 

elevated luminescence readout. As current knowledge would lead us to expect, CYP3A4 

exhibited the greatest number of molecules (118) that increased luciferin production. Notably, 

from the 37 compounds that stimulated CYP2C9 metabolism, two molecules were indiscriminate 

against CYP3A4, i.e. Proscillaridin and Hematopoietic prostaglandin D synthase (HPDGS)-

inhibitor-1 (although at varying AC50 values). While the 50% active concentration (AC50) range 

of CYP2C9, between 0.025 and ~45 µM, was comparable to that of CYP3A4, spanning from 

0.001 to ~39 µM, the sole two molecules that increased CYP2D6 activity both had a potency of 

~30 µM. Furthermore, only CYP2D6 and CYP3A4 had a single discrete compound with 

increased probe metabolism that also exhibited high clearance, Tenatoprazole (a putative proton 

pump inhibitor) and SCHEMBL17791590 (an aldehyde dehydrogenase inhibitor), respectively. 

Although, predictive QSAR models for activators were not feasible, given that a larger dataset of 

activator compounds would be needed to power the model, the complete list of activating 

compounds is provided has been provided in Supplemental File 2.  

Parsing of substrates and inhibitors by process of elimination: 

Although the P450-Glo assay alone cannot distinguish inhibitors and substrates, when 

stratified with the clearance assay, the parsing of probable inhibitors and substrates is feasible. 

The number of putative inhibitors identified in the P450-Glo assay decreased significantly (77%, 

32% and 66% for CYP3A4, 2C9 and 2D6 respectively).  The Venn diagrams in Figure 3A & B 

show the overlap of substrates and inhibitors, highlighting the broad substrate/inhibitor 

recognition capabilities of the three enzymes. The predisposition of CYP3A4 to metabolize 

xenobiotics is apparent, with the number of substrates being three times greater than that of 
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inhibitors. While CYP2D6 also exhibited a higher tendency to metabolize compounds, at 

substrate-inhibitor ratio of ~2, CYP2C9 is clearly more susceptible to inhibition, with a 

corresponding ratio of ~0.5. Nonetheless, the annotation of these enzymes as xenobiotic 

metabolizers is validated through the observation of notably higher counts and overlap amongst 

substrates, as compared to the parsed inhibitors. 

Figure 3C displays an example of a chemical space plot for all CYP2C9 data based on 

visual clustering(Optibrium). We find that the compounds are widely scattered pointing to the 

diversity of our dataset. 

It is important to note this approach overlooks compounds which have divergent 

enzymatic mechanisms based on the presence of additional ligands, by which binding alone leads 

to the oxidation of the molecule but can lead to a purely inhibitory enzyme-ligand complex in the 

presence of the probe (Figure 1 schemes Bi, Bii middle, and Bii right, can be true for the same 

compound). The compounds in reference cannot be distinguished from those in Category 1 per 

the rationale used (Table 5), and for the purposes of this study will remain in that category given 

that they fall within the high clearance threshold. Ketoconazole is a prime example of this case, 

as it is a well-established substrate while also considered a potent inhibitor of CYP catalytic 

activity (Boulenc et al., 2016; 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/018533s041lbl.pdf, 2020). We 

reviewed the literature for several of the category 1 compounds and found that some historical 

compounds can be further annotated with this dataset, such as the assignment of tripelenamine as 

a substrate for CYP2D6. While it is not surprising that this first generation antihistamine is 

cleared by the enzyme, the reported metabolism of this archaic compound is limited(Chaudhuri 

et al., 1976; Yeh, 1991), and is solely categorized as an inhibitor of CYP2D6 in the Drug 
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Interactions Flockhart Table TM (Flockhart), illustrating the presence of missing 

substrate/inhibitor annotations for familiar older compounds.  

Predictive models - SB and MT-DNN: 

Once data analysis and curation were complete, we focused our attention on building 

classification models, which can effectively distinguish actives from inactives using a machine-

learning approach. For this, a panel of classifiers was trained on all datasets using different 

combinations of descriptors. To avoid bias that might occur due to the splitting schemes 

employed, all models were evaluated in a five-fold external cross-validation scheme. 

Considering the average prediction performance across 5-folds, models for all six datasets (3 

substrate + 3 inhibitor) showed BACC values close to or above 70%. For the CYP3A4 substrate 

dataset, a DNN-based model with dragon descriptors performed the best (BACC = 76%; MCC= 

0.51), closely followed by SB with a combination of Morgan fingerprints and five 

physicochemical properties (BACC = 75% MCC= 0.49), which was found to be the best 

performing method for the five remaining datasets. Taking a consensus between different 

descriptor combinations and/or machine-learning approaches did not improve the model 

performance (data not shown). Considering that the two approaches did not yield significantly 

different BACC and MCC values (Figure 4; Table 8), SB with Morgan fingerprints and five 

physicochemical properties was chosen as the default model for all datasets due to its 

accessibility (i.e. open-source). Table S1 in Supplemental File 1 reports prediction performance 

measures for all datasets used in this study. 

Applicability Domain assessment: 
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The applicability domain (AD) of a QSAR model defines the limitation in its structural 

domain and response space. In other words, this principle for model validation restricts the 

applicability of a model to reliably predict test compounds that are structurally similar to training 

compounds used while building the model. Historically, several approaches have been proposed 

to calculate the applicability of a QSAR model(Patel et al., 2018; Sahigara et al., 2013; Sushko et 

al., 2010; Yun et al., 2017). In this study, for estimation of the model’s AD, the Tanimoto 

similarity was assessed(Bajusz et al., 2015; TT, 1958) between test set compounds and its 

nearest neighbor in the training set, using Morgan fingerprints. The calculations were performed 

separately for all six datasets. For each fold within each dataset, we filtered out compounds that 

were below a certain similarity threshold and further calculated the BACC and the coverage of 

predictions as the percentage of compounds that fall within the model’s AD. The distribution of 

BACC, and corresponding coverage values, for test sets (5-fold average) versus AD cut-offs are 

presented in Figure 5, using the CYP2C9 substrate dataset as an example. The data reveals a 

positive trend between AD and prediction accuracy, wherein the AD threshold value increases 

with the prediction accuracy of the model. The coverage of prediction correlates inversely with 

AD, as shown by the dramatic decrease in coverage as AD values rise. 

The best prediction results for CYP2C9 substrates were achieved with an AD equal to 

0.8, resulting in a BACC of 0.79, although with a very low coverage value of ~1%. The coverage 

achieved with an AD cut-off of 0.7 was not significantly better. The optimal ratio of both the 

accuracy of prediction and coverage was achieved with an AD cut-off value of 0.6. Similar 

results were obtained for all other datasets [Supplemental File 1, Table S2]. Given the clear trend 

between the accuracy of prediction and AD values, this approach can be used to establish the 

confidence level of predictions. 
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Analysis of uncertainty of prediction/class probability:  

In addition to the category, the classification approach provides an output for class 

probability, a numerical value between 0 and 1, which corresponds to the probability of a 

compound being active. Class probability is an estimation of the reliability of predictions and is 

referred to as ‘uncertainty of prediction’. Values close to 1 indicate active compounds whereas 

values close to 0 indicate inactive compounds. Analysis of class probability showed most of the 

misclassification was in the class probability range of 0.5 - 0.6. In the case of the CYP2C9 

substrate dataset, the models predicted more than 80% of the compounds correctly for the class 

probability range between 0 - 0.4 and 0.7 - 1 (Figure 6). The same trend was observed for all six 

prediction models (Supplemental File 1, Table S3), reinforcing increased confidence in model 

predictions when the 0.5-0.6 class probability range is excluded.  

Comparison with the reference tools/models:  

Following completion of the models, an external validation test set was sought to 

ascertain their utility; a challenging endeavor considering that clearance and inhibition data for 

individual enzymes is limited and scattered in literature. In addition, we pursued to compare our 

model performance with other open-source models that exist in literature. While a few open-

source websites offer CYP-specific substrate and inhibitor models, most, were developed using 

compounds from literature, i.e. essentially a subset of the NPC. Given that our models were 

developed on the entire NPC dataset, the effort to compare model performance metrics was 

abandoned.  

The focus was then shifted to comparing against commercial models. ADMET Predictor 

from Simulations Plus is one of the leading software packages for ADMET predictions and is 
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regularly used at NCATS. The software includes substrate and inhibitor classification models for 

9 CYP enzymes using data obtained from Biovia metabolite database, Drugbank, and other 

literature sources. The total number of compounds used to build the CYP2C9, CYP2D6 and 

CYP3A4 substrate models ranged between 1400 to 1600, whereas the inhibition models were 

developed using ~700 compounds. To compare against ADMET Predictor, our models 

developed herein were re-trained using only the NPC library. Since SB with Morgan fingerprints 

and five physicochemical properties showed superior performance in comparison to other 

techniques, we used this combination to develop prediction models on the NPC library. These 

models were then used to predict the NCATS annotated library and model performances were 

compared against predictions from ADMET Predictor. Model statistics on the training set (NPC) 

can be found in the Supplemental File 1, Table S4. As shown in Figure 7, the models developed 

from this work outperformed those from ADMET Predictor (AP) both in terms of BACC and 

MCC.  

To ascertain the robustness of our model, we identified singletons in the NCATS 

annotated library and compared prediction results/model statistics for those compounds.  We 

found 615 singletons in the NCATS annotated library and once again, our models outperformed 

ADMET Predictor (Supplemental File 1, Table S4).  Although our models exhibited superior 

performance on this test set as compared to ADMET Predictor, it must be noted that the data 

used by the models in ADMET predictor may not have been generated in assays that are same or 

similar to those employed in this study. Therefore, these results are provided only for a 

comparative assessment and must be cautiously inferred. 
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Discussion 

Human liver microsomes (HLM) are the gold standard for studying phase I/CYP-

mediated metabolism. An abundance of HLM data exists in literature, and several groups have 

used this data to publish QSAR models(Hu et al., 2010; Lee et al., 2007; Liu et al., 2015; 

Sakiyama et al., 2008; Zakharov et al., 2012). The majority of established, respected models, and 

(importantly) source datasets, are proprietary, which limits their public accessibility. Although 

several HLM clearance models exist, the QSAR knowledge for individual CYPs remains limited. 

A joint effort by NCATS and members from the IQ Consortium commenced the mission to 

publish a database of clearance values, which will not only help advance drug design efforts, but 

also provide a better understanding of the structure-activity relationship for major CYP enzymes. 

The benefits gained by the scientific community from this effort include: 1) Enhancing lead 

optimization by guiding structure modification; 2) Improving hit selection by high-throughput 

and computational screening; and 3) Enabling advanced computational human metabolic models 

for individual metabolic enzymes.  

At ~4000 molecules, it is the largest library of compounds screened for individual CYP 

enzymes. Notably, the database includes the majority of investigational and health authority 

approved drugs, making it the most publicly available, comprehensive list of CYP2C9, 2D6, and 

3A4 substrates and inhibitors for clinically used small molecules, which has been founded on 

single-source empirical data. The complex kinetics of cytochrome P450 enzymes creates a 

multitude of enzyme-ligand scenarios, which could make designations of substrate or inhibitor 

ambiguous. Stemming from observations of non-linear kinetics with CYP-mediated reactions, 

Korzekwa et al. provided some of the first evidence that enzymes bind multiple ligands 

simultaneously(Korzekwa et al., 1998). The issue of CYP cooperativity and allosteric 
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interactions have since been reviewed extensively(Davydov & Halpert, 2008; Denisov et al.). 

However, it is still necessary to evaluate the CYP-ligand binding empirically, as predictive 

models do not exist for all the possibilities. Importantly, the datasets and models generated from 

this effort cannot be extended beyond the simple categorical assignment of substrates and 

inhibitors, considering that an extensive amount of additional investigation is necessary to fully 

characterize binding modes(F. P. Guengerich et al.), which is more appropriately evaluated 

spectroscopically using the shift in the quintessential P450 absorbance band. Further, CYP 

inhibition models are complexed by multi-ligand interactions, where different probe substrates 

may lead to alternate structure-activity relationships. Nonetheless, we consider the datasets and 

models reported herein are widely applicable, as they were developed using P450-Glo system, 

which is a commonly used assay in the drug discovery screening paradigm. 

The predictive machine learning models developed from these studies are fortified by the 

use of reliable data, which is unhindered by assay and lab-to-lab variability, an inherent affliction 

of most commercial and open-source models that is introduced by sourcing data from compiled 

literature. We employed SB and multi-task deep learning models to classify compounds as 

substrates or inhibitors for three predominant xenobiotic metabolizing enzymes (CYP3A4, 

CYP2C9 and CYP2D6). Despite the imbalance of the datasets in our study, especially the 

inhibitor datasets, we were able to achieve classification accuracies (BACC) around 70% (Figure 

4; Supplemental Table S1). Comparison with the widely used commercial software, i.e. ADMET 

Predictor, demonstrates the value of our model and the quality of our data. Since 2012, chemists 

at NCATS have synthesized >20,000 compounds for more than 250 drug discovery projects that 

cover a wide range of disease areas, pharmacological targets and cellular pathways. A high 

degree of similarity in physicochemical properties (molecular weight, Slog P, TPSA, HBA and 
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HBD) was observed between this dataset (Siramshetty et al., 2020) and our NCATS ADME 5K 

library. Thus, our models can be used during the compound design phase as well after synthesis 

as a filtering mechanism to rank order compounds for phenotyping and CYP-inhibition assays in 

drug discovery.  

Clustering is a powerful approach that allows the grouping of ‘similar’ compounds, to 

distinguish chemical series within a dataset of diverse compounds, analyze the SAR, and identify 

‘regions’ of chemistry that may yield good properties. Manual inspection of our datasets revealed 

great structural diversity. With the aim to quantify as well as qualitatively describe this structural 

diversity, we performed (i) clustering analysis based on Morgan fingerprints (KNIME), as well 

as (ii) clustering based on maximum common substructure (StarDrop). From 3584 compounds 

that encompassed the substrate data across the three enzymes, 1829 different clusters were 

identified using Morgan fingerprints. From those, 1067 were singletons, and only 24 clusters 

contained ≥ 10 compounds. The most populated cluster contained 30 compounds. Clustering 

based on maximum common substructure algorithm, as implemented in StarDrop (similarity 

threshold = 0.70), also revealed high structural diversity in the dataset, yielding 2059 singletons 

and a max cluster size of 33 compounds. Additionally, the Murcko(Bemis & Murcko, 1996) 

scaffold algorithm used, identified over 2617 different Murcko scaffolds, within the 

aforementioned 3584 compound dataset. The Murcko analysis produced an average scaffold-to-

compound ratio of 0.73, once again signifying the large structural diversity of our dataset. 

Analysis showing the most frequent scaffolds is presented in Figure 8. Benzene scaffolds were 

found with very low frequency (~6% of the dataset), and no other scaffolds reached prevalence 

values above 0.5%.  
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Considering the central role CYP450 enzymes play in the clearance of small molecule 

therapeutics, evaluation of the specific CYP enzymes that catalyze the metabolism of new 

chemical entities is essential at the preclinical phase of the drug discovery and development 

process. For more than 20 years, health authorities have provided guidance towards the 

characterization of in vitro drug interactions involving CYPs, as well as other enzymes involved 

in the human disposition of xenobiotics(S.-M. Huang et al., 2008; Prueksaritanont et al., 2013). 

The focus is on reducing the risk that a novel molecule will act as a DDI “perpetrator” in the 

clinic, through the interactions, i.e. substrate and inhibitor, with CYP enzymes. However, DDI 

assessments are typically conducted long after the concept has been synthesized and now poised 

as a developmental molecule. Although the models provided in this report are not adequate to 

replace the studies necessary to predict clinical DDI, the prediction of CYP substrate and 

inhibitors can be fully exploited early in the discovery phase for ranking or selecting compounds 

for experimental validation. 

One of the first examples of CYP polymorphism was reported by Eichelbaum et al. 

(Eichelbaum et al., 1975), who showed that N-oxidation of sparteine was subject to a high degree 

of inter individual variability. Since then, it has been well established that almost all drug 

metabolizing CYPs enzymes are polymorphic. Johansson and colleagues(Johansson & Ingelman-

Sundberg, 2011), have summarized the most important CYP alleles related to drug toxicity, and 

the classes of drugs most commonly affected by these polymorphisms. The polymorphic 

variability in pharmacokinetics, which drives pharmacodynamics, can lead to toxicity or 

inefficacy; both results being detrimental to patients. The use of our models in early drug 

discovery could enable the flagging of compounds/series which rely heavily on one of these 

three enzymes for clearance, as well as those with inhibition potential against these enzymes, 
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prompting medicinal chemists to produce compounds that avoid potential future development 

problems. The application of this level of detailed information early in the drug discovery 

process will be invaluable.  

In summary, we report the first systemic attempt to profile and generate substrate and 

inhibitor database of this scope and size, for major CYP450 enzymes. This collaborative effort 

between NCATS and IQ Consortium yielded several useful tools including: 1) a high-throughput 

automated incubation method for metabolic stability screening, 2) two different automated data 

acquisition methods with two different mass spectrometry systems, 3) automated method of 

assigning t1/2 via the ‘Validator’ software (code publicly available(Shah et al., 2016)), 4) large 

publicly available datasets (>4000 compounds) for three major CYP enzymes, and 5) robust 

predictive models for CYP substrates and inhibitors (https://opendata.ncats.nih.gov/adme). We 

look forward to the prospect that the knowledge gained, and the tools developed, from this 

venture will accelerate drug translational research in academia, small biotech, and 

pharmaceutical companies. 
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Figure Legends 

 

Figure 1: Reaction schemes for most common scenarios in metabolic clearance and P450-Glo 
assays. A.  The clearance assay will identify the substrates that proceed through typical 
Michaelis-Menten kinetics (1), or through multi-ligand processes (2), but is unable to identify 
either competitive (3) or mechanism-based (4) inhibitors. B. Rationale for categorizing P450-Glo 
assay hits as either substrate or inhibitor based on cross-referencing the observations from the 
two assays. A test article is to be able to occlude the pro-luciferin probe by competing for the 
substrate pocket (i and ii left) but may also generate an inhibitory multi-ligand complex (ii 
middle and right). Alternatively, the test article may simply be a poor ligand (iii left), form a 
non-inhibitory multi-ligand complex (iii right), or exhibit efficient clearance that does not 
impede probe metabolism (iv). 

 

Figure 2: Property distributions including (A) molecular weight, (B) TPSA and (C) SlogP for 
the entire dataset compared to substrates (t1/2 <30 mins) of CYP3A4, CYP2C9 and CYP2D6 in 
the supersome clearance assay. 

 

Figure 3: Substrate (A) and inhibitor (B) overlap amongst three enzymes (C) Chemical space 
plot example for CYP2C9. 

 

Figure 4: 5-Fold cross-validation results from SB with Morgan fingerprints- (A) AUC and (B) 
Balanced accuracy (BACC). 

 

Figure 5: Distribution of prediction results for test set over AD cut-offs and coverage values 
using CYP2C9 substrate dataset as an example. 

 

Figure 6: Distribution of substrates and inhibitors over class-probability prediction values. 

 

Figure 7: Comparison of model performance on NCATS annotated library. 

 

Figure 8: Plot presenting the most frequent Bemis-Murcko scaffolds in our dataset and relative 
percentages of frequencies within.
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Tables 

 

Table 1: Summary of enzyme concentrations, cofactor activities and controls used in the 
metabolic stability assays 

 

  

Matrix 

Final Protein 

Concentration 

[mg/mL] 

Total CYP 

content 

[nM] 

Cytochrome 

c Reductase 

activity 

[nmol/(min 

x mg 

protein)] 

Cytochrome 

b5 content 

[pmol/mg 

protein] 

High 

clearance 

controls 

Moderate 

clearance 

controls 

Low clearance 

controls 

CYP3A4 ~0.2 30 2900 1090 
Buspirone, 

Loperamide 
Ketoconazole

Antipyrine, 

Carbamazepine 

CYP2C9 ~0.12 45 985 710 
Glyburide, 

Glimepiride 
Tamoxifen 

Antipyrine, 

Meloxicam 

CYP2D6 ~0.38 60 3000 - 

Bufuralol, 

Desipramine, 

Amitriptyline 

Mexiletine, 

 
Codeine 
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Table 2: Categorization of clearance data 

Observed t1/2 Category Substrate Class 

t1/2 ≤ 30 min Unstable 1 

t1/2 > 30 min Stable 0 

low signal a Below Limit of Quantification (BLQ) 

Blank unable to reasonably fit line to data b Inconclusive (INC) 

analyte not detected in mass spectrometer Not Found (N/F) 
ay-intercept of line fitting the Ln(analyte/IS) vs time plot is ≤ -9.0 

b Albendazole also assigned as INC due to its use as IS 
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Table 3: Summary of incubation conditions and positive controls used in the P450-Glo assays 

 

  

Enzyme Inhibitor Dilution Format 
Inhibitor 

Concentration 
Incubation conditions 

CYP3A4 Ketoconazole 
16 concentrations/ 

2-fold dilution in 

duplicates 

57 µM-1.8 nM 1 h/RT 

CYP2C9 Sulfaphenazole 57 µM-1.8 nM 1 h/ 37˚C/ 0.4% BSA 

CYP2D6 Quinidine 1.4 µM-0.04 nM 1 h/RT 
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Table 4: Summary of substrate and inhibitor datasets used in this study 

Type Dataset name 
Total number 

of compounds 

Number of 

actives 

Number of 

inactives 

Imbalance ratio 

(inactives/actives) 

Substrate 

Data 

CYP2C9 3966 1126 2840 3:1 

CYP2D6 3946 1318 2628 2:1 

CYP3A4 3974 1883 2091 1:1 

Inhibitor 

Data 

CYP2C9 3288 570 2718 5:1 

CYP2D6 3187 367 2820 8:1 

CYP3A4 2794 340 2454 7:1 
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Table 5: Parsing rationale for substrate and inhibitors 

Category 
Clearance 

/ 
P450-Glo 

Classification Parsing Rationale 

1 +   /   + Substrate 

Exhibiting activity in both assays, the compound is a 
clear ligand for the enzyme(s). It is unclear whether 
the parent, product, or both are responsible for the 
inhibition. 

2 -   /   + Inhibitor 

The compound is able to inhibit the enzyme 
metabolism of a probe substrate, but is not itself 
cleared, indicating that the parent molecule is an 
effective inhibitor. 

3 -   /   - Non-competitor 

The lack of activity in both assays signifies that 
either binding does not occur, or that the interaction 
does not generate a catalytically competent or 
inhibitory complex. 

4 +   /   - Substrate 
Although a clear substrate, the binding kinetics of the 
parent compound and its metabolites do not preclude 
the concomitant metabolism of the P450-Glo probe. 
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Table 6: Percentage of high clearance compounds across three CYP enzymes. 

 CYP3A4 CYP2C9 CYP2D6 
CYP3A4 47% 21% 19% 
CYP2C9  28% 13% 
CYP2D6   33% 
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Table 7: Percentage of P450-Glo hits across three enzymes 

 CYP3A4 CYP2C9 CYP2D6 
CYP3A4 35% 19% 13% 
CYP2C9  29% 10% 
CYP2D6   25% 
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Table 8:  Summary of Cross Validation Results 

  
  
  
  

BACC 

Substrates Inhibitors 

Classifiers Descriptors CYP2C9 CYP2D6 CYP3A4 CYP2C9 CYP2D6 CYP3A4 

SB Morgan + PhysChem 0.69 0.71 0.75 0.74 0.64 0.68 

SB Avalon + PhysChem 0.67 0.69 0.72 0.73 0.63 0.64 

SB Dragon_Normalized 0.68 0.69 0.76 0.72 0.62 0.67 

DNN Morgan + PhysChem 0.62 0.67 0.72 0.63 0.58 0.58 

DNN Avalon + PhysChem 0.64 0.66 0.68 0.63 0.59 0.58 

DNN Dragon_Normalized 0.66 0.68 0.72 0.63 0.57 0.59 
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