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ABSTRACT 

 Duocarmycin natural products are promising anti-cancer cytotoxins but too potent for 

systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs 

designed for bioactivation by tissue-specific cytochrome P450 enzymes. Lead prodrugs 

bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in 

xenograft studies, however to fully understand the potential of these agents it is desirable to 

compare dual-targeting compounds with isoform-selective analogs. Such redesign requires 

insight into the molecular interactions with these P450 enzymes. Herein binding and metabolism 

of the individual stereoisomers of the indole-based duocarmycin prodrug ICT2700 and a 

nontoxic benzofuran analog ICT2726 were evaluated with CYP1A1 and CYP2W1, revealing 

differences exploitable for drug design. While enantiomers of both compounds bound to and 

were metabolized by CYP1A1, the stereochemistry of the chloromethyl fragment was critical for 

CYP2W1 interactions. CYP2W1 differentially binds the S enantiomer of ICT2726 and its 

metabolite profile could potentially be used as a biomarker to identify CYP2W1 functional 

activity. In contrast to benzofuran-based ICT2726, CYP2W1 differentially binds the R isomer of 

the indole-based ICT2700 over the S stereoisomer. Thus the ICT2700 R configuration warrants 

further investigation as a scaffold to favor CYP2W1-selective bioactivation. Furthermore, 

structures of both duocarmycin S enantiomers with CYP1A1 reveal orientations correlating with 

nontoxic metabolites and further drug design optimization could lead to a decrease of CYP1A1 

bioactivation. Overall, distinctive structural features present in the two P450 active sites can be 

useful for improving P450—and thus tissue-selective—bioactivation.   
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SIGNIFICANCE STATEMENT   

 Prodrug versions of the natural product duocarmycin can be metabolized by human 

tissue-specific cytochrome P450 enzymes 1A1 and 2W1 to form an ultrapotent cytotoxin and/or 

high affinity 2W1 substrates to potentially probe functional activity in situ.  The current work 

defines the binding and metabolism by both P450 enzymes to support the design of 

duocarmycins selectively activated by only one human P450 enzyme.  
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VISUAL ABSTRACT:  None  
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INTRODUCTION 

 Human cytochrome P450 enzymes are broadly recognized for their capacity to convert 

xenobiotics, including drugs, into metabolites more readily cleared from the body. However, 

P450 metabolism activates some foreign chemicals to reactive intermediates or toxins. While 

these can have significant adverse effects and/or initiate disease, this capacity can be 

alternatively used advantageously to activate prodrugs in situ. Examples include many FDA-

approved anti-cancer compounds such as the DNA-alkylating cyclophosphamide/ifosfamide and 

dacarbazine/procarbazine compounds, the thymidylate synthase inhibitor tegafur, the 

nonsteroidal antiandrogen flutamide, the selective estrogen receptor modulator tamoxifen, the 

bioreductive topoisomerase II inhibitor AQ4N, and many others (see (Sneha et al., 2021)). 

 The ultrapotent cytotoxic duocarmycin natural products have significant anticancer 

potential, but their narrow therapeutic index and lack of tumor-selectivity prevents systemic use 

(Jukes et al., 2021). Novel duocarmycin prodrugs based on the seco-duocarmycin scaffold have 

been developed (Pors et al., 2011; Sheldrake et al., 2013; Travica et al., 2013) that are 

bioactivated by two human cytochrome P450 enzymes: CYP1A1 and CYP2W1. CYP1A1 is an 

inducible extrahepatic enzyme present primarily in lung, placenta, and endothelial cells of the 

skin, intestine, and bladder with significant variation between tissues and individuals (Shimada et 

al., 1992; Lang et al., 2019). For tumors with high CYP1A1 levels, such as bladder tumors 

(Sutherland et al., 2013), CYP1A1-activated therapeutics could be clinically useful, but 

physicians would need to manage side effects due to bioactivation by low CYP1A1 levels in 

healthy tissues. 

 In contrast, CYP2W1, a poorly understood P450, is selectively expressed in colon cancer 

tissues (Karlgren et al., 2006; Gomez et al., 2007; Karlgren and Ingelman-Sundberg, 2007; Edler 

et al., 2009; Gomez et al., 2010; Stenstedt et al., 2014), where its ability to activate prodrugs 
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could be a promising therapy for colorectal tumors. A duocarmycin-based prodrug was shown to 

arrest tumor growth in a CYP2W1-expressing xenograft model without host toxicity (Travica et 

al., 2013), suggesting such a prodrug approach exploiting tumor CYP2W1 holds promise for 

selective colon tumor targeting. 

 Both CYP1A1 and CYP2W1 hydroxylate several duocarmycin bioprecursors at the 

critical position on the chloromethyl indoline (Figure 1) (Sheldrake et al., 2013).  The 

hydroxylated seco-duocarmycin undergoes spontaneous spirocyclization, releasing the chlorine 

and generating a highly constrained cyclopropane (Pors et al., 2011). The indole at the opposite 

end of duocarmycins facilitates sequence-selective DNA binding, so that the newly-formed 

cyclopropane is appropriately located to react with N3 of adenine. Such DNA alkylation is 

cytotoxic. Thus, site-specific hydroxylation is essential for P450 activation of duocarmycin-

based bioprecursors. 

 The specificity of hydroxylation depends on ligand orientation in the P450 active site 

with the desired site of metabolism adjacent to the heme iron. No structures are available for 

CYP2W1, but several exist for CYP1A1. The initial CYP1A1 structure with �-naphthoflavone 

revealed a highly planar enclosed active site (Walsh et al., 2013). Subsequent structures have 

been solved with various ligands, demonstrating how the CYP1A1 active site changes to 

accommodate larger and non-planar compounds (Bart and Scott, 2018; Bart et al., 2020), but do 

not suggest how seco-duocarmycin compounds might be redesigned for increased selectivity for 

CYP1A1 or CYP2W1. The chemical scaffolds of ICT2700 and ICT2726 consist of an indole 

connected to another indole or a benzofuran, respectively (Figure 1). While each planar fused 

aromatic system would correlate well to a highly planar and narrow CYP1A1 active site 

individually, the linker between them does not constrain the two aromatic heterocyclic systems 

to the same plane. The chloromethyl arm also deviates from planarity and could sterically clash 
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with a narrow active site. While flexibility has been observed in certain structural elements in 

CYP1A1, it is not clear how these duocarmycin-type ligands would be accommodated. 

 To optimize the clinical utility, the seco-duocarmycins should be modified for more 

selective activation, preferably by CYP2W1 due to its exclusive expression in tumor tissue. 

Previous studies (Sheldrake et al., 2013) revealed functionalization of the DNA-binding motif 

that improved CYP1A1 bioactivation over CYP2W1, but structural changes favoring CYP2W1 

activation are unknown. Such engineering has been impaired by the absence of information 

about how CYP1A1 and CYP2W1 interact with duocarmycin bioprecursors. Thus, the current 

study characterized binding and metabolism of duocarmycin-based compounds with both 

enzymes. Of specific interest are the prodrug duocarmycin ICT2700 and a potential biomarker 

version, ICT2726 that may be useful to identify CYP2W1-active cells prior to treatment. The 

current work examined both enantiomers of both compounds to CYP1A1 and CYP2W1, 

revealing key interactions that could be used to design second generation duocarmycin 

bioprecursors with improved P450 selectivity and bioactivation.  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 4, 2021 as DOI: 10.1124/dmd.121.000642

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

 9 

MATERIALS AND METHODS 

Synthesis and chromatographic resolution of ICT2700 and ICT2726 stereoisomers  

 Racemic ICT2700 and ICT2726 were synthesized as previously described (Sheldrake et 

al., 2013; Travica et al., 2013).  These compounds were dissolved in 99:1 

dichloromethane/ethanol at the concentration of 4 mg/ml and 23.8 mg/ml, respectively. 

Enantiomers of ICT2700 and ICT2726 were resolved on a semipreparative Daicel ChiralPak ID 

column (10 mm X 250 mm; 5 μm) with 99:1:0.1 dichloromethane/ethanol/diethylamine elution 

and a flow of 2.5 ml/min. 

 Single crystal X-ray diffraction data on a single enantiomer of ICT2700 and of ICT2726 

were collected using a Bruker X8 diffractometer with an APEX II detector and monochromatic 

Cu Kα radiation (λ = 1.5418 Å) at 173 K. The data was processed using Bruker SAINT.  The 

structures were determined with SHELXT (Sheldrick, 2015) and subsequently refined with 

SHELXL (Sheldrick, 2008) within the program Olex2 (Dolomanov et al., 2009). Details of the 

crystallographic data are given in the Table S1. Crystal structures were visualized using Mercury 

(Macrae et al., 2008). The X-ray data for ICT2700 and ICT2726 have been deposited with the 

Cambridge Crystallographic Data Centre. CCDC (numbers 2051115 and 2051117). 

 

Protein Expression and Purification 

 Human CYP1A1 and CYP2W1 enzymes were generated that had truncations of the N-

terminal membrane-anchoring helix to increase solubility and addition of a C-terminal histidine 

tag to facilitate purification. The construct for CYP1A1 has been described previously (Walsh et 

al., 2013).  For CYP2W1, a synthetic codon-optimized gene was generated in which the resulting 

amino acid sequence was almost the same as the 2W1 #3 construct described by Wu et al. (Wu et 
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al., 2006), in that residues 3-31 were replaced with KKTSSKGKL, but the C-terminal histidine 

tag consisted of only four histidines instead of five. 

 Expression and purification of CYP1A1 was performed without modification as 

described (Bart and Scott, 2018).  Expression of CYP2W1 was based on the method described 

for CYP1A1 (Bart and Scott, 2018), with some modifications. These included inoculation with 5 

mL of starter culture per 1 L expression culture and growing in 2.8 L Fernbach flasks, a lower 

shaking speed of 225 rpm during cell growth and 200 rpm after induction, and addition of 5 mM 

imidazole to expression cultures to help stabilize CYP2W1. Purification of CYP2W1 was 

initially based on the CYP1A1 purification method, however substantial modifications were 

made, therefore for clarity a detailed protocol is provided below. 

 Purification of CYP2W1 began with thawing frozen cell pellets in a buffer consisting of 

20 mM potassium phosphate, 20% (v/v) glycerol, 5 mM imidazole, with 1 mM of the serine 

protease inhibitor phenylmethanesulfonyl fluoride (PMSF), pH 7.4. Thawed and resuspended 

cells were lysed by French press using a single pass with a pressure of 15,000 psi. The lysed cell 

suspension was then subjected to ultra-centrifugation for 30 minutes at 142,000 x g to isolate 

membranes. Pelleted membranes were gently washed twice with the lysis buffer, then 

resuspended by homogenization in an extraction buffer composed of 100 mM potassium 

phosphate, 500 mM NaCl, 20% (v/v) glycerol, 15 mM imidazole, 1% (w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (the detergent CHAPS), and 1 mM 

PMSF, pH 7.4.  Resuspended membranes were stirred for 1 hour to promote P450 extraction 

from the membranes.  Membranes were then pelleted by a second ultra-centrifugation using the 

above parameters.  The clarified supernatant was loaded onto a 25 mL nickel-nitrilotriacetic acid 

(Ni-NTA) column (Qiagen, Germantown, MD) equilibrated with the extraction buffer.  To 

remove unbound and non-specifically bound proteins, four column volumes (CV) of extraction 
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buffer followed by 10 CV of a Ni-NTA wash buffer (100 mM potassium phosphate, 100 mM 

NaCl, 20% (v/v) glycerol, 15 mM imidazole, 9 mM CHAPS, pH 7.4) were used. CYP2W1 was 

eluted using a linear gradient from Ni-NTA wash buffer to Ni-NTA elution buffer (10 mM 

potassium phosphate, 100 mM NaCl, 20% (v/v) glycerol, 250 mM imidazole, 9 mM CHAPS, pH 

7.4) over 6 CV, with addition of 2 CV of Ni-NTA elution buffer to ensure complete elution.  Ni-

NTA fractions with A426/A280 > 0.8 were pooled and diluted 5-fold with an ion-exchange wash 

buffer (10 mM potassium phosphate, 50 mM NaCl, 20% (v/v) glycerol, 1 mM EDTA, pH 7.4). 

Diluted sample was then applied to two 5-ml Hi-Trap carboxymethyl-Sepharose fast-flow 

columns (GE Healthcare, Chicago, IL) connected in series (total 10 ml column volume). This 

was first washed with 10 CV of ion-exchange wash buffer, then a 6 CV linear gradient was 

applied transitioning from the ion-exchange wash buffer to an ion-exchange elution buffer (50 

mM potassium phosphate, 500 mM NaCl, 20% (v/v) glycerol, 1 mM EDTA, pH 7.4) to elute 

CYP2W1. An additional 2 CV of ion-exchange elution buffer was run through the column to 

ensure complete elution.  Eluted fractions from the CM column with A419/A280 > 1.0 were pooled 

and concentrated to ~2 ml for application onto a Superdex 200 gel filtration column (GE 

Healthcare, Chicago, IL) run isocratically using the ion-exchange elution buffer. The major 

elution peak fractions with A419/A280 > 1.0 were pooled, flash-frozen in aliquots, and stored at -

80 �C. 

 The purified P450 proteins were also evaluated by SDS-PAGE to assess purity. The 

reduced carbon monoxide-difference assay served as a method to evaluate P450 stability (Omura 

and Sato, 1964). Quantification of both CYP1A1 and CYP2W1 for use in ligand binding assays 

and crystallography was performed by UV-vis spectroscopy, using the Soret peak extinction 

coefficient of 100 mM-1cm-1 in the final buffer for the respective proteins plus 250 mM 
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imidazole.   The human NADPH-cytochrome P450 reductase construct hPORG3H6�27 

(Sandee and Miller, 2011) was expressed and purified as described (Bart and Scott, 2017). 

 

Ligand Binding Assays 

 The affinities and binding modes of the duocarmycin compounds to CYP1A1 and 

CYP2W1 (1 µM) were measured in 2 cm tandem quartz cuvettes using the method previously 

described (Bart and Scott, 2018). Spectral binding data was determined in duplicate and fit to a 

quadratic equation used for tight binding (DeVore et al., 2009). 

 

Crystallization, Data Collection, and Structure Determination 

 CYP1A1 was co-crystallized with the seco-duocarmycin compounds (S)-ICT2700 and 

(S)-ICT2726 as described previously (Bart and Scott, 2018), with modifications listed below. 

Purified CYP1A1 was saturated with the respective duocarmycin by three iterative rounds of 

dilution (in ion-exchange elution buffer with 0.4 M NH4NO3) and concentration via centrifugal 

ultrafiltration. Ligand was added at 20 �M for (S)-ICT2726 or 100 �M for (S)-ICT2700 during 

each dilution. The resulting complexes were then concentrated to a final protein concentration of 

20 mg/ml. Crystals of both complexes were grown at 4 �C using the sitting-drop vapor diffusion 

method. For CYP1A1/(S)-ICT2700, crystals were grown in a 96-well plate mixing 0.75 �L 

CYP1A1 with 0.75 �L of crystallization solution (0.18 M sodium phosphate dibasic, 18% (w/v) 

PEG 3350, 9% (v/v) glycerol, 5 mM (S)-O-methyl-serine dodecylamide hydroxhloride) against a 

50 �L reservoir of the same crystallization solution. Crystals of the CYP1A1/(S)-ICT2726 

complex were grown in a 24-well plate by mixing 1 �L CYP1A1, 0.2 �L 18 mM n-decyl-�-D-

maltoside, and 0.8 �L crystallization solution (0.2 M sodium phosphate dibasic, 20% (w/v) PEG 

3350), equilibrated with a 100 �L reservoir of the same crystallization solution. Crystals were 
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harvested by transferring into the respective crystallization solution containing 20% glycerol and 

flash cooled in liquid nitrogen. Diffraction data for the CYP1A1/(S)-ICT2700 crystal was 

collected on beamline 21-ID-G at the Advanced Photon Source LS-CAT, while data for 

CYP1A1/(S)-ICT2726 was collected on beamline 9-2 at the Stanford Synchrotron Radiation 

Lightsource. 

 Data processing for the CYP1A1/(S)-ICT2700 dataset was performed using HKL2000 

(Otwinowski and Minor, 1997), and a structure solution was obtained by molecular replacement 

via Phaser (McCoy et al., 2007) with the CYP1A1/�-naphthoflavone structure as the search 

model (PDB 4I8V, molecule A), resulting in a log likelihood of 667 and translation function Z 

score of 27.3. For the CYP1A1/(S)-ICT2726 complex, X-ray diffraction data was processed in 

XDS (Kabsch, 2010) and scaled in AIMLESS (Evans and Murshudov, 2013). A molecular 

replacement solution for this structure was obtained from MolRep (Vagin and Teplyakov, 1997), 

again using chain A of the CYP1A1/�-naphthoflavone structure as the search model (contrast 

score of 30.59).  Iterative model building and refinement of both structures were performed using 

COOT (Emsley et al., 2010) and PHENIX (Adams et al., 2010), respectively. Ligand coordinates 

and restraints for the seco-duocarmycins were generated using PHENIX eLBOW (Moriarty et 

al., 2009) with AM1 geometry optimization. Data collection and refinement statistics are 

provided in Table 1. Crystal structure figures were prepared using PyMOL (Schrodinger). 

 

P450 metabolism and LC-MS analysis 

 A reconstituted protein system (RPS) was created by mixing 200 pmol P450 with 400 

pmol  human NADPH cytochrome P450 reductase and incubating for 10 min at room 

temperature. Freshly prepared 1,2-dilauroyl-sn-glycero-3-phosphocholine (DPLC, 125 μM) in 

assay buffer (100 mM potassium phosphate, pH 7.4) was added and incubation continued for an 
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additional 10 min at room temperature. The RPS was then added to an eppendorf tube containing 

assay buffer and the ICT substrate (50 μM), at a total volume of 480 μl prior to the addition of 

NADPH. The mixture was incubated at 37 C for 3 min in a block heater (Grant Block Heater 

QBD4, UK). NADPH (20 μl of 25 mM stock in assay buffer) was added to the incubating 

mixture to a final concentration 1 mM to initiate the reaction.  Aliquots (100 μl) were then 

removed over a 60-minute period, i.e. at 0, 15, 30 and 60 min into labelled eppendorf tubes 

containing dichloromethane (200 μl), gently mixed, and placed on ice. Tubes were centrifuged 

(4500 g, 2 mins) with 200 μl of the bottom organic layer carefully removed into separate tubes, 

and dried using a SP Genevac EZ-PLUS evaporator for 30 mins. The dried reactions were each 

dissolved in 50 μl 90% ACN, 10% H2O, 0.1% formic acid and transferred into an HPLC vial for 

LC-MS analysis. 

 LC-MS investigations were carried out using a gradient method (Supp. Table 2) on a 

HiChrom RPB column (25 cm x 2.1 mm id; HIRPB-250AM; R6125) using a Waters Alliance 

2695 HPLC (Micromass, Manchester, UK) with a photodiode array detector and connected in 

series with Waters Micromass ZQ quadrupole mass spectrometer in ESI+ mode. P450 substrates 

and their respective metabolites were detected using UV absorbance at 330 nm for ICT2700 and 

312 nm for 2726, with their associated masses identified as singularly charged ions by MS. MS 

ESI+ source parameters: Desolvation gas; 650 l/hr, cone gas; 50 l/hr, capillary voltage; 3 kV, 

extraction voltage; 5 V, cone voltage; 20 V, Rf voltage; 0.2 V, source block temperature; 120 ºC 

and desolvation temperature; 350 ºC. 
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RESULTS 

 

Resolution and determination of ICT2700 and ICT2726 enantiomers 

 ICT2700 and ICT2726 are both chiral at the carbon adjacent to the chloromethyl group 

(Figure 1). Previous reports (Sheldrake et al., 2013; Travica et al., 2013) have used racemic 

mixtures for pharmacological investigations. While the racemic form of ICT2700 demonstrated 

potency in tumor growth inhibition and cell death in CYP1A1- and CYP2W1-transfected cancer 

cells (Sheldrake et al., 2013), it is unknown if differences in chirality of ICT2700 would affect 

binding or metabolism by these two P450 enzymes.  In the current studies, the two enantiomers 

of ICT2700 and of ICT2726 were each successfully resolved by chiral phase (ChiralPak ID) 

HPLC with a 99:1:0.1 dichloromethane/ethanol/diethylamine eluent. A single stereoisomer from 

each ICT compound was successfully crystallized from ethanol in acetone and crystallographic 

determination identified both as the R enantiomers of ICT2700 and ICT2726, respectively (Supp. 

Fig. 1 and Supp. Table 1).  For each compound the other HPLC peak was assigned as the S 

enantiomer. This separation and assignment allowed evaluation of the individual stereoisomers. 

 

Seco-Duocarmycin Binding Modes and Affinities for Human CYP1A1 and CYP2W1 

 Binding of ligands in a cytochrome P450 active site can usually be monitored by 

observing shifts in the absorbance maximum of the heme Soret peak. Substrates typically shift 

the Soret peak to shorter wavelengths as they bind in the active site close enough to the heme to 

displace water from its central iron. As a result, they shift the iron spin equilibrium from its six-

coordinate, low-spin form to the five-coordinate, high-spin form. This is typically observed in 

the form of UV-visible difference spectra, where such “Type I” binding is associated with 

decreases in absorbance at ~430 nm and increases at ~393 nm. These were exactly the changes 
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observed when CYP1A1 was progressively titrated with each ICT2726 enantiomer (Figure 2A 

and 2B). Both (S)- and (R)-ICT2726 bound CYP1A1 with relatively high affinity, with Kd values 

of 0.23 � 0.02 �M and 0.71 � 0.05 �M (insets to Figures 2A and 2B), respectively. This suggests 

that both enantiomers of ICT2726, the potential CYP2W1-biomarker compound, bind in the 

CYP1A1 active site similar to substrates. 

 CYP2W1 also bound (S)-ICT2726 (Figure 1) with classic Type I, substrate-like spectral 

changes (Figure 2C). The affinity of (S)-ICT2726 was also relatively high for CYP2W1, with a 

Kd of 0.41 � 0.03 �M (Figure 2C, inset). However, (R)-ICT2726 addition to CYP2W1 did not 

result in significant spectral shifts in the difference spectra at concentrations as high as ~10 �M 

(Figure 2D). This result suggests that either the R-enantiomer does not bind CYP2W1 with 

significant affinity or it binds in a different mode that does not disrupt water coordinated to the 

heme iron in the active site. 

 Similar titrations were used to evaluate CYP1A1 and CYP2W1 binding of ICT2700, 

which is bioactivated by both enzymes to generate a potent cell-killing metabolite (Figure 1). 

Since ICT2700 is a validated substrate for both enzymes, it was expected that the titrations might 

show Type I spectral shifts similar to those observed for ICT2726 above. However, the binding 

modes observed with ICT2700 were markedly distinct. Binding to CYP1A1 was notable in three 

ways. First, the dominant feature of CYP1A1 binding of both ICT2700 enantiomers were 

increases in absorbance eventually emerging at 412-415 nm with a smaller trough forming at 

432-434 nm (Figure 3A and 3B). This primary maximum at ~412-415 nm suggests that ligand 

binding likely promotes oxygen interaction with the heme iron, rather than displacing the iron-

coordinated water. It is possible that either ligand orientation within the active site reinforces 

water coordination to the heme iron or that an oxygen of the ligand (e.g. the methoxy group) 

interacts with the heme iron. Second, the peak is broader throughout the titration, especially for 
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the R-enantiomer, with a secondary increase in absorbance at 398 nm (Figure 3B). This broad 

peak shape is consistent with the presence of two different binding modes for ICT2700 across 

the population of CYP1A1 active sites, with the secondary one at 398 nm more similar to the 

substrate-like binding mode observed for ICT2726. Third, the affinities for (S)- and (R)-ICT2700 

for CYP1A1 were 1.9 � 0.1 �M (Figure 3A, inset) and 1-2 µM (depending on the wavelength 

used, Figure 3B, inset), respectively. Thus (S)-ICT2726 has about an 8-fold higher affinity for 

CYP1A1 than (S)-ICT2700, while the affinities for the R enantiomers are more similar. 

 As was the case for ICT2726, titrations of the ICT2700 enantiomers into CYP2W1 

revealed a distinct preference for one enantiomer. Addition of up to ~15 �M (S)-ICT2700 into 1 

µM CYP2W1 had minimal effects on the P450 spectrum (Figure 3C). This could indicate that 

either the S-enantiomer has weak or no affinity towards CYP2W1 or does not bind in the active 

site close enough to disrupt the water on the heme iron. In contrast, the R-enantiomer produced a 

unique binding mode characterized primarily by a peak around 423 nm (Figure 3D). While there 

does not appear to be a clear corresponding decrease in absorbance, this could be partially 

obscured by changes in background absorbance caused by this compound itself in the UV range 

(350-380 nm). This red-shifting of the Soret peak position is generally consistent with spectral 

changes that occur when a ligand nitrogen replaces the water interacting with the heme iron. 

ICT2700 has two nitrogen-containing indole ring systems that are possibilities for direct iron 

coordination, but the most likely position would be the indole on the alkylation sub-unit as it 

may be sterically less hindered, as well as being close to the known site of metabolism (Figure 

1). The affinity for this interaction is relatively weak, with a Kd = 8 � 1 �M (Figure 3D, inset). 

Since the N-Fe coordination appears to be weak, it is possible that this N-Fe feature helps to 

orient the molecule in the active site for bioactivation, but also allows for the dissociation from 

the iron so that hydroxylation can occur at the adjacent C5 as required for bioactivation. Notably, 
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replacement of the indole with a naphthyl moiety omitting the nitrogen drastically reduced 

duocarmycin activation by CYP2W1 (and CYP1A1), which would be consistent with a 

propensity of this nitrogen directing the nearby critical C5 towards the heme iron (Sheldrake et 

al., 2013). 

 

Metabolism of ICT2700 and ICT2726 Enantiomers by CYP1A1 and CYP2W1 

 A previous study reported that racemic ICT2700 is metabolized by CYP1A1 bactosomes 

to generate four major metabolites, two of which were identified as the hydroxylated seco-

duocarmycin (Figure 1, bottom left) which undergoes spontaneous spirocyclization, and the 

resulting cyclopropane product responsible for DNA damage, and potent cell killing (Figure 1, 

bottom right) (Pors et al., 2011). Another study showed that the racemic ICT2726 analog did not 

cause DNA damage or kill cells in CYP2W1-transfected cells despite high metabolism by 

CYP2W1 (Travica et al., 2013). The current study determined whether the R and S enantiomers 

were differentially metabolized using a reconstituted protein system composed of either purified 

CYP1A1 or CYP2W1, human cytochrome P450 reductase, NADPH, and DLPC liposome. The R 

and S enantiomers were each incubated with this reconstituted protein system at 37 °C and 

aliquots were taken at four time points (0, 15, 30 and 60 min). These were analyzed by LC-MS 

and revealed several metabolic differences. 

 CYP1A1 metabolizes (S)-ICT2700 to at least twelve different metabolites (Figure 4A, 

red). These include the initial hydroxylated seco-duocarmycin critical for spirocyclization 

(Figure 4A, M13 or ICT2740) and the post-spirocyclization cytotoxic product, which is a major 

metabolite (Figure 4A, red, M6).  CYP1A1 also metabolizes (R)-ICT2700, but with lower yield 

and to fewer metabolites.  In this case, the hydroxylated seco-duocarmycin metabolite (M13) is 

not observed at significant levels, but must be transiently generated because the spirocyclized 
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metabolite is also detected, albeit at much lower levels (Figure 4A, green, M6).  Significantly, 

the hydroxylated seco-duocarmycin ICT2740 (eluting at t = 25.4 min, m/z 396.1) and the 

spirocyclized metabolite necessary for DNA binding and cytotoxicity were generated primarily 

from the S enantiomer.  In contrast, CYP2W1 metabolizes ICT2700 stereoisomers more 

specifically, to only one (R) or two (S) products (Figure 4B). These are generated in quite low 

yield (1 and 4%, respectively) and are not related to prodrug activation because they contain an 

intact chloromethyl fragment.  Metabolite M1 is supportive of a single hydroxylation (m/z 396.1) 

while it was not possible to analyze M2 due to the low yield (Figure 4B).  

 Metabolism of the stereoisomers of the non-cytotoxic analog ICT2726 also differed 

between the two P450 enzymes. CYP1A1 converted both stereoisomers to multiple products, 

with similar overall metabolite profiles, though the R enantiomer is the better substrate while the 

S enantiomer was a little more selective in generating the major singly-hydroxylated product 

(Figure 4C, M6, parent m/z 368.9 + 16). However, CYP2W1 had very distinct metabolism of the 

ICT2726 isomers. CYP2W1 converted (R)-ICT2726 to very few metabolites and at exceedingly 

low yield (Figure 4D, red), while (S)-ICT2726 was highly metabolized with >14 identifiable 

peaks accounting for ~38% metabolism (measured by the area under the curve, Figure 4D, 

green).  Comparison of the metabolite m/z profiles (Figure 4C vs. 4D) reveals that most of these 

metabolites are unique for CYP2W1 vs. CYP1A1 and thus have the potential to serve as 

biomarker of CYP2W1 enzymatic activity. The major (S)-ICT2726 metabolites generated by 

CYP2W1 (M1 and M2) produced m/z (M+1) of 356.1 and 372.1 with an intact Cl isotope 

pattern.  This is consistent with a single or double hydroxylation, corresponding to the addition 

of 16 or 32 Da, rather than the hydroxymethyl metabolite dominant in colon cancer cell studies 

(Travica et al., 2013).  These two major metabolites had a UV-vis spectrum with a maximum at 

330 nm, indicating that oxidation had not altered the duocarmycin pharmacophore to generate 
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the spirocyclized duocarmycin cytotoxin. Thus these major metabolites are expected to be 

nontoxic. 

 

Co-Crystal Structures of CYP1A1 with (S)-ICT2700 and (S)-ICT2726 

 Co-crystallization was attempted for both enantiomers of ICT2700 and ICT2726 with 

both CYP1A1 and CYP2W1 enzymes. No structures have been reported for CYP2W1 with any 

ligand and similarly our efforts did not yield crystals with these ICT compounds.  However, 

diffraction quality crystals were obtained for CYP1A1 with (S)-ICT2700 and (S)-ICT2726, 

yielding structures at 2.9 Å and 3.1 Å, respectively. The (S)-ICT2700 complex was solved in the 

orthorhombic P212121 crystal form that other CYP1A1 structures have displayed, however the 

co-crystal structure with (S)-ICT2726 solved in a new crystal system, with a trigonal P3121 space 

group. Even with different symmetry, the crystal contacts between molecules were similar and 

each structure contained four copies of the CYP1A1/ICT ligand complex in the asymmetric unit.  

In both complexes the overall fold of CYP1A1 was as seen in previous solved structures of the 

enzyme (Walsh et al., 2013; Bart and Scott, 2018; Bart et al., 2020). The one region of CYP1A1 

that has been observed in varied conformations when different ligands are bound consists of 

helices F through G that form the roof of the active site (Bart and Scott, 2018). Despite the 

significantly more elongated structures of the duocarmycins, this region displayed a 

conformation of this region most similar to that reported when smaller, more compact �-

naphthoflavone is bound (Walsh et al., 2013). This includes a five-residue break in the F helix as 

it passes over the active site, a distinctive common feature for human CYP1 structures (Sansen et 

al., 2007; Wang et al., 2011). 

 The (S)-ICT2726 ligand is present in all four CYP1A1 copies of the crystal structure and 

the binding mode appears to be consistent among them. The best fit to the observed electron 
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density positions the 5-fluoroindole ring of (S)-ICT2726 above the heme (Figure 5A) with the 

closest carbon atoms of the six-membered ring each 4.3 Å from the iron (Figure 5A, red dashed 

lines). The fluorine projects towards a cluster of hydrophobic residues forming the bottom 

portion of the CYP1A1 active site. On the opposite half of the molecule the pyrrole ring pi-pi 

stacks with Phe-224 in the F helix break. The linker between the two rings is co-planar with the 

two ring systems and packs against the peptide bond between Gly-316 and Ala-317 in the I helix. 

These and other interactions constrain the overall molecule with the two halves of the small 

molecule in a co-planar conformation. The only exception is the chloromethyl arm of the ligand, 

which is directed into the break in the F helix and is in close contact (2.7 Å) to the side-chain 

oxygen of Asn-222 where it could potentially form a halogen-oxygen interaction (Figure 5A, 

yellow dashed line). In some copies of the complex there is evidence for an active site water 

forming a hydrogen bond network bridging from the side chain of Ser-122 (B'/C loop) to the 

ligand’s linker carbonyl oxygen. 

 The second CYP1A1 structure was determined with (S)-ICT2700, which is bioactivated 

by CYP1A1 to form the DNA alkylating metabolite (vide supra). Due to ligand disorder and/or 

low occupancy, this molecule could only be placed into the observed electron density for two of 

four CYP1A1 molecules in the asymmetric unit. In these two CYP1A1 molecules, the overall 

conformation of (S)-ICT2700 also has the two halves of the molecule co-planar (Figure 5B). The 

overall orientation is similar to (S)-ICT2726 in that the DNA recognition motif is directly above 

the heme and the DNA-alkylating subunit is more distant. However, the DNA-alkylating subunit 

of (S)-ICT2700 appears to be flipped by 180° with respect to the DNA-binding subunit 

compared to (S)-ICT2726 (Figure 5A vs. 5B). This reorientation of the DNA-alkylating ring 

system for (S)-ICT2700 directs the chloromethyl arm toward the B' helix and the fused pyrrole 

into the F helix break.  This still permits stacking between Phe-224 and the aromatic 
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pyrroloindole system of (S)-ICT2700. The indole nitrogen of this portion of the ligand makes a 

hydrogen bond interaction with the oxygen of Asn-222 (2.8 Å). Similar to (S)-ICT2726, the 

chlorine of the chloromethyl substituent also makes a potential halogen-oxygen interaction, but 

in this case, it is a longer interaction with the oxygen of Ser-116 in the B' helix (3.5 Å, Figure 

5B, yellow dashed line). In one molecule, electron density suggested water-mediated hydrogen 

bonding interactions between Ser-122, and the ligand linker carbonyl oxygen and nitrogen of the 

methoxy-indole ring, similar to the CYP1A1/(S)-ICT2726 complex. One of the differences 

between ICT2700 and ICT2726 is the substitution of a methoxy group on the DNA-recognition 

motif of ICT2700 vs. a fluorine substituent at this position for ICT2726. The positioning of these 

two groups is quite similar in a hydrophobic pocket over the heme, with the oxygen in ICT2700 

only 4.8 Å from the iron. 

 

DISCUSSION 

Comparisons and Applications of CYP1A1 vs. CYP2W1 Interactions with Seco-duocarmycins 

 CYP2W1 is still classified as an orphan enzyme. Little is known about its substrate scope 

or endogenous role. One possible endogenous role that has been suggested is oxidation of 

lysophospholipids, which could have importance in inflammation and tumor development (Xiao 

and Guengerich, 2012). Based on sequence identity, CYP2W1 groups with the xenobiotic-

metabolizing P450 enzymes and does have examples of drug substrates, some of which suggest a 

partially overlapping substrate profile with CYP1A1. In addition to the reengineered 

duocarmycin molecules such as those examined herein, CYP1A1 and CYP2W1 both metabolize 

substrates such as the benzothiazole-based anticancer compounds 5F 203 and GW 610 (Wang 

and Guengerich, 2012), AQ4N (Yakkundi et al., 2006; Nishida et al., 2010), all-trans-retinoic 

acid (Marill et al., 2000; Zhao et al., 2016), and the polycyclic aromatic hydrocarbon 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 4, 2021 as DOI: 10.1124/dmd.121.000642

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

 23 

benzo[a]pyrene (Wu et al., 2006). This indicates that shared active-site elements are present 

between the two enzymes that would need to be elucidated to design more selective duocarmycin 

prodrugs. 

 The clinical utility of duocarmycin prodrugs activated by in situ cytochrome P450 

activation is dependent on 1) the selectivity of the duocarmycin for an individual P450 and 2) the 

selective expression of that P450 in the targeted tissue. Duocarmycin prodrugs designed for 

selective in situ bioactivation by CYP1A1 are of potential clinical utility in tissues such as the 

lung and bladder where this enzyme is expressed at higher levels. However, this enzyme is also 

normally expressed at low levels in other tissues, which could result in undesirable side effects.  

Duocarmycin prodrugs designed to be selectively activated by CYP2W1 would not suffer from 

the latter issue because CYP2W1 is selectively expressed in colon cancer tissues and not in 

normal adult tissues (Choong et al., 2015). Modulating the P450—and thus tissue—selectivity of 

these prodrugs relies on understanding the molecular-level interactions of these compounds with 

both P450 enzymes. Such insight could result in duocarmycin analogs with increased CYP2W1 

bioactivation and aid us to evaluate whether single CYP1A1 or 2W1-targeting prodrugs or dual-

targeting CYP1A1 and 2W1 prodrugs are better therapeutics. 

 CYP1A1 binds both enantiomers of both ICT compounds examined herein. Spectral 

changes for the nontoxic ICT2726 analogs were similar to those commonly observed for 

substrates (Figure 2A, 2B) and multiple metabolites (Figure 4C) were indeed detected. The R 

enantiomer is more extensively metabolized, but the S enantiomer appears to bind about 2-fold 

more tightly. The structure of the CYP1A1/(S)-ICT2726 complex (Figure 5A) reveals that the 

ligand scaffold is constrained to a planar conformation, with the chloromethyl fragment 

accommodated by a break in the F helix that is common in CYP1 structures. This overall 

orientation is consistent with oxidation on the DNA-binding half of the molecule to generate the 
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non-toxic metabolites observed.  By comparison, the bioactivated ICT2700 compounds 

demonstrated evidence for two binding modes, especially for the R enantiomer (Figure 3A and 

3B), and were both metabolized to multiple metabolites (Figure 4A). Metabolites of ICT2700 

included the cytotoxic product, with substantially less from (R)-ICT2700 compared to the S 

enantiomer. However, the structure of the CYP1A1/(S)-ICT2700 complex revealed the 

orientation of (S)-ICT2700 with the DNA-alkylating subunit distant from the heme and the 

DNA-binding subunit closer to the heme for metabolism (Figure 5B). This orientation places the 

carbon oxidized to generate the cytotoxic metabolite 9.6 Å away from the heme iron. This 

orientation is consistent with the multiple non-toxic metabolites observed, but not the 

spirocyclized toxic metabolite. Thus, a second orientation with the (S)-ICT2700 DNA-alkylating 

domain toward the heme must also occur to generate the observed cytotoxic metabolite (Figure 

4A, M13�M6). A possible explanation for this could be that the orientation observed in the 

crystal structure may be the dominant binding pose, with a minor pose being responsible for 

bioactivation. This would be consistent with the reported observation that the CYP2W1-activated 

species undergoing spirocyclization is a minor product rather than the major product (Pors et al., 

2011). The ICT2700 molecule has two planar fused-ring halves, which are constrained to be 

coplanar by the active site, so is not difficult to imagine that an orientation with the molecule 

with the ligand flipped 180° lengthwise, swapping the DNA-alkylating and DNA-binding 

domains, might also be accommodated by the CYP1A1 active site. Modifying (S)-ICT2700 to 

further favor the orientation observed in this structure should decrease CYP1A1 bioactivation. 

 In contrast to CYP1A1, CYP2W1 appears to be more selective in the binding and 

metabolism of these duocarmycins. The spectral binding data suggests that this enzyme binds the 

nontoxic analog (S)-ICT2726 over the R enantiomer, and correspondingly generates more total 

turnover of the S stereoisomer, as well as more different metabolites. Many of these seem to be 
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distinct from those generated by CYP1A1, further supporting the idea that the (S)-ICT2726 

metabolite profile could be used to identify CYP2W1-expressing cells. Again, demonstrating the 

importance of steric factors for CYP2W1, spectral binding changes suggested that compared to 

the S enantiomer, the (R)-ICT2700 stereoisomer bound and was also more extensively 

metabolized.   

 While there are no structures of CYP2W1 with duocarmycins or any other ligands, the 

binding information herein suggests differences between the two active sites could potentially be 

exploited. It is interesting that CYP2W1 appears to be distinctively affected by the chirality of 

the chloromethyl moiety for both compounds.  CYP2W1 appears to bind (R)-ICT2700, but the 

(S) enantiomer of ICT2726. CYP1A1 binds both enantiomers of both compounds, though there 

are differences in affinity and homogeneity. These observations may indicate that the CYP2W1 

active site could be less flexible than that of CYP1A1. Regardless, employing only the R isomer 

as a scaffold should help direct CYP2W1 bioactivation.  This enantiomeric preference could 

therefore be useful in the design of duocarmycin prodrugs with improved P450 isoform 

selectivity. 

 Another potentially important observation became apparent with the current studies.  

Herein it was observed that recombinant, purified CYP2W1 incubated with recombinant, 

purified NADPH-cytochrome P450 reductase, the typical redox partner for microsomal human 

P450 enzymes, resulted in CYP2W1-mediated metabolism of both ICT compounds (Fig. 4B and 

4D), although metabolism was low for some compounds and the spirocyclized toxic metabolite 

was not generated from ICT2700 at detectable levels.  This result is not specific to the ICT 

substrates herein, as in our hands this same enzyme system metabolizes several proluciferin 

substrates sold by Promega to probe the function of other cytochrome P450 enzymes 

(unpublished data).  However, this is in contradiction with two prior reports.  First, Sheldrake et 
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al. reported that recombinant CYP2W1 did generate the toxic spirocyclized ICT2700 metabolite 

in experiments where CYP2W1 was reduced by not NADPH-cytochrome P450 reductase but 

rather by cumene hydroperoxide, a small molecule artificially used to generate the active 

intermediate of P450 enzymes (Sheldrake et al., 2013). Second, Guo et al. used in vivo 

knockdown and inhibitor studies to suggest that CYP2W1 activity may not be supported by the 

typical NADPH-cytochrome P450 reductase—or several possible alternative redox partners—in 

HEK cells stably transformed to express CYP2W1.  However, xenograft experiments using 

colon cancer cells expressing CYP2W1 did successfully convert a similar seco-duocarmycin 

prodrug to a cytotoxic product (Travica et al., 2013).  This latter result indicates there must be a 

cellular redox partner, either NADPH-cytochrome P450 reductase or an unknown molecule. 

Thus, a critical unresolved aspect that will impact the success of drug development and the 

clinical utility of this approach is to determine the appropriate redox partner(s) to appropriately 

compare in vitro and in vivo studies and to determine if the redox partner influences which 

metabolite(s) are produced. 

Overall, this information indicates that NADPH-cytochrome P450 reductase can support 

CYP2W1 metabolism in vitro and that distinctive structural features present in the CYP1A1 and 

CYP2W1 P450 active sites control differential in binding and/or positioning, which bodes well 

for improving compound selectivity. Despite the unclear role of CYP2W1 in normal human 

physiology, its tumor localization and ability to bioactivate duocarmycin prodrugs make 

CYP2W1 an attractive enzyme for selective cancer therapeutics. 
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FIGURE LEGENDS 

Figure 1.  Duocarmycin analogs ICT2700 and ICT2726 (shown in boxes, differences colored in 

red).  The ICT2700 analog has been reported to undergo bioactivation by CYP1A1 and 

CYP2W1 via a specific hydroxylation (red dotted oval) on the chloromethyl indoline 

substructure (Travica et al., 2013). Spontaneous spirocyclization occurs producing a reactive 

cyclopropane moiety.  DNA adenine bases can be alkylated with this reactive group leading to 

cytotoxic DNA adducts.  The ICT2726 analog does not undergo bioactivation.  Instead, this 

analog can potentially serve as a biomarker for CYP2W1 activity due to the generation of a 

unique non-toxic metabolite specific to CYP2W1 (Sheldrake et al., 2013). 

Figure 2.  Spectral binding experiments of CYP1A1 and CYP2W1 with the seco-duocarmycin 

enantiomers of ICT2726.  Representative difference binding spectra are shown of CYP1A1 (A & 

B) and CYP2W1 (C & D), with the respective ICT2726 enantiomer.  Insets display the 

difference in peak-trough absorbance (average of two technical duplicates) versus compound 

concentration and are fit by nonlinear regression to a tight-binding equation. The fitted 

compound affinities (Kd values) are reported with � S.E. (error bars).   

Figure 3.  Spectral binding experiments of CYP1A1 and CYP2W1 with the seco-duocarmycin 

enantiomers of ICT2700. Difference binding spectra are shown of CYP1A1 (A & B) and 

CYP2W1 (C & D) binding the ICT2700 enantiomers. Insets display the difference in peak-

trough absorbance (average of two technical duplicates) versus compound concentration, and are 

fit by nonlinear regression to a tight-binding equation. The fitted compound affinities (Kd values) 

are reported with � S.E. (error bars). 

Figure 4. LC-MS chromatograms of ICT compounds incubated with CYP1A1 or 2W1 for 30 

min; M6 = spirocyclized product. (A) ICT2700 R/S CYP1A1 metabolism. (B) ICT2700 R/S 
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CYP2W1 metabolism. (C) ICT2726 R/S CYP1A1 metabolism (D) ICT2726 R/S CYP2W1 

metabolism. 

Figure 5.  Co-crystallization structures of CYP1A1 (ribbons) bound to (A) (S)-ICT2726 and (B) 

(S)-ICT2700 (grey sticks).  Electron density is shown as 2Fo – Fc composite omit map contoured 

at 1.0 
 (blue mesh) around the ligand and heme (black sticks with orange Fe sphere).  Potential 

hydrogen bonds (black dashes), halogen bonds (yellow dashes), and ligand atoms in closest 

proximity to the heme iron (red dashes) are shown with their corresponding distances. 
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TABLES 

Table 1.  X-ray data collection and refinement statistics for P450/ligand structures. 

 
CYP1A1/(S)-ICT2700 

(6UDL) 
CYP1A1/(S)-ICT2726 

(6UDM) 
Data Collection   

   Space Group P212121 P3121 

   Cell Dimensions (Å) 65.37, 196.15, 237.22 241.28, 241.28, 125.30 

   Molecules/a.u. 4 4 

   Resolution (Å)a 50.00-2.85 (2.90-2.85) 39.64-3.07 (3.14-3.07) 

   Total reflectionsa 510,182 (17,794) 783,762 (35,174) 

   Unique reflectionsa 72,081 (3,422) 77,258 (3,944) 

   Redundancya 7.1 (5.2) 10.1 (8.9) 

   Rpim
a 0.080 (0.942) 0.054 (0.631) 

   <I/σ(I)> a 28.0 (2.1) 9.7 (1.6) 

   CC1/2a 0.990 (0.322) 0.997 (0.518) 

   Completeness (%)a 99.8 (97.3) 99.0 (85.6) 

Refinement   

   Resolution (Å) 48.799-2.850 39.64-3.10 

   No. reflections 71,709 76,831 

   R/Rfree (%) 23.8 / 28.7 20.1 / 22.1 

   Ramachandran (%) 

   Favored/Allowed/Outliers 96.19 / 3.81/ 0.00 97.15 / 2.85 / 0.00 

   No. non-H atoms/B factors (Å2)   

       Protein 15,015 / 68.60 15,026 / 80.62 

       Ligand 54 / 57.62 104 / 80.66 

       Heme 172 / 57.09 172 / 68.49 

       CHAPS - / - 42 / 100.77 

       Water 1 / 49.31 - / - 

   RMSD bond (Å) 0.008 0.007 

   RMSD angle (°) 0.765 0.636 

   Coordinate error (Å) 0.37 0.37 
a Statistics for highest resolution shell shown in parentheses. 
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