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Abstract  

Complexities in CYP mediated metabolism kinetics include multisubstrate binding, multiple 

product formation and sequential metabolism. Saturation curves and intrinsic clearances were 

simulated for single substrate and multisubstrate models using derived velocity equations and 

numerical solutions of ordinary differential equations (ODEs).  Multisubstrate models focused on 

sigmoidal kinetics due to their dramatic impact on clearance predictions. These models were 

combined with multiple product formation and sequential metabolism and simulations were 

performed with random error. Use of single substrate models to characterize multisubstrate data 

can result in inaccurate kinetic parameters and poor clearance predictions. Comparing results for 

use of standard velocity equations with ODEs clearly shows that ODEs are more versatile and 

provide better parameter estimates.  It would be difficult derive concentration-velocity 

relationships for complex models, but these relationships can be easily modeled using numerical 

methods and ODEs. 
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Significance Statement 

The impact of multisubstrate binding, multiple product formation, and sequential metabolism on 

the CYP kinetics was investigated. Numerical methods are capable of characterizing complicated 

CYP kinetics. 
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Introduction 

Drug metabolism plays an important role in determining the pharmacokinetic and 

pharmacodynamic properties of drug candidates. Cytochrome P450s (CYPs) are a superfamily of 

enzymes involved in the metabolism of over 70% of drugs currently on the market (Zanger and 

Schwab, 2013). CYP-mediated clearance and related drug interactions can be a major issue 

during drug development. CYPs demonstrate unusual kinetics with respect to ligand selectivity 

(Ekroos and Sjögren, 2006) and multiple-substrate binding. In many cases, multi-substrate 

binding results in atypical saturation kinetics, including sigmoidal saturation, substrate 

inhibition, and biphasic saturation curves (Korzekwa et al., 1998; Tracy, 2006). Spectral binding 

and X-ray crystallography studies support the theory that the active sites of some CYPs are large 

and flexible (Shou et al., 1994; Ueng et al., 1997; Korzekwa et al., 1998; Hosea et al., 2000; 

Domanski et al., 2001; Ekins et al., 2003; Yoon et al., 2004) and can accommodate the 

simultaneous binding of multiple substrates (Li and Poulos, 2004; Wester et al., 2005; Roberts et 

al., 2011; Nguyen et al., 2016; Sevrioukova and Poulos, 2017). In addition to the simultaneous 

multiple binding of molecules of the same substrate, binding of different substrates occurs as 

well, resulting in heterotropic activation and inhibition (Ueng et al., 1997; Kenworthy et al., 

2001; Hutzler and Tracy, 2002; Galetin et al., 2003; Collom et al., 2008; Blobaum et al., 2013). 

There are many possible factors that may be involved in non-Michaelis-Menten CYP kinetics, 

including active site flexibility, distinct binding sites (Hosea et al., 2000), and protein-protein 

interactions (Jamakhandi et al., 2007; Davydov et al., 2017; Dangi et al., 2021). However, most 

experimental saturation curves can be represented adequately by more simple ES and ESS 

models.   
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The combination of active site flexibility, fast rotation speed of substrate molecules in the active 

site, and versatile active oxygen species (Guengerich, 2018), results in multiple metabolite 

formation in a parallel or sequential manner (Masubuchi et al., 1996; Galetin et al., 2004; Obach, 

2013). Multiple primary metabolites formed from the enzyme-substrate (ES) and enzyme-

substrate-substrate (ESS) complex (Jones and Korzekwa, 1996) and secondary metabolite 

formation (Pang, 1995) add more complexity to  CYP kinetics. Velocity equations as a function 

of substrate concentration and initial conditions are not easily derived for these complex 

schemes. 

 

Since Cleland published methods for the least-squares analysis of enzyme kinetic data in 1979 

(Cleland, 1979), there has been a steady movement away from graphical methods for kinetic 

analyses to robust statistical analyses by model fitting to derived velocity equations (e.g., the 

Michaelis-Menten equation) and various methods of numerical analysis (Hemker, 1972; Plant, 

1979; Frenzen and Maini, 1988; Johnson, 2009; Kuzmič, 2009; Manimozhi et al., 2010; 

Rajendran et al., 2018; Yadav et al., 2021). For enzyme kinetic models with one independent 

variable (time) kinetic schemes can be represented as a collection of ordinary differential 

equations (ODEs). In addition to the derivation and use of velocity equations to model enzyme 

kinetics, ODEs can be used with numerical methods to directly model and parameterize complex 

kinetic schemes. The complex CYP kinetics encountered in time-dependent inactivation 

including inactivator binding, inhibitor depletion and sequential metabolism has been previously 

modeled using numerical analysis (Korzekwa et al., 2014; Nagar et al., 2014; Yadav et al., 2018; 

Yadav et al., 2020; Yadav et al., 2021).  
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CYP kinetics parameters are often used to determine the enzymes responsible for metabolite 

formation and to predict the potential for drug-drug interactions. Another commonly used CYP 

assay measures substrate depletion over time to estimate the intrinsic clearance (CLint) of a 

reaction. This is the first order rate constant observed at low substrate concentrations for most 

kinetic schemes. This clearance is then used to scale up to predict drug clearance in humans. It 

has been demonstrated that use of a different concentration range may lead to variable in vitro 

CLint estimations when sigmoidal kinetics are observed (Komura et al., 2005; Iwaki et al., 2019). 

Simulations have shown that Vmax/Km will not be accurate when sigmoidal kinetics is observed 

and the turnover rate from the ES complex approaches zero (Korzekwa, 2021). 

 

With respect to sequential metabolism and multiple metabolites, numerical solutions have been 

reported previously (Frenzen and Maini, 1988; Varón et al., 2005), but no derived velocity 

equations have been reported, possibly due to the complex branched pathways that must be 

considered. The numerical method is facile for modeling multiple metabolite formation.  

Modeling metabolite exposure is a crucial issue in drug discovery and development especially 

for active (Obach, 2013) and toxic circulating metabolites (Schadt et al., 2018). Numerical 

analysis using ODEs is expected to easily provide accurate parameters for multiple metabolites, 

possibly leading to more accurate in vivo predictions of drug metabolism and metabolite 

disposition. 

 

 

In Part 1 of these manuscripts, we demonstrate the use of the numerical analyses in 

characterizing Km, Vmax, and concentration-dependent CLint upon multi-substrate binding, 
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describing concentration-dependent metabolite ratios, and investigating sequential metabolism. 

In Part 2, in-house data of three different model drugs - midazolam, ticlopidine and diazepam 

were generated and analyzed with this modeling strategy.  
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Materials and Methods 

Theoretical Considerations. Fig. 1A shows the traditional single-substrate binding model, in 

which the EP complex is assumed to be short-lived compared to the ES complex. The equation 

derived from this scheme is the well-known Michaelis-Menten equation (Michaelis and Menten, 

1913). 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣)

𝐸𝑡
=  

𝑉𝑚𝑎𝑥

𝐸𝑡
 [𝑆] 

𝐾𝑚+[𝑆]
=  

𝑘𝑐𝑎𝑡 [𝑆]

𝐾𝑚+[𝑆]
      (1) 

Where kcat is the maximum velocity at unit enzyme concentration (Et), [S] is the substrate 

concentration, and Km is the substrate concentration at half-maximum turnover rate.  Fig. 1B 

shows a two-substrate model, which can result in non-Michaelis-Menten kinetics. Evidence of 

non-Michaelis-Menten (atypical) kinetics has been reported widely for many CYPs, reactions, 

and substrates (Atkins, 2005; Atkins, 2006). Multiple substrate binding in the enzyme active site 

has been confirmed with X-ray crystallography (Yano et al., 2004; Gay et al., 2010). Most 

categories of atypical kinetics can be explained by Fig. 1B, where the specific binding 

orientation of substrates is not assumed. For these models, the first substrate binds to the enzyme 

active site with an apparent Km1 = (k2+k3)/k1 and turnover rate kcat1 = k3. A second substrate 

binds to the enzyme active site with an affinity Km2 = (k5+k6)/k4 and turnover rate kcat2 = k6 (Fig. 

1C). The Km values are apparent, since both processes occur simultaneously. Sigmoidal kinetics 

can be observed when Km1 > Km2 or kcat1 < kcat2. Biphasic kinetics is observed when Km1 < Km2 

and kcat1 < kcat2. Substrate inhibition occurs at the condition of Km1 < Km2 and kcat1 > kcat2.  

 

Due to large and flexible binding pockets and non-specific substrate orientation for some CYPs 

(Shou et al., 1994; Ueng et al., 1997; Korzekwa et al., 1998; Hosea et al., 2000; Domanski et al., 

2001; Ekins et al., 2003; Yoon et al., 2004), formation of multiple metabolites by a single CYP is 
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common (Masubuchi et al., 1996; Galetin et al., 2004; Obach, 2013). Kinetic schemes that 

include the formation of two metabolites are shown in Fig. 2. The schemes in Figs. 2A and B can 

correctly model the formation of two products when product formation is rate-limiting. However, 

for CYPs, oxygen activation is rate-limiting and substrate oxidation is fast (Luthra et al., 2011). 

The branch between formation of the two products occurs from the activated oxygen species and 

is not rate-limiting within the catalytic cycle (i.e., the branch is product determining but not rate-

limiting). As described below, it is necessary to use the kinetic schemes in Figs. 2C and D to 

describe multi product CYP kinetics. In these schemes, ES* and ESS* represent the activated 

oxygen species. It should be noted that Km1mP1 = Km1,P2 and Km2,P1 = Km2,P2 is assumed since both 

products are formed from the same enzyme-substrate complex.  

 

Dataset simulation. Saturation curves (velocity versus substrate concentration) were simulated 

as follows: 1) constructing ordinary differential equations (ODEs) for the kinetic schemes in 

Fig.1 and 2; 2) varying either the dissociation or turnover rate constant; 3) simulating saturation 

curve data with or without adding random error; and 4) directly fitting the Michaelis-Menten 

equation, ESSP rate equation, and ODEs for the schemes in Fig.1 and 2 to the simulated dataset 

and comparing the fitted parameters with those used in the simulation. Simulations were repeated 

500 times, and the results were checked to determine convergence and the distribution of 

parameter estimates. 

 

All association rate constants (e.g., k1 and k4 in Fig. 1) were set to 270 μM
-1 

min
1 
(Barnaba et al., 

2016). Simulated dissociation rate constants were selected to achieve the Km1 and Km2 values in 

the range of 1-1000 μM (Walsky and Obach, 2004), and  turnover rate constants (kcat1 and kcat2) 
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were set within the range of 0 - 60 min
-1

. The values were chosen to provide the desired 

saturation kinetic profiles (e.g., sigmoidal kinetics, [P2] > [P1], etc.). For simulation of saturation 

curves, initial substrate concentrations were varied between 0 and 300 µM, Et was 5 nM and the 

incubation time were set at 5, 10, or 20 min. Substrate consumption in all saturation curve 

simulations was <10% unless indicated. CLint was simulated as d[S]/dt / [S], over a range of 0.01 

– 1 µM initial substrate concentrations, with Et =100 nM. Triplicate data with random error of 

substrate concentrations and incubation time were simulated from ESSP and ESSP1P2 ODEs, 

respectively. For some simulations and parameterizations, correlation between parameters is 

expected, and some parameters must be held constant. For example, if an enzyme species is not 

saturated within the range of substrate concentrations, both kcat and Km cannot be determined. 

One parameter must be held constant and only the ratio of kcat/Km can be determined.  

 

Simulated datasets were generated via the built-in function NDSolve in Mathematica 12.0 

(Wolfram Research, Champaign, IL). Random errors were generated from RandomVariate and 

NormalDistribution function by setting the mean as one and relative standard deviation as 1%, 

5%, 10%, and 20%. This error was multiplied by the simulated values to generate log-normally 

distributed values. For the simulations, 500 runs of triplicate data were generated at each error 

level. 

 

Model fitting. For the derived velocity equation method, the Michaelis-Menten equation and 

ESSP rate equation (Eq. 2) were fit to the simulated concentration-velocity data. The 

NonlinearModelFit function was used to parameterize the model with 1/Y weighting. 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣)

𝐸𝑡
=   

𝑘𝑐𝑎𝑡1 𝑆+ 
𝑘𝑐𝑎𝑡2
𝐾𝑚2

 𝑆2

𝐾𝑚1+𝑆+
𝑆2

𝐾𝑚2

  (2) 
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For numerical analyses, each metabolite concentration dataset (triplicate) was used to 

parameterize the micro rate constants of the ESP and ESSP ODEs using NDSolve (MaxSteps → 

10,0000 and PrecisionGoal → ∞) and NonlinearModelFit with 1/Y weighting. Two metabolite 

concentration datasets (triplicate) were used to simultaneously parameterize the micro rate 

constants of the ESP1P2 and ESSP1P2 ODEs.  
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Results 

Two-substrate binding and single product formation. Two substrate binding can lead to 

atypical saturation kinetic behavior (biphasic, substrate inhibition and sigmoidal). Sigmoidal 

kinetics can be observed for two general scenarios: Km2 < Km1 and/or kcat2 > kcat1. These general 

cases and the specific cases when kcat1 = 0 are listed in Table 1 and simulations are shown in Fig. 

3. Fig. 3 shows simulations for four possible scenarios of sigmoidal kinetics. All of the plots in 

Fig. 3 show sigmoidal saturation. The impact of relative differences in kinetic parameters on the 

degree of sigmoidicity is also shown. When k3 > 0, a linear range is observed at low 

concentrations (Figs. 3B and 3C). When k3 = 0, no linear range is observed (Figs. 3C and 3D). 

The implication of not having a linear range is significant. In the field of drug metabolism, a 

linear Vmax/Km describes a constant in vitro intrinsic clearance. Fig. 4 shows the concentration-

dependence of CLint for the sigmoidal kinetic curves in Fig. 3. In Cases I and II, at most a 2-fold 

difference in CLint would be observed at concentrations < 1 µM. It is noteworthy that up to a 

100-fold difference in CLint may be observed in Cases III and IV.  

 

Two-substrate binding and two product formation. Although CYPs can usually form multiple 

metabolites, most of the kinetic models for atypical kinetics consider the dominant metabolite. 

Although some CYPs can form more then two primary metabolites, for simplicity we have 

simulated the formation of two metabolites from the same CYP. The scheme in Fig. 5A assumes 

that the formation steps for both products are rate-limiting and P1 shows sigmoidal kinetics (Fig. 

5B) since ESS formation has a higher velocity for P1 formation. Although P2 appears to have an 

almost hyperbolic saturation curve (Fig. 5C), the Eadie Hofstee (EH) plot shows the kinetics are 

atypical. This is because there is some minimal sigmoidicity due to ESS formation, even when 
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the apparent Km and kcat for ES and ESS values are identical.  Similar to Fig. 4, the higher the 

k7/k3 ratio, the greater the change in P1 formation CLint with increasing [S]. P2 formation CLint is 

constant when varying k7, since substrate oxidation is not rate-limiting.  

 

The scheme in Fig. 6A assumes that formation of active oxygenating species is rate-limiting. 

Again, P1 shows sigmoidal kinetics (Fig. 6B), but P2 now shows substrate inhibition (Fig. 6C). 

Substrate inhibition increases for P2 with increased k7/k3 ratio.  

 

The probability distribution of parameters to compare the use of single versus multiple substrate 

models, velocity equations versus ODEs, and single versus multiple product formation is shown 

in Fig. 7. These simulations (n = 500) were performed using a multiple substrate, multiple 

product scheme (ESSP1P2) at error levels of 1%, 5% and 10%. In all cases, ESS models were 

necessary to accurately parameterize Km1 and kcat1. Although the means were approximately the 

same for all ESS models, the distribution was narrowest for the ESS models when both products 

were modeled simultaneously. Parameters for all models tested are listed in Supplementary 

Table S1.  

 

Sequential metabolism. CYPs can also metabolize substrates in sequentially to multiple 

metabolites. In this section we simulated sequential metabolism using single-substrate (Fig. 8) 

and two-substrate binding kinetic models (Fig. 9). The kinetic scheme in Fig. 8A includes the 

EP1 intermediate. If P2 formation from P1 is slower than the P1 release rate, P2 will show a lag 

time since accumulation and rebinding of P1 to the CYP active site is necessary for P2 formation 

(Fig. 8B).  If P2 formation from P1 is much faster than the P1 release rate, P2 will not show a lag 
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time.  Assuming linear product formation for P1, the velocities measured at different incubation 

time yields the same saturation curves for P1 but not with P2 (Fig. 8C).  

 

Fig. 8D shows the relationship of the rate of P1 release (k5) and the sequential metabolism 

turnover (k6). At k6 = 27 min
-1

, varying the ratio of k5/k6 from 100 to 1 results in P1 dissociation 

constants from 10 to 0.1 M. Increasing the rate of P2 formation leads to a decrease in P1 

formation and an increase in P2. Substrate inhibition for P2 formation becomes apparent in the 

Eadie-Hofstee plot since substrate competes for free enzyme with the rebinding of P1. 

 

Sequential metabolism was also simulated with a two-substrate binding kinetic model (Fig. 9A).  

However, this model assumes P1 release is fast and must compete with substrate binding for free 

enzyme. Provided that P1 release is faster than P2 formation, these simulations should be 

relevant. Three types of ESS formation were simulated: when k3 = k6, k3 > k6 and at k3 < k6 (Figs. 

9B-D, respectively). An increase in P1 affinity led to a decrease in velocity of P1 and increase in 

the formation of P2. As expected, P1 formation shows slight sigmoidal, substrate inhibition, and 

sigmoidal kinetics for k3 = k6, k 3> k6 and at k3 < k6, respectively. The saturation curve for P2 

follows that for P1 at low [S]. At high [S], P2 formation shows substrate inhibition for all cases 

since increasing substrate concentrations competes with P1 rebinding. 

 

Using numerical methods, any of the above approaches to model multi-product and sequential 

metabolism can be combined. Fig. 10A shows a scheme where two products (P1 and P2) can be 

formed from an ESS model, and one of the products is further metabolized to a third product, P3.  

In Fig. 10B, both initial products can be metabolized to the same secondary product by 
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sequential metabolism. For the simulations in Fig. 10C, the substrate binding constants were held 

constant with k1, k5 and k9 =270 M
-1

 min
-1

, k2 and k6 = 10000 min
-1

 (Rittle and Green, 2010), 

and the turnover rates for P1 and P2 formation were held constant with k3 = 1 min
-1

, k7 = 100 

min
-1

, and k4 = k8 = 1 min
-1

. In these simulations, the dissociation constants for P1 binding were 

modeled at 10 and 0.1 M. In Fig 10C we can see that as the affinity for P1 to the enzyme 

increases, P1 is rapidly converted to P3 and the ratio of P1 to P2 is decreased. As substrate 

concentrations are increased, P1 binding is inhibited and the expected change in P1/P2 ratios are 

observed. Finally, Fig. 10D shows that both the affinity and rates of sequential metabolism affect 

the P1/P2 ratios at different substrate concentrations. 
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Discussion  

The goals of this manuscript (Part 1) are four-fold: 1) to simulate and evaluate atypical kinetics 

using both derived velocity equations and numerical solutions using ODEs and compare the 

results; 2) to evaluate the impact of multiple metabolites on these models; 3) to evaluate the 

impact of atypical kinetics for reactions that show sequential metabolism; and 4) to provide the 

theoretical basis for analysis of datasets discussed in Part 2 of these manuscripts. The focus of 

this manuscript is on schemes and parameters that display sigmoidal saturation kinetics since 

these results are the most difficult to interpret. 

 

 

Two standard in vitro experiments to characterize CYP-mediated oxidations are saturation 

curves and substrate depletion assays. Substrate depletion assays observe the loss of substrate 

over time, usually in a microsomal incubation. This assay only requires quantitation of the 

substrate, a simple task since the structure is known. The assay provides an initial estimate of 

hepatic stability. If first-order elimination is assumed, the elimination rate constant can be used 

to estimate intrinsic clearance (CLint). This clearance value can be scaled up to a human CLint 

using standard methods (Ito et al., 1998; Chiba et al., 2009). Once metabolites are known and 

standards are available, saturation curves are used to determine kinetic constants i.e. substrate 

affinities and velocities. Comparing parameters for different enzymes, one can determine which 

CYPs form which metabolites and which enzymes are likely to be important clinically.  These 

kinetic parameters can also be used to predict whether a drug will be a victim or perpetrator of 

drug interactions.  
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Non-Michaelis-Menten kinetics are often observed for CYP-mediated oxidation reactions, 

resulting in non-hyperbolic saturation curves, for example, sigmoidal saturation, substrate 

inhibition, and biphasic saturation curves (Korzekwa et al., 1998). These saturation curves are a 

result of multiple substrates binding simultaneously to the enzyme (e.g. Fig. 1B). Most CYP-

catalyzed reactions saturate well above unbound therapeutic concentrations. This results in linear 

pharmacokinetics since drug elimination occurs in the linear portion of the saturation curve. For 

substrate inhibition and biphasic saturation curves, the saturation curve is approximately linear 

below the Km for ES formation. This is because the binding of the first substrate (higher affinity 

binding) still has a linear region at low substrate concentrations. Substrate inhibition and biphasic 

saturation would have to occur at very low substrate concentrations to be clinically relevant. On 

the other hand, sigmoidal saturation curves can be more problematic. Sigmoidal kinetics can 

occur when either ESS formation occurs with a higher affinity than ES formation or if kcat2 from 

ESS is faster than kcat1 from ES (e.g.  k6 > k3 in Fig. 1B). If kcat1 contributes substantially at 

therapeutic concentrations, there may still be a linear region. However, if kcat1 approaches zero, 

there may not be a linear region at low substrate concentrations. This will result in a different 

estimate of intrinsic clearance for different initial substrate concentrations (e.g. see Fig. 4). An 

example of the impact of using an Michaelis-Menten model to predict the intrinsic clearance of 

an enzyme showing sigmoidal kinetics is shown in Part 2 of these manuscripts.  

 

The results in Fig. 3 are as expected, with the sigmoidal saturation curves having a linear region 

at low substrate concentrations when kcat1 (k3) is > 0 (Figs. 3B and C) and no linear region when 

k3 = 0 (Figs. 3D and E). All simulations give the expected Eadie-Hofstee plots showing convex 

curvature to the right. Fig. 4 shows the impact of low kcat1 values on CLint. When kcat1 is 1, 
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sigmoidicity due to either higher affinity binding of the second substrate or higher velocity of the 

second substrate results in modest increases in CLint (~2 fold between 10 nM and 1 M for 100-

fold increases in affinity or velocity for ESS; Figs. 4A and B). However, when kcat1 = 0, ~ 100-

fold increases in CLint are observed for [S] between 10 nM and 1 M (Figs. 4C and D). Also, 

there is no range where CLint is constant. An ~ 100-fold increase in CLint would be observed for 

[S] between 0.1 nM and 10 nM as well. This nonlinearity can be identified with substrate 

depletion assays at different substrate concentrations. Predicting in vivo CLint would require 

conducting in vitro assays at [S] that match the unbound intracellular concentrations. Also, 

concentration-dependent CLint in vitro may result in non-linear pharmacokinetics in vivo.  

 

Sequential metabolism by the CYPs is important in drug discovery and development, since 

metabolites can be active, toxic, or cause drug-drug interactions (Jackson et al., 2018; Wienkers 

and Rock, 2021)  We have simulated CYP kinetic models that can form two different products 

from either a single substrate complex (Figs. 2A and C) or from an ESS complex (Figs. 2B and 

D).  These models do not include both multiple product formation and sequential metabolism.  If 

a substrate can only bind once (Figs. 2A and C) the P1/P2 product ratio remains constant at k3/k4. 

However, for multi-substrate kinetics, metabolite ratios can change with substrate 

concentrations. Fig. 5 is the simplest scheme for two products formed from ES and ESS 

complexes. The simulations in Fig. 5 shows increasing formation of P1 from ESS while holding 

all other parameters constant. As expected, P1 formation shows increasing sigmoidicity as k7 

increases due to the higher velocity for P1 formation from ESS. However, this scheme does not 

accurately capture the impact of increasing one product formation pathway for a CYP reaction. 

As shown in Fig. 5C, changing k7 has no impact on P2 formation. This is because binding is fast 
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and the rate-limiting steps in this scheme are the product formation steps (k3, k4, k7, and k8). In 

reality, the rate-limiting step for CYP oxidations is the formation of an active oxygenating 

species, and this active oxygenating species can form different metabolites. This results in the 

CYP property called “metabolic switching” where blocking one site results in increased 

metabolism at other sites. This can be best modeled using the schemes in Figs. 2C and D and 

Fig. 6.  In Fig. 6C, increasing k7 while holding all parameters constant results in a decrease in P2 

formation at high substrate concentrations. Since formation of the active oxygenating species is 

rate-limiting, increasing P1 formation must result in a decrease in P2 formation. For a chemist 

modifying a molecule for stability, the difference between the schemes in Figs. 5 and 6 is 

important, since decreasing metabolism at one position may increase metabolism at another. 

However, when fitting kinetic models to experimental datasets for multiple products, the simpler 

scheme in Fig. 5 is preferred. The same substrate inhibition profile for P2 seen in Fig. 6C would 

also be observed if k8 < k4. Using the method of Cleland (Cleland, 1975) and the scheme in Fig. 

6, net rate constants can be calculated for conversion of ES and ESS complexes to products, and 

the result is the simplified scheme in Fig. 5. For example, the net rate constant for P1 formation 

from ES in Fig. 6 (ka1 k3/(k3+k4) will be equal to k3 in Fig. 5. 

 

The parameter probability distributions for the various simulations shown in Fig. 7 shows that 1) 

using an ES model for ESS kinetics results in inaccurate Km and kcat values; 2) use of ODEs 

instead of derived velocity equations minimizes the overall parameter errors; and 3) 

simultaneous fitting to both P1 and P2 data further decreases the parameter errors. These results 

suggest that using ODEs to model CYP kinetics is generally preferred to using derived velocity 
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equations. Derived velocity equations include additional simplifying assumptions, and equations 

for complex systems these equations are generally not available. 

 

When sequential metabolism occurs, the rate of the first product release (P1 in Fig. 8A) has a 

large impact on the kinetics of the sequential product (P2). If P1 release is fast, there will be a lag 

time for P2 formation, since P1 must accumulate before P2 can be formed. Also, P2 formation 

can be inhibited by high substrate concentrations. Lag times have frequently been observed for 

time-dependent inhibition kinetics when multiple oxidation steps are required for CYP 

inactivation. Fig. 9 considers a scenario including multiple substrate binding and sequential 

metabolism with mandatory P1 release. A complete model would additionally include ESP1, 

ESP2, EP1P1, EP1P2 and EP2P2. Limiting schemes to mandatory product release may not 

always be sufficient to model experimental data (see Part 2). Finally, schemes can be readily 

constructed for multiple substrate binding with multiple product formation as well sequential 

metabolism (Fig. 10). Adding sequential metabolism can result in unusual P1/P2 product ratio 

curves when one or both products are further metabolized. A wide range of product ratio curves 

is possible for a variety of schemes and kinetic scenarios (e.g. see Fig. 10D). When experimental 

data are available for both P1 and P2 formation, product ratio plots can be very useful in 

selecting appropriate kinetic schemes (see Part 2).  

 

Mechanisms can vary for different substrates with the same CYP, and for different CYPs with 

the same substrate. The diversity of possible mechanisms requires that statistical methods be 

used to determine the best model for a given dataset. We use AICc values to compare different 

mechanisms since this method can be used for nested and non-nested models. It is also important 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on September 9, 2021 as DOI: 10.1124/dmd.121.000553

 at A
SPE

T
 Journals on A

pril 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD-AR-2021-000553R1 

 

23 

 

to plot residuals. A run of signs indicates that the model is likely inadequate and may bias data 

interpretation. Parameter errors should be compared to the parameter estimates, since covariance 

will result in large relative parameter errors. This can also be observed in the correlation matrix 

for the calculation. It should be noted that insufficient data and high experimental errors can 

result in inaccurate model selection.  

 

Finally, in Part 2 of these manuscripts, we have used numerical methods to simultaneously 

model the multiple metabolites formed initially and sequentially from diazepam by CYP3A4. 

This resulted in a mechanistic interpretation of diazepam metabolism that provided affinities and 

velocities consistent with the observed metabolic data for diazepam and its metabolites. 

     

In conclusion, we have modeled combinations of multiple substrate binding, multiple product 

formation and sequential metabolism. We have focused on sigmoidal kinetics since it can have a 

dramatic impact on clearance predictions. The use of Michaelis-Menten models to characterize 

multi-substrate saturation data results in inaccurate kinetic parameters and clearance predictions. 

Comparing results for use of standard velocity equations with ODEs clearly shows that ODEs are 

more versatile and provide better parameter estimates. The complexity of the kinetic schemes 

used for these analyses shows that most kinetic schemes can be modeled, and these models can 

be parameterized, provided that sufficient experimental data is available. Finally, these analyses 

provide a framework for modeling the experimental CYP kinetics observed in Part 2 of these 

manuscripts. 
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Figure Legends 

Figure 1. Schemes for single product formation. (A) A single-substrate binding (ES complex), 

one metabolite formation (ESP) scheme is depicted EP complex is not shown since fast product 

release is assumed. (B) A two-substrate binding (ESS complex), one metabolite formation 

(ESSP) scheme is depicted. EP, ESP, and EPP are not shown since fast product release and no 

interaction between substrate and product within the active site are assumed. (C) Expressions for 

Km and kcat for schemes A (dashed purple box) and B (dashed blue box) are listed. Rate constants 

for all reactions are denoted by k1–k6. The species depicted in the schemes are defined as 

follows: E, unbound enzyme; P1, product 1; ES, enzyme-substrate complex; and ESS, enzyme-

substrate-substrate complex. 

 

 

Figure 2. Schemes for multiple product formation. (A) A single-substrate binding, two 

metabolite formation (ESP1P2) scheme. (B) A two-substrate binding, two metabolite formation 

(ESSP1P2) scheme. (C) Single-substrate binding with rate-limiting oxygen activation. (D) 

multiple-substrate binding with rate-limiting oxygen activation (E) Expressions for Km and kcat 

for schemes A (dashed purple box) and B (dashed blue box) are listed. Rate constants for all 

reactions are denoted by k1–k8. Rate constants ka1 and ka2 denote oxygen activation steps for ES* 

and ESS* respectively. The species depicted in the schemes are defined as follows: E, unbound 

enzyme; P1, product 1; P2, product 2; ES, enzyme-substrate complex; and ESS, enzyme-

substrate-substrate complex; ES* and ESS*, active oxygen species. 
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Figure 3. Sigmoidal saturation curves for multiple-substrate binding and single product 

formation. (A) Enzyme kinetic scheme. (B-E) Top: saturation curves (0-300 µM) with inset 

Eadie-Hofstee plots; Bottom: saturation curves (0-0.1 µM). Common micro rate constants: k1 = 

k4 = 270 µM
-1

min
-1

, k2 = 22000 min
-1

. Other fixed rate constants are shown at the top of each 

column and varying rate constants are at the bottom. Units for k3, k5, k6 are min
-1

. 

 

Figure 4. Concentration dependence of CLint for the ESS model. (A-D) CLint as a function of [S] 

for scenarios in Table 1 and Fig. 3.  The arrows indicate the fold changes in CLint at 0.01, 0.1 and 

1 µM. Common micro rate constants: k1 = k4 = 270 µM
-1

min
-1

, k2 = 22000 min
-1

. Units for k3, k5, 

k6 are min
-1

. Note the different scales of the Y-axes. 

 

Figure 5. Saturation curves for multiple-substrate binding and multiple product formation. The 

scheme assumes that oxygen activation is not rate-limiting. (A) Enzyme kinetic scheme. (B-C) 

Top: saturation curves for P1 and P2 respectively (0-300 µM) with inset Eadie-Hofstee plots; 

Bottom: saturation curves for P1 and P2 respectively (0-0.1 µM). (D): [P1]/[P2] metabolite ratio 

versus [S], with inset at low [S]. The dashed lines represent the k3/k4 and k7/k8 ratios. Fixed 

micro rate constants: k1 = k5 = 270 µM
-1

min
-1

, k2 = k6 = 10000 min
-1

, k3 = k4 = k8 = 1 min
-1

. 

 

Figure 6. Saturation curves for multiple-substrate binding and multiple product formation. The 

scheme assumes that oxygen activation is rate-limiting. (A) Enzyme kinetic scheme. (B-C) Top: 

saturation curves for P1 and P2 respectively (0-300 µM) with inset Eadie-Hofstee plots; Bottom: 

saturation curves for P1 and P2 respectively (0-0.1 µM). (D): [P1]/[P2] metabolite ratio versus 

[S], with inset at low [S]. The dashed lines represent the k3/k4 and k7/k8 ratios. Fixed micro rate 
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constants: k1 = k5 = 270 µM
-1

min
-1

, k2 = k6 = 10000 min
-1

, k3 = k4 = k8 = 1000000 min
-1

, ka1 = ka2 

= 30 min
-1

. 

 

Figure 7. The probability distribution of Km1, Km2, kcat1, and kcat2 estimates. (A) Km1 at 1%, 5% 

and 10% error. (B) kcat1 at 1%, 5% and 10% error. (C) Km2 at 1%, 5% and 10% error. (D) kcat2 at 

1%, 5% and 10% error. The probability distribution for all parameters is depicted for the 

Michaelis-Menten equation (red), ESS velocity equation (blue), ES ODE (green), ESS ODE 

(purple), ESP1P2 ODE (orange), and ESSP1P2 ODE (magenta). Distribution is shown for 500 

runs at each condition. Data were simulated with the following parameters:  k1 = k5 = 270 µM
-1

 

min
-1

, k2 = 13500  min
-1

, k3 = 1 min
-1

,  k4 = 1 min
-1

, k6 = 2700 min
-1

, k7 = 5 min
-1

, k8 =1 min
-1

. 

 

Figure 8. Single-substrate binding and sequential metabolism. (A) Enzyme kinetic scheme. (B) 

P2 concentration over time at k5/k6 = 100 versus 1, exhibiting a lag time in P2 formation at 

k5/k6=100. (C) Saturation curve plots for P1 and P2 simulated at different incubation time (t) at 

the following rate constants: k1 = 270 M
-1

 min
-1

; k2 = 2700 min
-1

; k3 = 20 min
-1

; k4 = 270 M
-1

 

min
-1

; k5 = 2700 min
-1

; and k6 = 27 min
-1

. (D) Saturation curve plots for Products 1 and 2 

simulated at different rates of product release (k5) and sequential metabolism turnover (k6). 

Insets: Eadie-Hofstee plots. 

 

Figure 9. Multiple-substrate binding and sequential metabolism. (A) Enzyme kinetic scheme. 

Saturation curve plots for P1 and P2 simulated at different rates of product dissociation (k8) and 

sequential metabolism turnover (k9), when (B) k3 = k6 = 27 min
-1

. (C) k3 > k6; k3 = 100 min
-1

 and 

k6 = 27 min
-1

, and (D) k3 < k6; k3 = 27 min
-1

 and k6 = 100 min
-1

. Fixed values used were: k1, k4 
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and k7  = 270 M
-1

 min
-1

, k2 = 22000 min
-1

, k5 = 11000 min
-1

, k9 = 27 min
-1

. All insets depict 

Eadie-Hofstee plots. 

 

Figure 10. Models for multiple-substrate binding and multiple product formation where (A) one 

or (B) two products undergo sequential metabolism. (C) [P1]/[P2] product ratio versus [S] for 

model A simulated at increasing sequential turnover rate (k11) with k10 fixed at 2700 and 27 min
-

1
. (D) [P1]/[P2] product ratio versus [S] for model B simulated at increasing sequential turnover 

rate of P2 forming P3 (k14) with k10 fixed at 2700 and 27 min
-1

. Common micro rate constants: 

k1, k5, and k9 = 270 min
-1

, k2 and k6 = 10000 M
-1

 min
-1

, k3 = 1 min
-1

 and k7 = 100 min
-1

, k4 and 

k8 = 1 min
-1

. For D, k12 = 270 min
-1

 and k11 = 1 min
-1

. 
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Tables 

Table 1. Different cases for sigmoidal kinetics 

Parameter Case I Case II Case III Case IV 

k2, k5 

(Km1, Km2) 

k2 > k5 

(Km1 > Km2) 

k2 = k5 

(Km1 = Km2) 

k2 > k5 

(Km1 > Km2) 

k2 = k5 

(Km1 = Km2) 

k3, k6 

(kcat1, kcat2) 

k6 = k3 

(kcat1 = kcat2 > 0) 

k6 > k3 

(kcat2 > kcat1 > 0) 

k6 > k3 = 0 

(kcat2 > kcat1 = 0) 

k6 > k3 = 0 

(kcat2 > kcat1 = 0) 

The cases k2 > k5 (Km1 > Km2) and k6 > k3 = 0 (kcat1 > kcat2 > 0) are not discussed. 
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